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Abstract. SubsetSum is a well known NP-complete problem: given t ∈ Z+ and a set S of m positive
integers, output YES if and only if there is a subset S′ ⊆ S such that the sum of all numbers in S′ equals
t. The problem and its search and optimization versions are known to be solvable in pseudo-polynomial
time in general.
We develop a 1-pass deterministic streaming algorithm that uses space O

(
log t
ε

)
and decides if some

subset of the input stream adds up to a value in the range {(1± ε)t}. Using this algorithm, we design
space efficient Fully Polynomial-Time Approximation Schemes (FPTAS) solving the search and opti-
mization versions of SubsetSum. Our algorithms run in O( 1

ε
m2) time and O( 1

ε
) space on unit cost

RAMs, where 1 + ε is the approximation factor. This implies constant space quadratic time FPTAS on
unit cost RAMs when ε is a constant. Previous FPTAS used space linear in m.
In addition, we show that on certain inputs, when a solution is located within a short prefix of the
input sequence, our algorithms may run in sublinear time. We apply our techniques to the problem
of finding balanced separators, and we extend our results to some other variants of the more general
knapsack problem.
When the input numbers are encoded in unary, the decision version has been known to be in log space.
We give streaming space lower and upper bounds for unary SubsetSum. If the input length is N when
the numbers are encoded in unary, we show that randomized s-pass streaming algorithms for exact

SubsetSum need space Ω(
√
N
s

), and give a simple deterministic two pass streaming algorithm using

O(
√
N logN) space.

Finally, we formulate an encoding under which unary SubsetSum is monotone, and show that the
exact and approximate versions in this formulation have monotone O(log2 t) depth Boolean circuits.
We also show that any circuit using ε-approximator gates for Subset Sum under this encoding needs
Ω(n/ logn) gates to compute the Disjointness function.
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1 Introduction

The SubsetSum problem was one of Karp’s first 21 NP-complete problems [Kar72a]. Its
decision, search and optimization versions are defined as follows.

Definition 1 (SubsetSum).

– Input: A finite set S = {a1, . . . , am} of m positive integers and t ∈ Z+.
– Decision: decide if there exists a subset S ′ ⊆ S such that the sum of all numbers in S ′

equals t.
– Search: Output such a subset if one exists.
– Optimization: Output a subset S ′ ⊆ S such that the sum of all numbers in S ′ is as large

as possible but not larger than t. (If all numbers exceed t, output the empty subset.)

(S and S ′ can even be multi-sets; the numbers are not required to be distinct. In that case,
we ask for a subset T ⊆ [m] such that

∑
i∈T ai equals t. We use the terms set and subset

only to keep notation simple.)
Approximation algorithms for the optimization version of the SubsetSum problem have

been extensively studied. Approximation versions can also be defined for the decision and
search questions. The approximation problems are framed as follows:

Definition 2 (γ-approximate SubsetSum).

– Input: A finite set S of positive integers, t ∈ Z+, and 0 < γ < 1.
– Decision: Decide if there exists a subset S ′ ⊆ S such that

(1− γ)t ≤
∑
ai∈S′

ai ≤ (1 + γ)t.

– Search: Output such a subset if it exists.
– Optimization: Let t∗ be the largest possible sum of a subset of S without exceeding t.

Output a subset S ′ ⊆ S such that the sum of all the numbers in S ′ is at least (1 − γ)t∗,
but not larger than t.

Space Complexity The focus of this work is the space complexity of SubsetSum. As common
in complexity theory (see for instance [AB09]), to measure the amount of workspace used
by an algorithm we assume that the input is “read only”, the output is “write only”, and
we only count towards the space bound the space used in addition to storing the input and
the output. In other words, storing the input and output is for free, but the input/output
space cannot be used by the computation for any other purpose. Space may be measured in
the Turing machine model (bit complexity), or in the unit-cost RAM model. An even more
stringent model is the streaming model, where not only is the input “read only”, but further,
the input arrives as a stream, and the algorithm can make a limited number of left-to-right
passes over the stream.

We denote by n the length of the input represented in binary, that is n =
∑m

i=1 log ai +
log t. The Unary Subset Sum problem (USS) is the same problem, but with the input numbers

2



given in unary (for instance 1B01a10 . . . 1am .) In this case the input length N is B+
∑m

i=1 ai.
(To emphasize the difference, we use B instead of t when considering USS.) Note that
m+B ≤ N , and if the numbers form a set (as opposed to multi-set) and are all less than B,
then N ≤ mB. However, in general there is no tighter relation between N and m,B. Our
bounds for binary encodings are stated in terms of n,m, t, and for unary encodings in terms
of N alone.

1.1 Previous Space Efficient Algorithms

The classical solution for the decision, search and optimization versions of the SubsetSum
problem is to use dynamic programming (Dantzig [Dan57], Bellman [Bel57]), which runs in
time O(mt) and space O(t) in the unit-cost RAM model. This is pseudo-polynomial in m,
that is, if the value of t is bounded by a polynomial in m, then it runs in polynomial time
and space. See Garey and Johnson ([GJ79] Section 4.2) for details.

With unary encodings of the input, the SubsetSum problem USS is known to be in P.
In [EJT10], Elberfeld, Jakoby and Tantau showed a powerful meta-theorem for obtaining
logspace upper bounds, and used it to conclude that USS is even in logspace. In [Kan10]
Daniel Kane gave a considerably simplified logspace algorithm. Improving upon this further,
in [EJT12] it is shown that under appropriate encodings USS has polynomial-sized formulas
and hence is in NC1. They also show that USS has polynomial-sized constant-depth formulas
using MAJORITY and NOT gates and hence is in TC0. On the other hand, it can be shown
easily that MAJORITY reduces to computing USS and hence USS is TC0-hard. Thus USS
is TC0-complete.

Approximation algorithms for the optimization version of the SubsetSum problem have
also been extensively studied. An approximation algorithm is said to achieve approximation
factor 1 + ε if for every input max( t

∗

t̂
, t̂
t∗

) ≤ 1 + ε, where t∗ is the optimal solution and t̂ is
the solution provided by the algorithm. That is, for small ε the computed solution is not too
far from the optimal. With this definition, in our setting if for every input (1−γ)t∗ ≤ t̂ ≤ t∗,
the approximation algorithm achieves approximation factor 1 + ε with ε = γ

1−γ . The solution
computed may not be optimal, but it is required to be feasible; hence for the SubsetSum
problem, t̂ ≤ t∗. Note that t∗ is not known in advance.

If the parameter ε > 0 is not fixed but is also provided as input, then the approximation
algorithm with approximation factor 1 + ε is called an approximation scheme. An approx-
imation scheme is a polynomial-time approximation scheme (PTAS) if for any ε > 0, the
running time is polynomial in n, where n is the input length. An approximation scheme is a
Fully Polynomial-Time Approximation Scheme (FPTAS) if the running time is polynomial
in both 1/ε and n. See Vazirani [Vaz01] and Cormen et.al [CLRS09] for detailed discussions.

Ibarra and Kim [IK75] gave FPTAS for the SubsetSum optimization problem with
running time O(m/ε2) and space O(m+ 1/ε3). Gens and Levner [GL79] gave an alternative
FPTAS algorithm running in timeO(m/ε+1/ε3) and spaceO(m+1/ε). Both results by Ibarra
and Kim, and Gens and Levner use dynamic programming. Also see the survey by Gens and
Levner [GL80]. As far as we know, the current best FPTAS algorithm for the SubsetSum
problem is given by Kellerer, Mansini, Pferschy, and Speranza [KMPS03], which runs in time
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O(min(m/ε,m + 1/ε2 log 1
ε
)) and space O(m + 1/ε). These bounds are stated with respect

to the unit-cost RAM model. See Woeginger and Yu [WY92] and Bazgan, Santha, and Tuza
[BST02] for further variants and FPTAS for the SubsetSum problem.

Any algorithm solving the decision version of SubsetSum can be used to also output
an appropriate subset as follows: Fix an arbitrary element a, and run the algorithm for the
decision version (with t− a instead of t) to check if there is a subset with the required sum
that contains a. Repeat this process until an element is found that can participate in the
subset, and then repeat again on a smaller collection of elements. This procedure eventually
finds a solution, and it runs the algorithm for the decision version no more than n2 times.
However, the input to the decision version needs to be changed for the various runs of the
algorithm. If the updated input sets are kept in working space, the procedure described above
will use linear space.

With a slightly more careful reduction, any space efficient algorithm solving the decision
version of SubsetSum can be used to obtain a space efficient algorithm for solving the
search and optimization versions of SubsetSum. Hence, the algorithms of [EJT10,Kan10]
yield algorithms that solve the search and optimization versions of SubsetSum exactly, in
time polynomial in n and t, and space O(log n+ log t) (on the Turing machine model). This
significantly improves the space bound of the classical exact solutions from space O(t) to
O(log n + log t). Note that this also gives an improvement over the Õ(m2) space bound by
Lokshtanov and Nederlof [LN10]. The running time is pseudopolynomial in n.

1.2 Our Results and Techniques

We start by considering the space complexity of approximating Subset Sum in Section 2. We
first show that the decision version of approximate Subset Sum has a simple deterministic 1-
pass streaming algorithm. The algorithm takes input ε, t, ã and, using space O( log t

ε
), decides

whether some subset of numbers from the stream add up to a sum in [(1 − ε)t, (1 + ε)t]
(Theorem 1). The algorithm OnePassApproxDecision uses logarithmic space, as long
as all numbers involved are polynomial in m, the number of integers in the input. In the
unit-cost RAM model, it uses O(1

ε
) registers. In the strict turnstile streaming model, we give

a simpler deterministic 1-pass streaming algorithm that uses O(log t + logm) space for the
special case when ε ≥ 1/3 (Theorem 5).

Next, we design algorithms for the search and optimization versions of approximate
SubsetSum (Theorems 6 and 8). We achieve polynomial running time (depending on the
approximation factor, but independent of the value of t) and obtain small space bounds at the
same time. We give space efficient fully polynomial time approximation schemes (FPTAS)
for the optimization version of SubsetSum. FPTAS were known for SubsetSum but our
algorithms use significantly less space at the expense of only slightly more time. While the
previous best FPTAS for SubsetSum run in time O(min(m/ε,m + 1/ε2 log 1

ε
)) and space

O(m + 1/ε) on unit-cost RAM [KMPS03], our algorithms run in O(1
ε
m2) time and O(1

ε
)

space on unit-cost RAM, where 1 + ε is the approximation factor. This implies constant
space FPTAS on unit cost RAMs when ε is a constant; where the running time as well as the
space used on unit cost RAMs does not depend on the sizes of the numbers involved at all.
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On the Turing machine model, we cannot completely eliminate the dependence of the space
bounds on the sizes of the numbers, since we have to charge space for writing down even
a single number. But we do not use any extra space beyond this ”trivial” dependence: on
Turing machines our space bounds are of the form O(1

ε
log t+ logm), that is the space used

corresponds to storing just a constant number of integers for any constant ε > 0. This should
be contrasted with previous FPTAS, where the space used was linear in m (the number of
integers in the input) even on unit cost RAM.

An additional interesting feature of our search algorithm is that it outputs the co-
lexicographically first acceptable subset with respect to the given input ordering, and if
an acceptable subset exists within a short prefix of the input, it may run in sublinear time.
It can be viewed as a streaming algorithm, with the number of passes depending on the size
of the subset found.

A key idea in these algorithms is the observation that the OnePassApproxDecision
(from Theorem 1) can be modified to yield interesting space bounds even if the numbers
involved are not limited to be polynomial in m. We achieve our results on SubsetSum by
repeatedly running OnePassApproxDecision, with an extra trick for the optimization
version to avoid all dependence on t (the value of the target sum) in the running time, to
ensure fully polynomial running time.

In Section 3, we highlight a connection between approximation algorithms for Partition
and finding balanced graph separators. Based on this connection and the space efficient
approximation algorithms for SubsetSum, we give space efficient algorithms to construct
balanced graph separators (Theorem 9). For graphs with constant size balanced separators
our algorithm finds a minimum size separator in polynomial time and logarithmic space.
Moreover, we find a separator of the smallest size, without knowing the size of the smallest
separator in advance. We define separators and give more details on how our bounds relate
to previous results in Section 3.

In Section 4, we consider two variants of SubsetSum where similar algorithms can
be designed. We extend our results on SubsetSum to Knapsack problems with equal
weights (Theorems 10). This allows us to find the smallest possible acceptable subset for
approximating the SubsetSum problem, in a space efficient way (Theorem 11). We also
obtain space efficient approximation algorithms for the unbounded Knapsack problem with
equal weights, which includes the change-making problem as a special case (Theorems 12,13).
See Section 4 for definitions.

We consider the space complexity of exactly solving unary SubsetSum in the streaming
model in Section 5. In light of the logspace algorithms [EJT10,Kan10] for unary subset sum,
a natural question to ask is: Is it crucial to have access to the entire input at any time
in order to be able to solve unary SubsetSum in logspace? In other words: how hard is
unary SubsetSum with regard to space when the inputs are read in a stream? The input
numbers arrive in a stream, and we want to design a small space algorithm that makes one,
or maybe a few, passes over the input stream and decides the instance. We use lower bounds
from communication complexity to show that any randomized s-pass streaming algorithm for

unary SubsetSum that makes error bounded by 1/3 must useΩ(
√
N
s

) space (Theorem 14). In
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addition, we give a simple deterministic two pass streaming algorithm for unary SubsetSum
that uses space O(

√
N logN).

In section 6, we leave the uniform computation model and look at SubsetSum from
the perspective of monotone circuit complexity. As mentioned earlier, USS is known to
be complete for the extremely small circuit class TC0. Note that SubsetSum is naturally
monotone in the following sense: if the number of occurrences of a number i in the stream
is increased, a Yes instance remains a Yes instance. Can we therefore construct small-depth
monotone circuits for it? To model this monotonicity, we consider the following encoding
of USS: For each positive integer B, the input consists of the frequency of each number in
the stream in unary. That is, an instance consists of B blocks of B bits each, where the ith
block wi has as many 1s as the number of occurrences mi of the number i in the stream.
Thus, the input records the multiplicity of each number in [B] (without loss of generality, no
multiplicity exceeds B). Call this problem the multiplicity-USS problem, mUSS. We show, by
a monotone reduction to reachability, that this problem has monotone circuits of polynomial
size and O(log2B) depth (Theorem 17). The circuit we construct can also be used to solve
the approximate version of USS.

We know that if we are allowed USS as gate primitives, then we can do all of TC0 at each
gate since USS is TC0 complete. In a related vein, we ask: How powerful are ε-approximators
when used as gate primitives in circuits? We observe that ε-approximators for mUSS (we
call them ApproxUSS gates) are at least as powerful as threshold gates (Lemma 2). Using
a technique introduced by Nisan in [Nis94], we also show that any circuit computing the
Disjointness function using ε-mUSS gates requires Ω(n/ log n) gates (Lemma 3). However we
have not been able to compare ApproxUSS gates explicitly with Linear Threshold gates.

2 Streaming and Space Efficient Approximation Algorithms for
Subset Sum

2.1 Decision Algorithms

To begin with, we consider the streaming model. We wish to approximate SubsetSum using
a small number of passes on the input and using space polylogarithmic in the length of the
input. For any ε and t and input stream ã = a1, . . . , an where each ai ∈ [t], we say that set
S ⊆ [n] is an ε-approximator of t in ã if

(∑
i∈S ai

)
∈ [t(1− ε), t(1 + ε)]. Given ε, t, ã, we want

to decide whether there is an ε-approximator of t in ã. We prove the following theorem:

Theorem 1. There is a deterministic 1-pass streaming algorithm that on an input stream
ε, t, ã with 0 < ε < 1, outputs 1 if and only if there exists an ε-approximator for t in the
stream ã. The space used by the algorithm is

1. O(1
ε
) in the unit-cost RAM model, and

2. O( log t
ε

) in the Turing machine model.

Proof. Consider the following algorithm:

Algorithm OnePassApproxDecision
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Maintain a set of intervals T .
Initialize: T ← {[t(1− ε), t(1 + ε)]}.
while End of stream not reached do
a← Next number in stream.
if ∃ interval [α, β] ∈ T such that a ∈ [α, β] then

Output YES and halt.
else
T ′ ← {[α, β], [α− a, β − a] | [α, β] ∈ T};
T ← T ′.
Merge overlapping intervals in T to get a set of pairwise disjoint intervals.
(If [a, b], [c, d] ∈ T and a ≤ c ≤ b ