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The vortex glass state formed by magnetic flux lines in a type-II superconductor is shown to possess
nontrivial three-body correlations. While such correlations are usually difficult to measure in glassy
systems, the magnetic fields associated with the flux vortices allow us to probe these via muon-spin
rotation measurements of the local field distribution. We show via numerical simulations and analytic
calculations that these observations provide detailed microscopic insight into the local order of the vortex
glass and more generally validate a theoretical framework for correlations in glassy systems.

DOI: 10.1103/PhysRevLett.97.177004 PACS numbers: 74.25.Qt, 61.20.Gy, 74.72.Dn, 76.75.+i

In systems which possess long-range order, such as
atomic crystals, the local arrangement of particles is easily
obtained from scattering experiments. In disordered sys-
tems, the average correlation between the positions of two
particles can be measured by scattering techniques, but
inferring anything more about the local geometry is a far
more subtle issue. Little is known experimentally about
correlation functions of higher order. Measurements of
three-body correlation functions for colloids imaged in a
quasi-two-dimensional geometry have been reported re-
cently [1]. However, bulk measurements of three-body
correlation functions in any system are still unavailable
and our understanding of such correlations is derived
mainly from simulations. This Letter reports a study of
the local structure of the vortex glass phase in a bulk type-II
superconductor. The vortex glass phase provides an ex-
ample of a glassy system where the local geometry in the
bulk is uniquely amenable to investigation, due to the
magnetic fields associated with the vortices, which we
measure by the muon-spin rotation (�SR) technique. By
coupling these measurements with Monte Carlo simula-
tions and analytic calculations, we demonstrate both the
existence of nontrivial three-body correlations in the flux-
line array and a theoretical framework in which they may
be understood.

In the mixed state of a type-II superconductor, an ap-
plied magnetic field penetrates as lines of magnetic flux,
quantized in units of the flux quantum �0 � h=2e. Such
vortex lines would form an Abrikosov flux lattice at low
temperatures in the absence of quenched disorder. As the
temperature or the strength of disorder is increased, or-
dered arrangements of vortex lines yield to disordered ones
[2,3]. Weak quenched disorder converts the crystal into a

‘‘Bragg glass’’ with quasi-long-range order in translational
correlations [4]. At stronger disorder, ‘‘vortex glass’’ states
with short-ranged correlations are obtained. Neutron scat-
tering measurements support the proposal of a power-law
decay of translational correlations in the Bragg glass phase
[5]. In contrast, structure and correlations in vortex glasses
remain little understood.

Our experimental system is La1:9Sr0:1CuO4�� (LSCO),
an underdoped high-Tc superconductor with properties
which amplify the effects of thermal fluctuations and
quenched disorder. It was recently shown using �SR mea-
surements, on the same high quality crystal as used in this
experiment, that there is a field induced transition in LSCO
to a vortex glass phase [6]. Our present �SR experiments
were performed using the GPS spectrometer at PSI,
Switzerland with the field nearly parallel to the c axis of
the crystal. The experimental arrangement was as de-
scribed in Ref. [6]. The novelty of the present work is
that by relating the third moment of the magnetic field
distribution to an integral over a three-particle structure
factor, we are able to provide information about three-body
correlations in both the ordered and the glassy phases.

In a �SR experiment, the probability distribution n�B�
of the spatially varying magnetic field is inferred from the
muon precession signal [7]. This distribution reflects the
arrangement of vortex lines. We measure n�B� as a func-
tion of external magnetic field and temperature, calculating
the second moment h��B�2i, the third moment h��B�3i,
and the related dimensionless line shape anisotropy ratio
� � h��B�3i1=3=h��B�2i1=2, with the kth moment defined
by h��B�ki �

P
n�Bi��Bi � hBi�k=

P
n�Bi�. Figures 1(a)

and 1(b) show field distributions for two values of the
applied magnetic field. As discussed in Ref. [6], the data
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at 40 mT [Fig. 1(a)] show a tail on the high-field side and
hence positive sign of � expected for a lattice (or Bragg
glass) structure. However, the 0.5 T data [Fig. 1(b)] show a
broader and more symmetric distribution in which this tail
is absent and the line shape at this field is slightly skewed
the opposite way, signaling that the flux-line structure is
not ordered like a lattice. Instead, it is in a vortex glass
state, which dominates the phase diagram in the inset of
Fig. 3.

