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We study the nonequilibrium steady states of a crystal whose ground state can be tuned through a square-
triangular transition. Driving such a system across a quenched random background yields a complex sequence
of dynamical states. These include plastic flow states, anisotropic hexatics, dynamically stabilized triangle and
square phases, and intermediate regimes of phase coexistence with anomalously slow dynamics. Such states
should be observable in transport experiments on the mixed phase of several superconductors which exhibit
related structural transitions. They may also be accessible in similar experiments on adsorbed monolayer
colloids with tunable interactions.
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When driven far from equilibrium, condensed matter sys-
tems often exhibit a far more varied set of phases than their
equilibrium counterparts. The understanding of such phases
and transitions between them is central to the physics of
nonequilibrium steady states.1 A variety of such states are
obtained in the depinning and flow of randomly pinned, pe-
riodic media, such as charge-density-wave systems and Abri-
kosov flux-line lattices in the mixed state of type-II
superconductors.2 Many such superconductors exhibit struc-
tural transitions in the mixed state, typically between flux-
line lattices with triangular and rectangular symmetry.3 Col-
loidal systems such as poly�methyl methacrylate� spheres
coated with a low-molecular-weight polymer undergo a re-
markable variety of solid-solid transformations in an external
field.4 While applying a sufficiently large current depins the
flux lines from the quenched random disorder present in all
real materials, the possibility of driving colloidal particles in
two dimensions across a disordered substrate has also been
raised.5 What links these diverse systems is the generic prob-
lem of understanding the competition between an underlying
structural phase transition in a pure periodic system as modi-
fied by disorder, and the nonequilibrium effects of an exter-
nal drive. This Rapid Communication proposes and studies a
simple model that describes this physics.

Our model system is two dimensional and consists of par-
ticles with two- and three-body interactions.6 The three-body
interaction, parametrized through a single parameter v3,
tunes the system across a square-triangular phase transition.
Our central result, the sequence of steady states obtained as a
function of increasing force for various values of v3, is sum-
marized in the dynamical “phase” diagram of Fig. 1. We
obtain a variety of phases: pinned states which may have
dominantly triangular or square correlations, a moving liquid
or glass phase, a moving anisotropic hexatic glass phase,
flowing triangular and square states ordered over the size of
our simulation cell, and a dynamic coexistence regime be-
tween these ordered phases. We discuss our characterization
of these states and the applicability of simple dynamical cri-
teria for nonequilibrium phase transitions between them.

The model. Particles interact in two dimensions
through the interaction potential �1/2��i�jV2�rij�
+ �1/6��i�j�kV3�ri ,rj ,rk�, where ri is the position vector of

particle i, rij ��rij���r j −ri�, V2�rij�=v2��0 /rij�12, and
V3�ri ,rj ,rk�=v3�f ij sin2�4�ijk�f jk+ �permutations��.6 The func-
tion f ij � f�rij�= �rij −r0�2 for rij �1.8�0 and 0 otherwise, and
�ijk is the angle between r ji and r jk. The two-body �three-
body� interaction favors a triangular �square� ground state.
Energy and length scales are set using v2=1 and �0=1. Par-
ticles also interact with a quenched random background
modeled as a Gaussian random potential7 Vd�r� with zero
mean and exponentially decaying �short-range� correlations.
The disorder variance is set to vd

2=1 and its spatial correla-
tion length is �=0.12. The system evolves through standard
Langevin dynamics ṙi=vi and v̇i= fi

