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Chapter 1

Introduction: Particles and
Interactions

The study of the underlying structure of elementary particles that make the matter and their
interactions is usually referred to as Elementary Particle Physics. The study of “elementary
particles” as we presently know begins with the discovery of the electron in 1897. By the
early 1930’s we knew about the existence of the electron, proton and the neutron. Neutrino,
more precisely the electron neutrino, was conjectured around this time by Pauli to account
for the continuous electron spectrum emitted in the β-decay process to save the collapse of
the principle of conservation of energy.

The approximate equality of the masses of two nuclei, He3(ppn) and H3(pnn) posed a
puzzle since their charges were very different. A new force responsible for binding the protons
and neutrons, strong force, had to be conjectured. Further Heisenberg proposed that the
masses of these two nuclei are approximately equal due to a symmetry of this force, namely
the charge symmetry of the strong force. In today’s language we understand this charge
symmetry as resulting from the isospin invariance of the strong interaction Hamiltonian.

To account for the short range (≈ 10−13cms) of these forces, unlike the electomagnetic
force which has infinite range, Yukawa conjectured a new massive particle called the pi-meson
or pion. Just as the massless photon mediated the electro-magnetic interactions, the pion
was assumed to mediate the strong or nuclear forces. Yukawa assumed that the potential
energy between any two protons in a nucleus is of the form

V (r) ∼ exp(−µr)
r

so that the range of the nuclear force is short determined by the parameter µ which is
indeed the mass of the pion. Thus apart from electromagnetic interaction, by now we had
strong or nuclear force (responsible for binding protons and neutrons) and weak interactions
responsible for β decay of the neutrons.

With the advent of powerful accelerators, more of these so called “elementary particles”
were discovered and some of them behaved quite “strangely”. For example

π− + p→ Λ +K0, (1.1)

where the interaction between a negatively charged pion and a proton produced two new
particles Λ and K0. The typical time scale for the production of these particles is about
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4 CHAPTER 1. INTRODUCTION: PARTICLES AND INTERACTIONS

10−23 secs∗. However the unstable Λ particle decayed rather slowly,

Λ → π− + p (1.2)

with a time scale of 10−8 secs. To understand why a particle produced on a strong scale
decays weakly, a new conservation law called ”conservation of strangeness” had to be brought
in to account for their stability in strong interactions. This new quantum number called
strangeness quantum number is conserved in strong interactions where as weak interactions
do not respect it. Thus when Λ and K are produced in association the process conserves
the new quantum number (the initial state has no strangeness) where as the decay of Λ can
not go through without violating the same.

With the discovery of more particles, and their anti-particles, many such discrete quantum
numbers were added to the list, the zoo was enlarging into a periodic table analogous to the
Mendeleev’s periodic table of atoms. Further some of the so called ”elementary particles”
also began to display signatures of an internal structure. Just as the systematics of periodic
table indicated an underlying structure of atoms made up of electrons and nuclei, the table
of particle data indicated a possible organisation of this zoo in terms of more fundamental
constitutents: the quarks and leptons whose interactions are mediated by gluons (strong
force), photons (electromagnetic force) and the W,Z bosons (weak force).

The reactions involving elementary particles obey the following exact conservation laws:
energy, linear and angular momentum, charge. In addition one of the clearest results exper-
imentally observed in the reactions of elementary particles is the conservation of Fermion
number ( provided the antiparticles which are also fermions are assigned a negative fermion
number as compared to the particle). On the otherhand there is no such principle with
respect to bosons. For example, the photon number or pion number is not conserved. This
suggests that the conservation of fermion number is a fundamental feature of all interaction.
In particular the conservation of fermion number comes in various shades which puts further
constraints:

• From observed transition rates, and the absence of processes which are kinematically
allowed conserving the well known charge conservation principle, we can infer the
presence of a conservation law. For example we know that the baryon number is

conserved. A process such as,
p→ e+ + π0

is not observed even though it is kinematically allowed and charge is conserved. We
account for this lack of decay by assigning a baryon number to the proton (+1 and -1
for antiproton) which should be conserved in any interaction involving baryons.

• Similarly non-observation of processes which do not conserve the number of leptons,
leads us to the conclusion that the Lepton number is conserved. For example

e− + e− → π− + π−

is not allowed even though it conserves charge and is kinematically allowed.

∗The time scales of strong and electromagnetic interactions are typically of the order of 10−23 and 10−16

seconds. The corresponding time-scale for weak interaction however varies widely, the faster of these decays

have a time scale of around 10−8 seconds. The reaction rates which determine these time scales depend on

the corresponding matrix elements for transition which we shall discuss later.
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• We have already referred to the conservation of strangeness which is, unlike the previous
two, is conserved in strong and electro-magnetic interactions, it is not conserved in weak
interactions which makes strange particles to decay to non-strange hadrons.

• Similarly the conservation of Iso-spin is only approximate-it is exact in reactions when
only strong forces are operating.

• To this list we have to also add parity(P), charge conjugation(C) and time reversal(T).
There is experimental evidence that individually these are violated in weak interactions.
A combined operation of these, namely CPT is however an exact symmetry.

The conservation laws are intimately connected with some symmetries in nature. The law
of conservation of momentum results when the system is translationally invariant. Similarly
the conservation of angular momentum of an isolated system is conserved if it is rotation-
ally invariant. We will discuss later in more detail the relation between symmetries and
conservation laws.

The present knowledge of particles, both experimental and theoretical, is put together in a
model which describes the reactions of all known particles in terms of the fundamental forces
between quarks and leptons. The unified model of the interactions of quarks and leptons
is called the ”Standard Model” of particle physics which has been eminently successful in
explaining much of the observed data interms of few parameters, like the masses and coupling
constants, whose origins are not well understood yet.

The table?? summarises the stable and unstable particles which constitute the basic
elements of the Standard Model.

Particle mass (MeV) charge spin stability interaction
(a) Leptons
e− 0.511 -1 1/2 stable weak, electromagnetic
µ− 106 -1 1/2 unstable weak, electromagnetic
τ− 1777.1 -1 1/2 unstable weak, electromagnetic
νe ?? 0 1/2 stable weak
νµ ?? 0 1/2 stable weak
ντ ?? 0 1/2 stable weak
(b) Quarks:
u 3 2/3 1/2 - weak, electromagnetic, strong
d 6 -1/3 1/2 - weak, electromagnetic, strong
c 1300 2/3 1/2 - weak, electromagnetic, strong
s 100 -1/3 1/2 - weak, electromagnetic, strong
t 175000 2/3 1/2 - weak, electromagnetic, strong
b 4300 -1/3 1/2 - weak, electromagnetic, strong
(c) Gauge Bosons:
g 0 0 1 stable strong
γ, 0 0 1 stable electromagnetic
W± 80400 ± 1 unstable weak
Z 91187 0 1 unstable weak

Table 1.1: In addition there are antiparticles of quarks and leptons. The masses of the quarks
shown are approximate. Gravitational interaction is ofcourse common for all the particles.
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Some fundamental problems remain to be answered: The standard model is based on a
symmetry which leaves the neutrinos massless. However, recent evidence suggests that the
neutrinos are indeed massive and have other properties which can not be accommodated in
the standard model in its present form. The Higgs scalar, responsible for generating the
masses of the gauge bosons, is yet to be discovered.