Figure 2 shows the behavior of the line shape anisotropy
ratio � as a function of magnetic field at 5 K after field
cooling; all points lie within the vortex glass phase [6]
(inset of Fig. 3). The experimental data are the sequence of
black circles; these data are modeled theoretically (see
below) by the sequence of red crosses and blue connected
squares. Note the reduction in� beginning at relatively low
field values, the precipitous change of sign at B� 0:35 T,
followed by saturation at an approximately constant nega-
tive value. Figure 3 shows the variation of � over the H-T
plane, further illustrating a change of sign from positive to
negative values that occurs deep within the vortex glass
phase. We note that a negative third moment of the field
distribution is also observed in the vortex liquid regime;
this is an outstanding problem for theories of vortex line
correlations [8,9].

For a system of flux lines taken to be rigid along the z
axis (field direction), the third moment is obtained from

 h��B�3i /
ZZ

dq1dq2S�3��q1;q2�b�q1�b�q2�b��q1 � q2�;

(1)

where S�3��q1;q2� �
1
N h���q1����q2�����q1 � q2�i [10]

is the triplet structure factor and the proportionality con-
stant is B=�2��4�0. Here, b�q� is the field of a single
vortex in Fourier space, while ���q� is the Fourier com-
ponent at wave vector q of the deviation of the flux-line
density from its average value. The second moment is
related similarly to the two-particle correlation function,
i.e., to the conventional structure factor S�q� � 1

N �

h���q�����q�i. In these expressions, N is the total num-
ber of vortices and the brackets h	 	 	i denote an average
over the sample [11,12]. Note that S�q� 
 0.

The simple London model gives b�q� � B=�1� �2q2
?�,

where � is the ab-plane penetration depth and q �
�q?; qz � 0�. However, this yields a magnetic induction
which diverges at the vortex core. This unphysical diver-
gence is eliminated by multiplying by a ‘‘form factor’’ f�q�
[13]. All the available analytic expressions for f�q� give

5 10 15 20 25

50

100

150

200

250

300

350

400

450

500

Temperature (K)

M
ag

ne
tic

 F
ie

ld
 (

m
T

)

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

α
 =

  [
  Β

 ]
∆

3
1/

3
  [

  Β
 ]

∆
2

1/
2

Bragg Glass

Vortex
Liquid

0

80

160

240

5 10 15 20 25 30

FIG. 3 (color online). Regimes in H-T space associated with a
fixed sign of � � h��B�3i1=3=h��B�2i1=2, and thus of the third
moment. The inset shows the schematic phase diagram for this
system in H-T space, obtained from a combination of muon-spin
rotation and magnetic and small angle neutron scattering mea-
surements [6]. The change of sign of � reported here occurs deep
within the vortex glass phase shown in the inset (dotted line in
inset) and over a fairly short range in field and temperature.
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FIG. 2 (color online). The line shape anisotropy ratio � as
obtained in (i) experiments at 5 K (black circles), (ii) calculated
from Monte Carlo simulations of disordered structures (red
crosses), and from (iii) a theoretical description in terms of
liquid state theory (blue squares connected by a solid line).
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FIG. 1 (color online). The field distribution function n�B� for
two values of the applied magnetic field H at T � 5 K:
(a) H � 40 mT and (b) H � 0:5 T. The insets show the same
data, plotted over the same range, with the y axis plotted on a
logarithmic scale, indicating the errors on the points. The curves
are normalized at the mode of the distribution, Bpk.
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positive values for all q [14]. For a perfect triangular
lattice, Eq. (1) reduces to a sum over two sets of reciprocal
lattice vectors. Each term in such a sum is manifestly
positive. The form factor reduces the value of the third
moment, but it cannot change its sign.

We now relax the requirement of a lattice structure. One
possibility is to assume uncorrelated lines, i.e., S�q� � 1,
S�3��q1;q2� � 1 [11]. This limit yields anomalously large
field (B0) dependent values for the second moment
(h��B�2i � B0�0=4��2, in comparison to the perfect lat-
tice, for which h��B�2i � 3:71� 10�3�2

0=�
4). It also

leads to a positive third moment. Alternatively, if one
applies the ‘‘convolution approximation’’ from the fluid
literature [10], one can express S�3� in terms of the two-
particle correlator only: S�3��q1;q2� � S�q1�S�q2�S�jq1 �
q2j�. However, this approach also gives positive h��B�3i
because the integrand in Eq. (1) is manifestly positive. The
effects of line wandering can be incorporated using ex-
pressions for S�q?; qz� obtained via the boson approxima-
tion [2]—numerical values of the moments are reduced
but again the sign of h��B�3i should remain positive [12].

Negative third moments in vortex glass phases which
lack long-range order can thus only result from vortex line
arrangements with nontrivial three-particle correlations
beyond the convolution approximation. To validate these
ideas, we have generated simulations of disordered states
with these attributes. Simulated annealing techniques were
used to find the ground state of a system of 6400 particles
(rigid vortex lines) interacting through a potential of the
form �K0�r=��, and with a quenched one-body potential
arising from 3700 randomly placed pinning sites. The
pinning sites were modeled as attractive Gaussian wells
of the form Vd�r� � ��0e�r

2=R2
p , where Rp is a length scale

for disorder and �0 gives the strength of the disorder. We
took Rp � 0:1 in units of the interparticle separation a, and
varied �=�0 in the range �0:001:1000�. Without disorder,
the ground state is a crystal. As the strength of pinning is
increased, this crystal fragments into smaller domains [15]
in a polycrystalline arrangement in which the typical do-
main size is controlled by the pinning strength [16]. We can
then calculate n�B� and its moments by constructing a
histogram of local field values [17]. In Fig. 4, we compare
field contours obtained for a perfect triangular lattice (a)
and a disordered arrangement with the attributes discussed
above (b). The disordered case shows the absence of long-
range order in both vortex position and field value while
maintaining a marked tendency towards local triangular
coordination. Explicit calculations of � from a distribution
of vortex lines with such a structure are a very good
representation of the experimental data in Fig. 2.

The same general result may be obtained by analytic
calculations in certain limits. The triplet structure factor is
conventionally decomposed as
 

S3�q1;q2� � S�q1�S�q2�S�j � q1 � q2j�

� �1� �2C�3��q1;q2��; (2)

where C�3� is the triplet direct correlation function [10] and
� is the average density of the liquid [12]. In our earlier
decomposition of S�3��q1;q2�, using the convolution ap-
proximation, we assumed C�3� � 0, an approximation
which is clearly inadequate here [18]. To progress beyond
the convolution approximation, we assume that the lines
are rigid over the scale of the penetration depth and we
model translational correlations deep in the vortex glass
phase in terms of correlations in an equilibrium fluid [12],
using an accurate analytic approximation for C�3��q1;q2�
[19]. We use the pair correlations of the �K0�r=�� potential
appropriate to rigid flux lines to describe local structure in
the glass phase. These are obtained from solutions to the
self-consistent equations of classical liquid state theory in
the hypernetted chain approximation [10]. Our model S�q�
[Fig. 4(c)] is derived from liquid state computations at a
single density (�=a� 4:0, with a the mean interparticle
spacing, corresponding to a field of 0.5 T and �� 2800 �A)
using a value for the coupling constant � � �=kBT of 50.
We assume that the local structure of the glass as captured
in S�q� is not altered substantially as the field is varied,
once all length scales are expressed in units of the mean
interparticle spacing a, an assumption which should be
valid in the limit where �� a. Using Eqs. (1) and (2),
we calculate �, illustrated in Fig. 2 as the sequence of
connected blue squares. Note that as the field value is
increased, the third moment changes sign, with � saturat-
ing at a value of about �0:6, close to the value in the
experimental data. This relatively simple analytical model