int−�vi+F+�i�t�. Here vi
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FIG. 1. Dynamical phase diagram in the v3-Fx plane. The phases
are A, pinned triangle, B, pinned square, C, plastic flow or isotropic
liquid, D, driven hexatic glass, E, moving triangle, F, moving
square, and G, dynamical square-triangle coexistence. Two points
with error bars show the boundary of G for v3=6, obtained by
averaging over 24 disorder realizations, as an example. The bound-
aries for all other transitions are considerably sharper. The inset
shows the center of mass velocity vc.m. as a function of the driving
force Fx as the force is increased �bold� and then decreased across
the depinning transition. The right panel shows S�q� for the plastic
flow state �i�, driven hexatic glass �ii�, moving triangle �iii�, and
moving square solid phases �iv� at v3=6.0 and Fx=10, 20, 60, and
140, respectively. To obtain S�q�, 50 independent configurations
were used. The structure in �iv� reflects the presence of two mutu-
ally misoriented square crystallites.
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is the velocity, fi
int the total interaction force, and �i�t� the

random force acting on particle i. A constant force F
= �Fx ,0	 drives the system and the zero-mean thermal noise
�i�t� is specified by 
�i�t�� j�t���=2T�ij��t− t�� with T=0.1,
well below the equilibrium melting temperature of the sys-
tem. The unit of time 	=��0

2 /v2, with �=1 the viscosity.
Simulation details. Our system consists of 1600 particles

in a square box at number density 
=1.1. At T=0.1, the pure
system remains triangular up to v3=1.5. For larger v3, a
square phase is obtained. Larkin length estimates2 yield
La /a�100, with a=1/
1/2 the lattice parameter, somewhat
larger than our system size.

Configurations obtained through a simulated annealing
procedure are the initial inputs to our Langevin simulations.
We evolve the system using a time step of 10−4	. The exter-
nal force Fx is ramped up from a starting value of 0, with the
system maintained at up to 108 steps at each Fx.

Observables. We monitor structural observables, such as
the static structure factor S�q�=�ij exp�−iq ·rij�. Delaunay
triangulations yield the probability distributions P�n� of
n=4, 5, 6, and 7 coordinated particles ��nP�n�=1�.8
We define order parameters �= �P�4�− P�6�� / �P�4�+ P�6��
to distinguish between square and triangular phases,
��= �P�6�− P�5�− P�7�� / �P�6�+ P�5�+ P�7�� to distinguish
between liquid �disordered� and triangular crystals, and ��

= �P�4�− P�5�− P�7�� / �P�4�+ P�5�+ P�7�� to distinguish be-
tween liquid and square crystals. In addition, we compute the
hexatic order parameter �6=�ij exp�−i6�ij� and its correla-
tions, where � is the bond angle measured with respect to an
arbitrary external axis. The dynamical variables we study
include the center of mass velocity vc.m. and the particle flux
and its statistics. As suggested in a proposal due to Koshelev
and Vinokur �KV�,9 it is often useful to think of the combi-
nation of the drive and the disorder as yielding an effective
“shaking” temperature in the moving phase, as measured
through transverse and longitudinal fluctuations of the veloc-
ity. We calculate the KV shaking temperature9 Tsh


 appropri-

ate to the drive and transverse directions, obtaining it from

Tsh

 = 
�v
 − vc.m.


 �2�/2, 
 = x,y .

For small Fx the solid is pinned. A disorder-broadened
version of the equilibrium triangle �A� to square �B� transi-
tion results as v3 is varied across the T=0 transition value at
small Fx; here and below, letters in parentheses refer to the
states labeled in Fig. 1. The triangular �A� phase is favored at
nonzero Fx. Upon further increasing Fx, the system under-
goes a discontinuous depinning transition which exhibits
prominent hysteresis behavior �Fig. 1, inset�. Such a de-
pinned state is inhomogeneous and undergoes plastic
flow10–15 consistent with earlier numerical work. For larger
Fx the velocity approaches the asymptotic behavior vc.m.
=Fx.

The structure factor S�q� of the plastically moving phase
�C� obtained just above the depinning transition consists of
liquidlike isotropic rings �Fig. 1�i��. Upon increasing Fx, the
circular ring in S�q� concentrates into six smeared peaks
which we associate with a hexatic glass �D�.16 Unlike the
hexatic phase obtained in a pure, nondriven system, the
driven hexatic glass is strongly anisotropic, with the hexatic
director aligning itself with the drive direction. Figure 2�b�
shows the evolution of the hexatic correlation function
g6�r�= 
�6�0��6�r��, as Fx is varied across �C�→ �D�→ �E�.
Note the sharp exponential decay of hexatic correlations in
�C�. In �D� and �E�, the orientational correlation function
asymptotically saturates, as expected, to a constant ��Fx

2�; in
�D�, such saturation is obtained only in the drive direction.
The transition from �D� to �E�, when triangular translational
order increases continuously with Fx, is smooth.

The plastic flow regime �C�, as well as that of the hexatic
glass �D� expands at larger v3,17 due to the frustration of
local triangular translational order by three-body effects. On
further increasing Fx, the structure obtained depends on the
value of v3: for low v3 the final crystal is triangular �E�
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FIG. 2. �a� Shaking temperatures for a system with v3=6 as a function of Fx in the drive �x� and transverse �y� directions. These are
obtained by averaging over 100 independent configurations as well as over 25 separate disorder realizations. For Fx in the coexistence region,
there is a significant enhancement of the shaking temperature in excess of the prediction of KV �Ref. 9�. The lines represent fits to the KV
form. �b� Hexatic correlation function g6�r� for Fx=8, 22, 25, and 40, each averaged over 50 independent configurations of a 10 000-particle
system at v3=6. The solid line indicates the universal behavior g6�r��r−1/4 at the liquid to hexatic transition. �c� P�n� for n=4,5 ,6 ,7 �see
text� vs Fx averaged as in �a�.
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whereas for large v3 it is square �F�. For intermediate v3 the
system first freezes into a triangular structure but subse-
quently transforms into the square via an intervening “coex-
istence” regime �G� best described as a mosaic of dynami-
cally fluctuating square and triangular regions.

The phase diagram of the pure system in thermal equilib-
rium accommodates fluid, triangular solid, and square solid
phases.6 In the driven system, as Fx is increased, analogous
phases appear in approximately the inverse order to the se-
quence obtained in the pure case as T is increased. Our ob-
servations agree qualitatively with the KV proposal if the
shaking temperature Tsh is identified with T. The shaking
temperatures are predicted to fall as �1/v2 and as �1/v in
the drive and the transverse directions, respectively, consis-
tent with our observations in Fig. 2�a�. We find that Tsh


 is
nearly independent of v3. Importantly, within the putative

coexistence regime, Tsh

 behaves nonmonotonically, implying

a breakdown of the KV prediction �see Fig. 2�a��. Typically,
for a particular disorder configuration and for 5.5�v3�8.5,
Tsh


 appears to increase sharply at a well-defined Fx, signify-
ing the start of coexistence. Within G, Tsh


 remains high but
drops sharply at the upper limit of G, to continue to follow
the interrupted KV behavior. The limits of the coexistence
region, though sharp for any typical disorder realization,
vary considerably between realizations.

Within the coexistence region the probability of obtaining
triangular �square� regions appears to decrease �increase�
roughly linearly with Fx; see Fig. 2�c�. Real space configu-
rations �Fig. 3� exhibit islands of square and triangular coor-
dination connected by interfacial regions with predominantly
five-coordinated particles. Particles with coordination 7 are
typically associated with dislocations, which are scattered
randomly in the interface. This configuration, in the comov-
ing frame, is extremely dynamic, with the islands rapidly
interconverting between square and triangle. This intercon-
version has complex temporal properties: the power spec-
trum of coordination number fluctuations shows a prominent
1 / f falloff over several decades. In addition, particle current
fluctuations are enhanced by an order of magnitude, also
displaying a regime of 1/ f behavior �Fig. 4�, although over a
restricted range as a consequence of the proximity to the
washboard frequency. This anomalous enhancement of fluc-
tuation magnitudes provides strong evidence for a genuine
coexistence phase, since increasing the driving force would
be expected to reduce current noise monotonically once the
system depins, as observed in all previous simulation work
on related models.12–14