The questions “beyond standard model” of particle physics will have to be addressed in
the on going search for a fundamental theory of all matter. The question of accommodating
Gravity in a unified theory of all forces that govern the various phenomena is still an open
question.

Problems

Find out which of the following reactions is allowed or forbidden (and why):

1. n→ e+ + e−

2. n→ p+ e− + γ

3. n→ p+ e− + ν̄e

4. p→ e+ + π0



Chapter 2

Scales and Units

2.1 Natural units

Natural units are units of measurement defined such that some physical constants are set to
unity. The physical constants are so chosen as to simplify the formulae. The energy of all
fundamental particles is measured in units of eV. An eV is defined to be the kinetic energy
that a particle carrying the fundamental charge e of the electron gains when it is accelerated
across a potential difference of 1 volt. Using the Einstein’s relation E = Mc2, all masses are
measured in units of eV/c2. The velocity is expressed as a fraction of the velocity of light c,
β = v/c and the momentum p is measured in units of eV/c.

It is a common practice therefore in particle physics to set fundamental unit of action
h̄ = 1 and the velocity of light in vacuum, c = 1. The system of units are then completely
defined if one specifies either the unit of energy or unit of length, for example. Thus all masses
(m), momenta (mc) and energies (mc2) are given in units of eV ( or KeV, MeV, GeV). The
length (h̄/mc) and time (h̄/mc2) are then given in units of eV −1. One may alternate between
the units of energy and length using the conversion factor h̄c = 1 ≈ 200MeV fm.

For example the de Broglies wavelength associated with a 1 GeV photon is given by,

λ =
h

p
=

2πh̄c

E
=

2π(200)MeV fm

1000MeV
= 0.4πfm.

2.2 Scales

Every particle massive or massless is subject to gravitational interaction. Particle with
electric charge feel the Coulomb interaction. There are two more forces responsible for hap-
penings in the subatomic domain, namely the strong force responsible for binding nucleons
inside a nucleus and the weak force which figures itself in decay processes. There is no
classical analogue for these two short ranged forces unlike the electromagnetic and gravity
which are long ranged.

Though all the forces act at the same time, they may be distinguished because they have
different strengths and ranges. The four distinct interactions are governed by phenomeno-
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8 CHAPTER 2. SCALES AND UNITS

logical coupling constants given by,

strong: αs ≈ 1

electromagnetic: α ≈ 1/137

weak: Gm2
p ≈ 10−5

gravity: Gm2
p ≈ 6 × 10−39.

The order of magnitude estimates of many physical quantities may be given based on simple
physical considerations and dimensional analysis.

1. Radius of the Hydrogen atom:

E =
p2

2me

− α

r

where the first term is the kinetic energy and the second term is the electrostatic energy
governed by the fine structure constant. The momentum p scales as 1/r and hence

E =
1

2mer2
− α

r

whose minimum determines r,

r =
1

meα
= 137/0.5 MeV −1 ≈ 5 × 10−9 cm

The three important scales in quantum electrodynamics differ from each other by
powers of α, namely

• Bohr radius : 1
meα

• electron compton wave length : 1
me

• electron classical radius : α
me

2. Strong interactions:

The charge radius of the proton as measured by experiments ( electron- proton scatter-
ing) is about 0.81 fm ( 10−13cm). This is infact larger than the compton wavelength of
the proton. Because the strong interaction strength is close to unity, the cross-section
for proton-proton scattering is given by

σpp = πr2
p = 3 × 10−26cm2 = 30mb

using the classical analogy for the cross-section. Indeed the experimental value is close
to this, about 45mb close to GeV energy.

3. Electromagnetic scattering: e+ + e− → µ+ + µ−

The probability amplitude for this process is propotional to e2 or α, the fine structure
constant. Hence the cross-section must be proportional to α2. The cross-section may
therefore be written as

σe+e− = α2f(s,me,mµ)
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where f is a function of the invariant s = (p1 + p2)
2, and the masses. Note that the

total cross-section is in general a function of Lorentz invariant variables, which in this
case is the square of the sum of the two four momenta in the initial state (or final
state).

At very high energies we may neglect the masses of the particles, and purely by di-
mensional considerations the cross section must be given by

σe+e− ≈ α2/s

Indeed the exact cross section is

σe+e− ≈ 4πα2/3s

4. Weak interaction: ν +N → ...

The total cross section may be written as

σνN = G2f(s,me)

Unlike the electromagnetic and strong interactions the coupling strength G = [L2] is
not dimensionless. Therefore from dimensional arguments the cross section must go as

σνN = G2s = 10−38cm2

for s = 1GeV 2. This is again close to the experimental result.

Problems:

Below are given some problems of a very general nature:

1. Use natural units and express the following important length scales in units of Fermi.

• Bohr radius

• electron classical radius

• compton wave length of electron, pion and the proton.

2. In units of the electron Bohr radius, what would be the Bohr radius for a muonic atom
and pionic atom.

3. Consider the decay of a particle of mass M to two particles of masses M1 and M2. Show
that the energy momentum of the decay products could be entirely fixed in terms of
the masses alone.

4. The size of the proton (charge radius) is approximately 1 fm. Typically one needs
a probe whose wave length is much less than this size to probe the structure of the
proton. Suppose we assume that a photon probe has a wavelength less than 1/10
fm, calculate the energy of the photon required to probe the internal structure of the
photon.
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5. If a proton is allowed to decay, what possible quantum number/s are violated? What
about the electron? Can it ever decay into any of the known particles?

6. The pions are unstable particles. Investigate the decay modes of charged and neutral
pions. Assuming an equal number π± are enter the earths atmosphere (approximately
correct), what particles are left in what ratios after all the pions and even their decay
products have decayed.

7. Neutral pion, of mass 135 MeV, decays into two photons. If the mean life of the
neutral pion is 10−16 seconds, calculate the distance that a 1GeV pion will travel prior
to decay? What is the approximate opening angle of the two photons in the laboratory
frame?

8. Suppose the proton could decay with a life time of 1030 years, how many cubic meters
of water would have to be observed if one wanted to have about 100 events in a year.

9. Low energy neutrinos pass through a piece of solid iron- if the neutrino-nucleon cross
section is about σ ≈ 10−47 m2, estimate the mean free path of the neutrinos in iron
(density of iron is 8 times the density of water).

10. Suppose a neutral pion decays at rest to an electron and positron pair; if this occurs
in a magneitc field of magnitude 2 Tesla, what is the radius of the orbits that these
charged particles move.

11. In 1987 scientists from Kamioka observatory in Japan observed neutrinos from a
supernova-SN1987a-in the large Magellanic Cloud, which is at a distance of 55 kilo
Parsecs from Earth. Antineutrinos of energy between 7 and 20 MeV were detected in
an interval of about 12 seconds. Assuming all the antineutrinos were emitted almost
instantaneously (actually few millisecs) obtain a bound on the neutrino mass.

12. Consider the decay ω → π+ + π− + π0. If the mass of the omega particle is 780 MeV
and that of the pion is 138 MeV on the average, what is the largest possible momentum
that a single pion can have?

13. Verify that the spin of the neutral pion can be deduced from the fact that it decays
into two photons. Photons have spin-1 and are massless.

14. Free neutron is an unstable particle with a life time of about 13 minutes. Investigate
the decay mode of the neutron. Is it possible to have more than one decay mode for
the neutron?

15. Neutrons bound in nucleus like He4 or O16 remain stable. Why? Apply the same
reasons to understand why neutrons in some heavier nuclei are allowed to decay.

16. Consider a world in which the masses of neutrons and protons are equal. What would
be the consequences, how would this world look like?



Chapter 3

Symmetries and invariances principles

Symmetry considerations are a powerful tool to explore and understand the behaviour of
elementary particles. They provide the backbone of our theoretical formulations. Even
when some of the apparent symmetries are not exact they provide a basis for classification
of states assuming exact symmetry and allow us to look at possible sources and pattern of
symmetry breaking. Any particle data table invariably lists particles with their quantum
numbers arising from symmetry operations.

The known symmetries may be classified as follows:

• Permutation symmetry which results in Bose-Einstein (bosons) and Fermi-Dirac Statis-
tics (fermions).

• Continuous symmetries: Translation in space and time, rotation etc.

• Discrete symmetries: space inversion, time reversal, charge-conjugation, etc.

• Unitary symmetries: U(1) symmetries associated with charge conservation, baryon
number, lepton number, SU(2) (isospin) symmetry, SU(3)(flavour) symmetry, SU(3)
(colour) symmetry.

We shall discuss the first three briefly here and will not discuss Unitary symmetries here.
It is most conveniently discussed in the context of quark models. It suffices to say that
there are many conservation laws which arise from invariance of the Hamiltonian under the
so-called U(1) (or phase) transformations, like the conservation of lepton number, Baryon
number, etc in a manner that is analogous to the charge conservation.

3.1 Permutation Symmetry

All physical identical many particle states must have definite symmetry under permutation
symmetry. It is an observed fact that all particles are either bosons are fermions depending
on their behaviour with respect to another particle of the same kind. Thus the state of a
system of identical bosons is symmetric under permutations where as a system of identical
fermions is anti-symmetric under permutations. While one may be able to define systems
with mixed symmetry (symmetric under some exchanges and antisymmetric under others)
they are not realised in nature. Indeed this symmetry played fundamental a role in the
formulation of quarks with colour as the basic entities in the theory of strong interactions.
More about this later.

11



12 CHAPTER 3. SYMMETRIES AND INVARIANCES PRINCIPLES

3.2 Continuous symmetries

A symmetry under space translation implies that the interaction energy between two particles
is independent of their positions but depends only on their relative distance. Classically the
Lagrangian L which is a function of generalised coordinates qi and generalised velocities q̇i
is unchanged under the displacement qi → qi + δqi. That is

∂L

∂qi
= 0

Then by virtue of the equations of motion, we have

dpi
dt

= 0

which is a statement of the conservation of momentum. Similarly time translation invariance
leads to the energy conservation.

In quantum mechanics if there is a continuous operation like rotation or translation, say
G , it may be generated from transformations which differ infinitesimally from the identity
transformation

G = 1 − iǫg,

where g is the Hermitian generator of the symmetry operator in question. For example for
rotations about z-axis, it is the z-component of the angular momentum. By definition G is
a unitary transformation. Suppose the Hamiltonian is invariant under G, then we have

G†HG = H

This is equivalent to
[g,H] = 0

and by virtue of Heisenberg equation of motion, we have

dg

dt
= −i[g,H] = 0

and hence g, or more precisely its quantum expectation value, is a constant of motion. For
example if H is invariant under rotations then the angular momentum about the axis of
rotation is a constant of motion.

Furthermore, when two operators commute, they can be simultaneously diagonalised.
The set of eigenfunctions will be labelled by the eigenvalues, quantum numbers, of both
operators. If the Hamiltonian for a transition is invariant under the transformation, then
the quantum numbers labelling the initial state will also be conserved. This is a very powerful
result which results in selection rules for reactions to occur.

3.3 Discrete symmetries

All symmetry operations in quantum mechanics are not necessarily continuous. The Hamilto-
nian may also be invariant under discrete transformations, for example space-time inversion.
We consider three important symmetries here, namely, Parity, Charge Conjugation and Time
Reversal.
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3.3.1 Parity

We first consider parity or space inversion. Classically under a parity transformation ~r → −~r
and ~p→ −~p. That is a right-handed coordinate system is changed to a left-handed coordinate
system. This can not be achieved by rotation which is a continuous transformation in three-
space dimensions. Hence it is a discrete symmetry. Infact it is easy to verify that the
determination of the transformation matrix is positive for rotation matrices where as for
Parity it is negative.

If |α〉 is a quantum mechanical state then we require under space inversion,

〈α|P †~rP |α〉 = −〈α|~r|α〉

We accomplish by stating that under parity transformation,

P †~rP = −~r

or
~rP = −P~r

where we have used the fact that P is unitary. Thus the position and parity anticommute.
Further, since two inversions cancel the effect of each other, we have,

P 2 = 1

or equivalently,
P−1 = P † = P

The Parity operator is not only unitary but also hermitian with eigenvalues +1 or -1.
By definition the angular momentum is ~L = ~r × ~p. Clearly,

[L, P ] = 0

Since L is the generator of rotations, parity commutes with rotations,

[R,P ] = 0

.
If the Hamiltonian is invariant under parity transformation, then the states are definite

eigenstates of the parity. Consider the wavefunction of a rotationally invariant system in
three dimensions:

ψnlm = Rnl(r)Ylm(θ, φ)

for example hydrogen atom. Under parity transformationwe have, r → r, θ → π−θ, φ→ π+φ
in spherical coordinates. Thus

Pψnlm = (−1)lψnlm

using the property of the spherical harmonics.
“Intrinsic Parity” is a notion that is applied to all the elementary particles. The word

intrinsic is used in the same sense in which spin is referred to as intrinsic. To clarify consider
for example the orbital angular momentum operator Li = (~r × ~p)i. In quantum mechanics
the operator Li is defined as,

Li = −i(xj
∂

∂xk
− xk

∂

∂xj
)
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where the indices are taken around cyclically. Further Li satisfy the angular momentum
algebra,

[Li, Lj] = iǫijkLk

The commutation relation is very general and applies to spin-angular momentum also,

[Si, Sj] = iǫijkSk

and to the total angular momentum

[Ji, Jj] = iǫijkJk

where Ji = Li + Si. However there is no spacial representation for S analogous to L. In this
sense the spin has no classical analogue and is an intrinsic property of quantum mechanical
objects. Consequently the parity of a state described by the eigenfunction of orbital angular
momentum is given by,

Pψnlm = ηψ(−1)lψnlm

where ηψ denotes the intrinsic parity of the quantum particle. Further as in the other case,

η2
ψ = 1

It is in this sense we refer to parity as an intrinsic property of the state when it is an
eigenstate of parity. There is no classical analogue.

Intrinsic parity of the Photon : As an example consider the intrinsic parity of photon.
The electromagnetic interaction conserves parity. The current jµ of a charged particle couples
to the electromagnetic field (photon) through

jµA
µ

where

jµ = (~j, ρ)

and

Aµ = ( ~A,A0)

in the four-vector notation. Under parity,

(~j, ρ) → (−~j, ρ)

since ~j = ρ~v, where ~v is the velocity. The electromagnetic interaction is invariant under
parity only if

( ~A,A0) → (− ~A,A0)

Thus the intrinsic parity of the photon has to be negative just like any position vector.
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Intrinsic parity of the pion : When parity is conserved the intrinsic parity of a particle
may be determined relative to others whose intrinsic parity is known: For example consider
a reaction

A→ B + C

Conservation of parity implies
ηA = ηBηC(−1)L

where L is the relative angular momentum of the final state particles.
Thus the intrinsic parity of pion may be determined using the scattering process

π− + d→ n+ n

Using the relation
(parity π)(parity d) = (parity nn)

it is easy to show that the intrinsic parity of the pion should be negative. One needs to
assume that the intrinsic parity of proton and neutron to be the same. Infact we define
the intrinsic parity of the proton to be +1 and define the parity of various other particles
relative to that of the proton. While the pion has spin zero, deuteron has spin 1. Since the
pion is absorbed almost at rest by the deuteron the relative angular momentum in the initial
state is zero. Thus the total angular momentum in the initial state is J = 1 entirely due to
the spin of the deuteron. Since the neutron is a S = 1/2 particle, using angular momentum
conservation we have the following options in the final state:

|ψ(1)
nn 〉 = |J = 1, S = 1, L = 0, 2〉

|ψ(2)
nn 〉 = |J = 1, S = 1, L = 1〉

|ψ(3)
nn 〉 = |J = 1, S = 0, L = 1〉

Antisymmetry excludes all but the second wave function. Hence the parity of the pion is
given by,

ηπηd = ηnηn(−1)L

ηπ = −1

Hence the parity of the pion with respect to proton or neutron is negative.
A system whose dynamics is given by Schrödinger or Klein-Gordon equation, the wave

function in the inverted system describes a particle with opposite momentum. However, with
Dirac equation the situation is more complicated since it is first order in space coordinates-
hence the form of the equation changes: Suppose ψ satisfies the Dirac equation

(iγµ∂µ −m)ψ(~x, x0) = 0.

Suppose in the space inverted system

(iγ0∂0 − iγi∂i −m)ψ(~x, x0)
P→ (iγ0∂

′
0 − iγi∂

′
i −m)ψ′( ~−x, x0)

Note that while parity invariance is respected by strong and electromagnetic interactions,
it is violated in weak interactions. The famous τ − θ puzzle was understood interms of the
parity violation in weak interactions proposed by Lee and Yang and later experimentally
demonstrated by Wu in the β − decay of polarized Co60.
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3.3.2 Charge Conjugation

Charge conjugation operator C is in many ways similar to Parity. By definition it inverts all
internal charges (electric, baryon number, lepton number etc) of a particle thus relating it
to its anti-particle and vice versa. The space-time coordinates are unchanged. For example
electric charge

Q
C→ −Q

that is
|ψ(Q, ~p,~s〉 C→ |ψ(−Q, ~p,~s)〉

Thus the quantum mechanical state of a proton, say, under charge conjugation is trans-
formed into the state of an anti-proton.

|p〉 C→ |p̄〉

Therefore as in the case of parity we have,

C2 = 1

or equivalently,
C−1 = C

Thus C is not only unitary but also hermitian with eigenvalues +1 or -1.
Since C reverses the charges, it also reverses the electric and magnetic fields. As a result

the photon has negative eigenvalue under C. However Maxwell equations are invariant under
charge conjugation. From the decay

π0 → γ + γ

we conclude that the pion is even under charge conjugation. While some charge neutral
states like photon, neutral pion are eigenstates under C, it is not always so- for example

|n〉 C→ |n̄〉

Invariance under P or C would then mean that the transitions would occur to only
states with the same eigenvalue in the initial and final states. Note that the eigenvalues
of these operators are multiplicative. Strong and electromagnetic interactions respect these
symmetries, where as in weak interactions these are violated. However, the combination of
P and C is still a symmetry to a good approximation though it is violated in some systems.

3.3.3 Time Reversal

The discussion of time reversal symmetry is some what more complicated. Classically both
Newton’s equations and Maxwell’s equations are invariant under time reversal. We briefly
discuss the situation in quantum mechanics where at the outset it appears not to be so since
the Schroedinger equation is first order in time.

Suppose ψ(x, t) is a solution of the Schroedinger equation,

i
∂ψ

∂t
(x, t) = (− 1

2m
∇2 + V )ψ(x, t)
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then it is easy to see that the time reversed state ψ(x,−t) is not a solution because of the first
order time derivative. However, it is easy to check that ψ∗(x,−t) is a solution by complex
conjugation:

i
∂ψ∗

∂t
(x,−t) = (− 1

2m
∇2 + V )ψ∗(x,−t)

Thus we can conjecture that the time reversal has some thing to do with complex conjugation.
Another way of looking at this is to preserve the probability invariant under time reversal.

Following Wigner we may then require

〈ψ|ψ〉 = 〈Tψ|Tψ〉

There are two ways of achieving this which is obvious if we look at two different quantum
states. We may have

〈φ|ψ〉 = 〈Tφ|Tψ〉
as in ordinary transformations or

〈φ|ψ〉∗ = 〈Tφ|Tψ〉

Since the first choice leads to the trouble mentioned above with respect to the dynamical
equation, we may choose,

Tψ(x, t) = ψ∗(x,−t)
Therefore for any Hermitian operator O,

〈ψ|O|φ〉 = 〈Tφ|TOT−1|Tψ〉

Taking the absolute square gets rid of the complex conjugate problem and the probability
remains invariant.

How do we choose TOT−1? Here are some examples,

TxT−1 = x

TpT−1 = −p
etc.

Thus for any process i→ f
|Mi→f | = |Mf→i|

where M denotes the matrix element for a given transition. Thus the probability is the
same if the initial and final states are reversed as it happens in any time reversal transfor-
mation. This is known as the principle of detailed balance. The physical cross-section
however is not necessarily the same since the flux and finals state phase space are different.
Using Fermi’s golden rule the transition rates are given by

Wi→f =
2π

h̄
|Mi→f |2ρf ,

Wf→i =
2π

h̄
|Mi→f |2ρi.

While the probabilities are the same the rates may be different since the density of states of
the end products ρi,f are not necessarily the same. These can be quite different depending on
the masses and number of particles. This is how one reconciles the time reversal invariance
with the law of entropy increase.
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3.3.4 CPT theorem

While the discrete symmetries C,P and T appear to violated, the combined operation CPT
is an exact symmetry. Any theory that is invariant under Lorentz transformations must have
CPT symmetry- CPT theorem. There is no known violation of the CPT symmetry and is
consistent with all known experimental observations. The theorem has many consequences:

1. Spin-Statistics theorem: The connection between the spin of the particle and its
statistics- for example the spin half particles obey Fermi statistics where as the integer spin
particles obey Bose-Einstein statistics.

2. Particles and anti-particles have identical masses and life times.
3. All internal quantum numbers of anti-particles are opposite to those of the particles.

3.4 Problems:

1. Find reasons that could forbid γ → γγ. What would happen if the photon had mass?

2. Can an electron and a positron annhilite to a single photon?

3. Consider the decay of the particle ∆ → π+N , where the spin of the ∆ particle is 3/2.
Determine the parity of the ∆.

4. Consider the process Co60 → Ni60 + e− + ν̄e. Show that

〈cos θ〉 = 〈
~S.~p

|~S||~p|
〉

is non-zero if parity is violated. Here S is the spin of the nucleus and p is the momentum
of the electron.



Chapter 4

Hadrons and the Quark Model

During the 50’s and 60’s hundreds of hadrons, or strongly interacting particles, were discov-
ered. The concept of “elementary” particle took a beating. The picture was dramatically
simplified when it was realised that they could be organised in multiplets, which in turn
could be understood in terms of combinations of elementary constituents called quarks. The
quark model proposed by Gell-Mann accounts qualitatively for the masses of light hadrons
in the region of 1-2 GeV mass range.

The hadrons are divided into two broad categories called mesons ( integer spin) and
baryons ( half-odd integral spin with an additional quantum number called the baryon num-
ber). The following table summarises the low lying hadrons classified according to their spin
and parity. We have already alluded to the isospin and strangeness before. As far as strong
interactions are concerned both isospin and strangeness are conserved exactly. The table
?? also shows the assignment of isospin and strangeness quantum numbers. By inspection
it is easy to see that there exists a relation between the charges of the particles and other
quantum numbers:

Q = Iz +
Y

2
= I3 +

B + S

2
, (4.1)

where I3 is the isospin projection, Y is the hypercharge which is the sum of baryon number
and strangeness quantum number. This is the well known Gell-Mann-Nishijima relation.
Infact the original assignments of quantum numbers were made using this relation as well∗.

The deliberate arrangement of mesons into groups of (8+1) and baryons into groups of
(8) and (10) is suggestive of a classification scheme about which we will say more.

In quantum mechanics the degeneracy of eigenvalues is an indication of an underlying
symmetry. From the table the following facts emerge:

• Isospin multiplets of the same JP are almost exactly degenerate- for example (p,n),
π±,0. Thus isospin symmetry is exact in strong interactions. The generators of isospin
transformations commute with the Hamiltonian. Small mass differences among the
multiplets may then be attributed to isospin breaking effects due to other interactions.

• The hadrons within each JP group are approximately “degenerate” to varying degrees.
Baryons are degenerate to within 30 percent, where as with mesons it would be ques-
tionable. In the following analysis we concentrate more on Baryons and discuss mesons
only in passing.

∗With the discovery of new flavours or quantum numbers Gell-Mann Nishijima’s original relation has

been generalised to include an expanded list of particles

19
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Particle Mass(MeV) JP Isospin Strangeness
pseudoscalar Mesons: 8 + 1
π±,0 140 0− 1 0
K+, K0 495 0− 1/2 1
K̄0, K− 495 0− 1/2 -1
η0 550 0− 0 0
η′0 960 0− 0 0
vector Mesons: 8 + 1
ρ±,0 770 1− 1 0
K∗+, K∗0 890 1− 1/2 1
K̄∗0, K∗− 890 1− 1/2 -1
ω0 780 1− 0 0
φ0 1020 1− 0 0
spin 1/2 Baryons: 8
p,n 940 1/2+ 1/2 0
Λ0 1115 1/2+ 0 -1
Σ±,0 1190 1/2+ 1 -1
Ξ0,− 1315 1/2+ 1/2 -2
spin 3/2 Baryons: 10
∆++,+,0,− 1232 3/2+ 3/2 0
Σ∗±,0 1385 3/2+ 1 -1
Ξ∗0,− 1523 3/2+ 1/2 -2
Ω− 1672 3/2+ 0 -3

Table 4.1: Hadrons and their properties
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One can construct from the list given above sets of I3 − Y plots which will be identified
with the weight diagrams of the SU(3) group later.

The SU(3) scheme outlined by Gell-Mann had dramatic prediction that Ω− particle,
which was then not yet discovered, should be there to complete the decuplet JP = 3/2+.
Indeed it was found.

We note a couple of important points without details here:

(1) From the known experimental data on Baryon excited states only states with I =
1/2, 3/2 have been seen. This fact, as we shall see later, is crucial for the quark model where
only the minimal three quarks are require to construct baryons. If I = 5/2 state is observed
it would require minimum five quarks.

(2) The excitation spectra of N,∆,Λ are approximately similar. Even though their
constituents may be different combinations of various quarks, the approximate similarity
indicates a certain universality of the confining potential- namely flavour independence.

4.1 The quark model

With the list of “fundamental particles” increasing following the discovery of more excited
states of particles in table ??, and new particles of even higher masses discovered, the
question that whether all of them could be regarded as elementary or fundamental was
looming large. The anomalous magnetic moments of nucleons also pointed to the existence
of a substructure.

One feature we have noticed of the hadrons when arranged according to their JP is that
they come neatly arranged in various multiplets.

1. Baryons: 8(1/2+) ⊕ 10(3/2+)

2. Mesons: 9(0−) ⊕ 9(1−)

Gell-Mann and Zweig(1964) proposed that such a multiplet structure naturally arises
when hadrons are thought of as composites of more fundamental objects- quarks which are
again fermions with spin 1/2.

The minimal non-trivial configuration for generating Baryons, which are also fermions, is
to bind three quarks (qqq). Each quark is assigned a baryon number 1/3 which ensures the
fundamental baryons have unit baryon number. Note that the baryon number is additive
like charge.

Mesons are composites of quark(B=1/3) and anti-quark(B=-1/3) pairs so that the baryon
number of mesons is zero. Since the quarks have spin 1/2. mesons will necessarily have
integral spin.

The next hypothesis introduced by Gell-Mann is that these quarks span the fundamental
representation of the group SU(3) which has dimension 3 and the anti-quarks span the con-
jugate representation of dimension 3̄. These assumptions are sufficient to see the emergence
of the hadron multiplet structure:

1. Mesons (qq̄) : 3 ⊗ 3̄ = 1 ⊕ 8

2. Baryons (qqq) : 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8̄ ⊕ 10
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where the right hand side shows the dimensionality of higher dimensional representations
obtained as a direct sum of the irreducible representations (by taking the Kronecker product
of the fundamental representation). The notation will be clarified later but the resemblence
to the observed multiplet structure is clear.

While the above classification scheme is shown to work, the fundamental representation
is never realised in nature leading to the notion of quark confinement. At this stage
therefore the quarks merely serve as mnemonics for the classification of hadrons in which
they have been permanantly bound. The recent evidence of the decay of the top quark in
the D0 experiment in Fermilab has however provided the first solid evidence for the reality
of quarks.

In the next few sections we consider simple examples using the spin analogy to clarify
many group theoretical notions that are used here.

4.2 SU(2) - Spin and Isospin

To simplify the analysis some what we start with the non-strange hadrons. The only sym-
metry we have to use here is the isospin which is conserved. Hence the states have definite
isospin labels. The non-strange baryons are arranged as follows:

• I=1/2 : p, n

• I=3/2 : ∆++,∆+,∆0,∆−

Suppose ψαi , ψ
β
j are basis vectors corresponding to two unitary irreducible representations

of a compact Lie group, where α, β label the representation and i, j label vectors in each
representations, the basis vectors (tensors) of the Kronecker product represenation are given
by the product ψαi ψjβ.

In general these need not form the basis of an irreducible representation. However, the
basis of any irreducible representation contained in the product can be expanded interms
of the product tensors. The coefficients of such an expansion are called Clebsch-Gordon
coefficients generalising from the example of the rotation group where they were formulated
first. For example,

ψγk =
∑

i,j

C(α, β, γ; i, j, k)ψαi ψ
β
j

where ψγk form the basis of an irreducible representation contained in the product.

Consider for example the Dj representation of the rotation group R(3). The product is
written as,

Dj1 ⊗Dj2 = D|j1+j2| ⊕ ...⊕D|j1−j2|

where each irreducible representation is characterised by well defined permutation symmetry.
For example, the group of transformations on a spin 1/2 system is given by the representation
D1/2. For a system of two spin-half objects, we have

D1/2 ⊗D1/2 = D1 ⊕D0
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which is simply a statement of the fact that the two spin half particles may be combined
into a spin-1 or spin-0 system. In terms of dimensionalities this may also be written as,

2 ⊗ 2 = 3 ⊕ 1

We note that the representation D1/2 defines the unitary irreducible representation of
lowest dimension of the group SU(2). The above group theoretical statements may be illus-
trated easily by the following example. Consder explicitly the states of a spin half particle.

Let,

↑ = |S = 1/2, Sz = 1/2 >

↓ = |S = 1/2, Sz = −1/2 >

be the basis vectors of the fundamental representation of SU(2) which is a group of Unitaary-
Unimodular 2 × 2 matrices. The product states are four in number,

↑↑, ↑↓, ↓↑, ↓↓

. Except the first and the last others do not have definite symmetry under permutation.
One may project these into states with definite permutation symmetry:

|1, 1 > = ↑↑

|1, 0 > =
(↑↓ + ↓↑)√

2
|1,−1 > = ↓↓

which is equivalent to the statement

|1,m >
∑

m1,m2

C(1/2, 1/2, 1;m1,m2,m)|1/2,m1 > |1/2,m2 >

which span the Spin-1 representation of a combination of two spin-1/2 particles. Note that
the representation is completely symmetric under the exchange of the two spins.

The other combination is antisymmetric and leads to the spin-0 representation of the two
particle system.

|0, 0 >=
(↑↓ − ↓↑)√

2

which is equivalent to the statement

|0, 0 >
∑

m1,m2

C(1/2, 1/2, 0;m1,m2, 0)|1/2,m1 > |1/2,m2 >

Note that

J2|j,m > = j(j + 1)|j,m >

Jz|j,m > = m|j,m >
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While combining two spin 1/2 objects it is sufficient to look at the symmetry properties of
CG coefficinets to get the symmetry property of the state

C(j1, j2, j;m1,m2,m) = (−1)j1+j2−jC(j2, j1, j;m1,m2,m)

Example of a physical system for two spin-1/2 objects is the deuteron.

4.2.1 A system of three spin-1/2 objects

Applying the CG theorem,

D1/2 ⊗D1/2 ⊗D1/2 = [D1 ⊕D0] ⊗D1/2 = D3/2 ⊕D1/2 ⊕D1/2

or interms of multiplicities we have

2 ⊗ 2 ⊗ 2 = 4 ⊕ 2 ⊕ 2̄

Thus there are two spin 1/2 representations (distinguished by their permutation symme-
try and one spin 3/2 representation.

The states that span these representations may be constructed explicitly:

•

|3/2,m > =
∑

m1,m2

C(1, 1/2, 3/2;m1,m2,m)|1,m1 > |1/2,m2 >

|3/2, 3/2 > = ↑↑↑

|3/2, 1/2 > =
↑↑↓ + ↑↓↑ + ↓↑↑√

3

|3/2,−1/2 > =
↓↓↑ + ↓↑↓ + ↑↓↓√

3
|3/2,−3/2 > = ↓↓↓

Collectively we refer to these states as χs and are explicitly symmetric.

•

|1/2m > =
∑

m1,m2

C(1, 1/2, 1/2;m1,m2,m)|1,m1 > |1/2,m2 >

|1/2, 1/2 > =
2 ↑↑↓ −(↑↓ + ↓↑) ↑√

6

|1/2,−1/2 > =
2 ↓↓↑ −(↓↑ + ↑↓) ↓√

6

Collectively we call these states χλ. Note that these states are not symmetric or
antisymmetric under exchange of spins. These are called Mixed-symmetry states-
symmetric in 1-2 with no particular symmetry with respect the third spin.
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I, I3 State Charge Q
I=1 Triplet:
1,1 uu 4/3
1,0 ud+du√

2
1/3

1,-1 dd -2/3
I=0 Singlet:
0,0 ud−du√

2
1/3

•

|1/2,m > =
∑

m1,m2

C(0, 1/2, 1/2; 0,m,m)|0, 0 > |1/2,m >

|1/2, 1/2 > =
(↑↓ − ↓↑) ↑√

2

|1/2,−1/2 > =
(↓↑ − ↑↓) ↓√

2

Collectively we call these states χρ. These are again called Mixed-symmetry states-
antisymmetric in 1-2 with no particular symmetry with respect the third spin.

The precise number of states in each representation correspond to the multiplicities ob-
tained from the CG theorem.

4.2.2 Combining Isospin states

We may carry out the same excercise in the isospin space. The rotations in isospin space are
analogous to the rotations in the spin space. The fundamental group is again SU(2) and is
spanned by two vectors u and d referring to the up and down quark states. Analogy with
spin is clear once we identify ↑→ u and ↓→ d. The construction of states in the isospin
space then proceeds the same way as in the spin space.

By analogy with spin the u-quark has I = 1/2, I3 = 1/2 and the d-quark has I = 1/2, I3 =
−1/2. All the quarks carry spin-1/2 and are fermions under permutation symmetry.

Using the Gell-Mann - Nishijima formula the charges of the quarks may be obtained as
follows:

Qu = I3 + (B + S)/2 = 2/3

Qd = I3 + (B + S)/2 = −1/3

since strangeness S=0 and Baryon number B=1/3 for u and d quarks by definition. Thus
the quarks carry fractional charges.

Following table summarises the states of two isospin 1/2 particles: Obviously no such
di-quark systems with non-integral charges appearr in nature. However we need the above
construction to construct systems of three I=1/2 particles. Using the spin analogy the
following table summarises the system of three quarks (qqq) which will be identified with
the baryon states.
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I, I3 State Charge Q Baryon
I=3/2 ∆ φs
3/2,3/2 uuu 2 ∆++

3/2,1/2 uud+duu+udu√
3

1 ∆+

3/2,-1/2 udd+dud+ddu√
3

0 ∆0

3/2,-3/2 ddd -1 ∆−

I=1/2 Nucleon doublet:φλ
1/2,1/2 2uud−(ud+du)u√

6
1 p

1/2,-1/2 2ddu−(ud+du)d√
6

1 n

I=1/2 Nucleon doublet:φρ
1/2,1/2 (ud−du)u√

2
1 p

1/2,-1/2 (ud−du)d√
2

1 n

4.2.3 Spin-Isospin States of definite symmetry

The spin-isospin state of the ∆ particle with S=I=3/2 is given by

|∆ >= χsφs

However the nucleon states with S=I=1/2 have many possible combinations which have the
same quantum numbers as the proton and the neutron, infact too many for comfort since
there are exactly two members of the doublet that we should extract.

χρφρ, χρφλ, χλφλ, χλφρ

So we have four instead two states. But none of these states has a well defined symmetry or
antisymmetry under permutations, while the ∆ is completely symmetric under spin as well
as isospin indices.

If we demand a completely symmetry under exchange as in the case of Delta states then
one gets the following combination:

|N >=
χρφρ + χλφλ√

2

On the otherhand a completely antisymmetric state would have the combination

|N >=
χρφλ − χλφρ√

2

where N = p, n depending upon the isospin projection of φ state.
In nuclear three body problem the nuclei He3(ppn) and H3(pnn) play the roles analogous

to that of proton(uud) and neutron(ddu). The choice of the particular combination of the
spin-isospin state is dictated by the fact that the state of a system of fermions must be
antisymmetric in all indices. Since in the ground state wave function of these two nuclei
(L=0) is completely symmetric, one choses the antisymmetric wave function given above.
The ground state static properties are well reproduced by such a combination. Thus it
might seem that there is an unambigious choice for the Nucleon from the above two choices.
However, the delta states given above are completely symmetric under spin-isospin indices.
The question therefore hangs on the fate of the Spin-Statistics Theorem. We will address
this issue next.
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4.2.4 Spin-Statistics Problem: Origin of colour

Consider the state of ∆ particle. As remarked before the spin-isospin state of this particle is
completely symmetric under permutations. Its JP = 3/2+ and hence it is even under parity.
It is also the ground state of the I = 3/2 state. Quantum mechanics tells us that the ground
state of any system with even parity must be spacially symmetric under permutations. For
example the ground states of the hydrogen molecule, Helium and Oxygen nuclei, etc. Thus
we find ourselves in the piquant situation where the ∆ state is a completely symmetric in
space⊗ spin⊗ isospin coordinates.

The spin-statistics theorem tells us that a state of a system of ferrmions has to be
completely antisymmetric. Thus we encounter a paradoxical situation that spin-statistics
theorem may not hold for the ∆ states in particular†.

A way out of this dilemma is to introduce a new quantum number called Colour. Thus
each quark (u or d) comes in three colours and the wave function of the baryons is completely
antisymmetric in the colour space. Thus all baryons have

Bcolour = ǫijkqiqjqk

where i, j, k = red, green, blue, the three colours ( you may take 1,2,3 for the indices). The
full wave function of the Delta state is then given by,

|∆ >= ǫijkqiqjqk[ψspaceχsφs]

which is on the whole an antisymmetric state. One may wonder if the above decomposition
smells of non-relativistic quantum mechanics which may not be wholly valid for quarks since
their masses are not very large. Indeed the situation with nucleons will clarify this issue
further.

We may now extend the arguement given above for the nucleon states also. As we have
seen there are two combinations available for nucleons:

|N >=
χρφρ + χλφλ√

2

|N >=
χρφλ − χλφρ√

2

combined from the mixed symmetry states of spin and isospin. Once again we assume
the spacial part is symmetric since both nucleon form the ground state of the JP = 1/2+

spectrum of baryons. Since the second combination is completely antisymmetric, it may seem
as though we do not have the spin-statistics problem. However, since the quarks have to be
coloured in order to preserve the antisymmetry of the ∆ states, it is natural to choose the
symmetric states and impose antisymmetry condition by invoking colour. Thus we choose
the nucleon states to be,

|N >= ǫijkqiqjqk
χρφρ + χλφλ√

2

which is now completely antisymmetric.
An even stronger evidence of the choice of the combinations given above for nucleons,

hence for colour, actually comes from the experimental measurement of the static magnetic
moment of the nucleons. We discuss this below.

†Historically many solutions wer proposed- Parastatistics by Greenberg and coloured quarks with integral

charge called the Han-Nambu model. But the experimental evidence is firmly against these proposals
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The experimental data on the neutron and proton magnetic moments gives,

µn = −1.91

µp = 2.79
= −0.685

The corresponding magnetic moment operator in terms of the basic quark operators is given
by,

Mz =
3

∑

i=1

µσizei

where µ is the unit of quark magnetic moment which we keep arbitrary since we do not know
this. ei is the charge of the i-th quark and σiz is the z-component of the Pauli spin vector ~σ
. We are therefore interested in evaluating

µn,p =< N = n, p|Mz|N = n, p >

Note that the operator involves only the spin and isospin operators. We concentrate only
this part of the wave-function. Because these states of the nucleon are either fully symmetric
or antisymmetric we have the identity,

µn,p = 3µ < N = n, p|e3σ3z|N = n, p >

The matrix elements in the spin space are given by,

< χρ|σ3z|χρ > = 1

< χρ|σ3z|χλ > = 0

< χλ|σ3z|χλ > = −1/3

Similarly in the isospin space we have for protons

< φpρ|e3|φpρ > = 2/3

< φpρ|e3|φpλ > = 0

< φpλ|e3|φ
p
λ > = 0

and for neutrons

< φnρ |e3|φnρ > = −1/3

< φnρ |e3|φnλ > = 0

< φnλ|e3|φnλ > = 1/3

Substituting these in the spin-isospin wave functions of the neutron and proton we have,

µn = −2µ/3

µp = µ
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and therefore the ratio is given by,
µn
µp

= −2/3

whereas the experimental value is given by -0.685 which is in excellant agreement considering
the crude assumptions made.

On the other hand if we had chosen the antisymmetric combination in the spin-isospin
space disregarding the colour hypothesis, we would have obtained,

µn
µp

= −2

in contradiction with experiment. Thus we have now evidence for colour from two inde-
pendent approaches- the spin-statistics theorem and the experimental data on the static
magnetic moments of the neutron and proton. Note that we did not need to fix µ the basic
unit of magnetic moment of the quarks- it just cancelled out in the ratios.

4.2.5 Constituent Quarks

The ratio of the magnetic moments as calculated before does not fix the unit of the quark
magnetic moment. As in the case of the electron if we assume that the Dirac magnetic
moment of the quarks to be given by the expressions:

µu =
eu

2mu

=
2µ

3
µd =

ed
2md

=
−µ
3

Assuming m = mu = md we have for the proton magnetic moment

µp = 2.79
e

2MP

=
e

2m

where m is the quark mass, we immediately get,

m =
Mp

2.79
= 336MeV

This mass is often referred to as the constituent quark mass. Unlike the mass of the
electron which enters the QED Lagrangian as a fundamental quantity, the constituent quark
mass has no firm theoretical basis except to define a scale for discussing the low energy and
static properties of the nucleon.

4.2.6 Other evidences for colour

We conclude this discussion with few more remarks on the colour quantum number: Some
of the strongest evidence for colour comes from experiments. Consider the following ratio
which is now experimentally measured:

σ(e+e− → hadrons(qq̄)

σ(e+e− → µ+µ−)

which is the ratio of the total cross-sections for electron-positron annihilation to either quarks
or muons. Typically such a total cross-section is obtained by summing over all the final states.
Thus in the numerator one sums over all the spin-isospin (around 1 GeV. At higher energies
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one has to sum over other quarks as well) states and in the denominator we sum over the
spin states of the muons. If quarks come in three colours, one needs to sum over these as
well. As it turns out merely summing over spin and flavours underestimates the ratio by a
factor close to three suggesting the existence of an extra degree of freedom. Imposing the
requirement that the quarks come in three colours solves this puzzle as well.

The strongest evidence to date comes from the following decay:

π0 → γγ

It is some what complicated to discuss this case without a background in quantum field
theory. It suffices to say that the π decay to two photons proceeds through the mediation
of quarks. Once the amplitude is obtained by summing over all quark states. Without
imposing the colour degree of freedom, the decay amplitude is underestimated by a factor
of 3, and hence the rate by a factor of 9. Including colour the calculated decay rate agrees
with experiments within errors.

4.3 SU(3) Flavour States

We have constructed states of non-strange baryons using the SU(2) isospin doublet of quarks
(u,d). Extending these arguements to construct hadrons using the triplet of quarks (u,d,s) is
straight-forward if more cumbersome. We shall mention briefly how the hadron octets and
decuplets mentioned in the beginning of this section are obtained using three basic quark
flavours

Regarding the triplet (u,d,s) as the basis spanning the fundamental representation of
SU(3), we can combine any two of them first. There are nine such combinations which may
be arranged as

3 ⊗ 3 = 6 ⊕ 3

using the expansion of Kronecker product. Explicitly these di-quark states can be written
as

uu, dd, ss,
ud+ du√

2
,
us+ su√

2
,
sd+ ds√

2

which are 6 completely symmetric states and

ud− du√
2

,
us− su√

2
,
sd− ds√

2

which are 3 completely antisymmetric states.
Similarly combining three quarks we obtain,

3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1

where the representation with dimension 10 is completely symmetric given by,

uuu, ddd, sss, (uud)sym, (uus)sym, (udd)sym, (sdd)sym, (ssu)sym, (ssd)sym, (uds)sym

where (uud)sym means a completely symmetric arrangement of (uud) etc. These quark states
correspond to the spin 3/2 decuplet representation of the baryons.

The singlet under SU(3) with dimensionality 1 is the completely antisymmetric combi-
nation of (uds) quarks. The two octets are mixed symmetry representations.



32 CHAPTER 4. HADRONS AND THE QUARK MODEL

Thus we could generate the weight diagrams of SU(3) analogous to the Gell-Mann’s
scheme for hadrons interms of their quark contents.

Combining these states with states of definite spin proceeds as in the case of combining
isospin and spin states.

Appendix: Introduction to SU(2) and SU(3)

In general SU(N) is a group of N ×N unitary unimodular matrices.

UU † = 1, det(U) = 1

In general we may therefore write,

U = exp (iθaTa), a = 1, ..., N2 − 1

where θa are the parameters of the group and Ta are the hermitian( because the elements
are unitary) generators of the group.

The generators obey the following properties:

Trace(Ta) = 0

Trace(TaTb) = δab

and
[Ta, Tb] = ifabcTc

which defines the algebra of the generators completely.
SU(2) is the group of 2×2 unitary unimodular matrices. It is also the lowest dimensional

nontrivial representation of the rotation group. The generators may be chosen to be

Ta =
1

2
σa; a = 1, 2, 3

where σ are the Pauli matrices

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0
0 −1

)

(4.2)

The basis for this representation is conventionally chosen to be the eigenvectors of σ3 that
is the column vectors,

|1/2, 1/2 >=

(

1
0

)

|1/2,−1/2 >=

(

0
1

)

(4.3)

which describe a spin-1/2 particle with the projection m = 1/2,−1/2 respectively. As
we have seen this fundamental representation of SU(2) may be combined to build higher
dimensional representation corresponding to the spins J = 1, 3/2, 2, ... etc. Note that there
is only one diagonal generator. In general for SU(N) there can atmost be N − 1 diagonal
generators which is known as the rank of the group. The rank of the group is also equal to the
number of Casimir operators- the states that span the representation are eigenstates of this
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operator. For example the Casimir operator of the SU(2) is J2. The states are simultaneous
eigenstates of J2 and Jz.

The group SU(3) is the group of 3×3 unitary unimodular matrices. The generators may
be chosen to be

Ta =
1

2
λa; a = 1, ...8

where λ are given by

λ1 =





0 1 0
1 0 0
0 0 0



 λ2 =





0 −i 0
i 0 0
0 0 0



 (4.4)

λ3 =





1 0 0
0 −1 0
0 0 0



 λ4 =





0 0 1
0 0 0
1 0 0



 λ5 =





0 0 −i
0 0 0
i 0 0



 (4.5)

λ6 =





0 0 0
0 0 1
0 1 0



 λ7 =





0 0 0
0 0 −i
0 i 0



 λ8 =





1 0 0
0 1 0
0 0 −2



 /
√

3 (4.6)

We note a few points here:

• The generators T1, T2, T2 generate an SU(2) subgroup of SU(3) and the algebra of these
generators closes among themselves.

• The diagonal generators commute among themselves.

[Hi, Hj] = 0

hence the algebra is closed. The diagonal generators define a subalgebra called the
Cartan subalgebra. The elements of this subalgebra are m = N − 1 in number where
m is the rank of the group. All states in a representation D are labelled by the
eigenvalues of Hi such that

{Hi}| >= {µi}| >

and ~µi = {µi} is called the weight vector.

For the group SU(3) we have chosen H1 = λ3/2, H2 = λ8/
√

3. The eigenvectors may be
chosen to be,

|1/2, 1/3 >=





1
0
0



 | − 1/2, 1/3 >=





0
1
0



 |0,−2/3 >=





0
0
1



 (4.7)

We may easily identify the quantum numbers of these states with isospin and hypercharge
of u(1/2,1/3), d(-1/2, 1/3) and s(0,-2/3) quarks. Thus the three quarks u,d and s form the
basis of the fundamental representation of SU(3).
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4.3.1 Conjugate representation

Suppose Ta are generators of some representation D of the group, then

[Ta, Tb] = ifabcTc

and −T ∗
a also satisfy the same algebra

[T ∗
a , T

∗
b ] = ifabcT

∗
c

Therefore −T ∗
a also generate a representation D̄ of the same dimension. The states are again

eigenstates of the diagonal generators of the group. Thus we have, for example,

D → D̄

H1 → −H1, H2 → −H2

Under this change,
u = |1/2, 1/3 >→ ū = | − 1/2,−1/3 >

d = | − 1/2, 1/3 >→ d̄ = |1/2,−1/3 >

s = |0,−2/3 >→ s̄ = |0, 2/3 >
interms of flavour states of SU(3). Note that in the conjugate representation all the charges
(hyper) are reversed.

Thus if we choose the vectors that span the fundamental representation of SU(3) as
quarks, the vectors that span the conjugate representation are anti-quarks. Indeed while
there were many choices for the fundamental group for three quarks like O(3), SO(3), SU(3)
became a natural choice since its representations are not real unlike SO(3).

4.4 Problems:

1. Explicitly construct the wavefunction of the ∆++ state which is completely antisym-
metric.

2. Using isospin symmetry show that the transition rates for ∆ → π + N are in the
following ratio:

∆++ → pπ+ : ∆+ → pπ0 : ∆++ → pπ− = 3 : 2 : 1

3. Using isospin analysis show that ρ0 → π0π0 is forbidden.

4. Use isospin invariance to show that the reaction cross-section for pp → π+d is twice
that of

np→ π0d