FIG. 4 (color online). Contours of constant magnetic field
strength B�r� computed for (a) a perfect Abrikosov lattice at B �
0:5 T and (b) a disordered state with a translational correlation
length of about 4 intervortex spacings generated using simulated
annealing techniques, with �=�0 � 3 (see text). In (c) is shown a
plot of the structure factor S�q�, obtained analytically as de-
scribed in the text (q is given in units of the inverse mean
interparticle spacing).
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thus enables a robust description of the effects of three-
body correlations in the vortex glass phase.

Similar behavior is also seen in the highly anisotropic
superconductor Bi2Sr2CaCu2O8�� over a range of doping
[8,9], suggesting that system-specific interpretations of the
negative third moment are unlikely. In Refs. [20,21] a
transition from a triangular to a square vortex lattice was
observed in the more highly doped system. We find no
evidence for this at the field values we probe. At high fields
our �SR data do not show the tail in n�B� on the high-field
side which would signal a crystalline arrangement, whether
square or triangular. Magnetic order can coexist with
superconductivity in LSCO over a restricted doping range.
We have characterized the sample with neutrons and with
longitudinal �SR, finding magnetic signatures only below
about 4 K [22]. We therefore restrict ourselves here to
temperatures above this value where any magnetic fluctua-
tions, should they exist, lie well outside the muon time
window and cannot contribute to the depolarization.

The sign of the third moment reflects the competition
between the (positive) contributions from the vortex cores,
which yield the positive tail of n�B�, and (negative) con-
tributions from field values at the centers of the triangles
formed locally by the vortices and associated with the
minima of n�B�. Structures with strong local triplet corre-
lations but no long-range order protect both these contri-
butions but subtly enhance the negative ones, since now the
positions of particles can fluctuate relative to each other,
unlike in the perfect crystal, while retaining a strong ten-
dency to local triangular coordination [see Fig. 4(b)] as in
the crystal. The sign changes arises when the negative
contributions to the integral [Eq. (1)] overwhelm the posi-
tive contributions. The integrand of Eq. (1) varies strongly
as a function of q in the vicinity of the first peak of S�q� and
below. For larger q, form factor cutoffs set in, while at
smaller q, the integrand becomes negative, due to the
generally large and negative value of C�3� in this region
(see Ref. [19]). The resultant sign depends on the location
of the first peak of S�q�, which is itself determined by the
magnetic field. Thus, nontrivial three-body correlations
arise out of C�3� in a disordered system (which, unlike a
crystal, has contributions to the integral at smaller q than
the first Bragg peak, i.e., at length scales which are a little
larger than nearest neighbor vortex spacings). Although the
change in sign of the third moment at high fields confirms
the existence of nontrivial three-body correlations, it does
not indicate the formation of a new vortex state. Instead,
this observation supports our simple theoretical and com-
putational models of structure and correlations in the vor-
tex glass state, from which such a change in sign follows
naturally as the magnetic field is varied, without the re-
quirement of a phase transition.

In conclusion, this Letter describes an unusual experi-
mental consequence of many-particle correlations in a
magnetic flux-line system, showing how three-body corre-

lations are responsible for negative third moments in the
field distributions associated with glassy phases of vortex
lines. Our results motivate and validate the use of simple
analytic approximations to describe three-body correla-
tions in bulk disordered systems, an approach which should
find wider application in areas outside the field of
superconductivity.
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