Renormalization group arguments suggest that neither
translational long-range order nor quasi-long-range order
survives in the disordered moving state in two dimensions at
any finite drive,18–20 the closest analog of the crystalline state
in the undriven pure system being the moving Bragg glass
state argued to be stable in three dimensions and higher.20

The ordered square �F� and triangular �E� states we obtain at
large drives are then to be understood as a finite-size effect
arising from the restricted size of our simulation box, al-

FIG. 3. �Color online� Single particle configuration showing
square-triangle coexistence at Fx=107. The particles are colored
according to the number of neighbors computed from the Delaunay
mesh n=4 �magenta �open� circle�, 5 �green �filled gray� circle with
white spot�, 6 �blue �filled gray� circle�, and 7 �orange �open� circle
with black spot�. Particles with coordination 5 are present mainly in
the interfacial region while those with 7 are associated with isolated
dislocations.
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FIG. 4. �a� Power spectrum P̃��f� of current fluctuations in the moving triangle phase �thin line, Fx=55� and in the coexistence region
�bold line, Fx=100�, logarithmically binned and plotted for a range of frequencies below the washboard frequency. Current fluctuations in the

coexistence region are enhanced, also showing a 1/ f decay at intermediate frequencies. �b� P̃n�f� for the fluctuations of the numbers of
four-���, five-���, and six-��� coordinated particles in the coexistence region. The number of seven-coordinated particles �not shown� is
vanishingly small. The straight line in both figures represents the 1/ f law.
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though the crossover length scales can be very large at weak
disorder.18,20 The possibility of alternative dynamically stabi-
lized states with reduced levels of ordering, such as driven
transverse smectics, is attractive.18,21 In contrast to some pre-
vious work,11,13,14 we see no evidence for smectic order and
flow in weakly coupled channels at large drives—our chan-
nels always remain strongly coupled—but note that moving
states in which channels transverse to the drive direction are
effectively decoupled may be stabilized at higher levels of
thermal noise or randomness.14

The coexistence state appears to be a genuine nonequilib-
rium state, separated from other regimes through sharp non-
equilibrium transitions. Theoretical work has, so far, ne-
glected the possibility of such dynamic phase coexistence in
the nonequilibrium steady states of driven disordered
crystals.21 A nondisordered but frustrated system closely re-
lated to the one considered here has been proposed recently
as a model for the dynamical heterogeneity seen in the glassy
state.22 In this model, fluctuating regions of crystalline order-
ing within a liquid background are argued to be responsible
for the anomalous dynamical behavior and slow relaxation in
the glassy state, a physical picture which shares some simi-
larities to our ideas regarding the coexistence regime.

We now summarize the central results of this Rapid Com-
munication, augmenting the phase diagram of Fig. 1. These
results are �a� the drive-induced stabilization of the triangular
lattice state even well into regimes where v3 would favor a
square; �b� the demonstration of a distinct coexistence re-
gime in a narrow and reproducible regime in parameter

space; �c� the observation of a variety of dynamical anoma-
lies within the coexistence regime including enhanced noise
signals with 1/ f character; and �d� the expansion of the plas-
tic flow regime at large v3. Thus, the competition between
structural phase transitions in a pure system as modified by
disorder, coupled to the nonequilibrium effects of an external
drive, is demonstrated to have a variety of nontrivial and
previously unanticipated consequences.

The three-body interaction strengths we consider here are
physically accessible, as borne out by recent experimental
measurements on two-dimensional colloidal systems, which
find the magnitude of the three-body term to be comparable
to the term arising from the pair interaction at the mean
interparticle separation.23 The ubiquity of structural phase
transitions in the vortex state of a large number of supercon-
ductors which have been studied recently, as well as the rela-
tive ease with which the vortex state can be driven, suggests
experimental situations in which the ideas here should find
application. Functionalized colloidal particles driven over
random substrates constitute a system on which our propos-
als can be tested.5,24 Such systems have the further advantage
that interparticle interactions can be tuned both through sur-
face modifications and through the application of external
fields.24
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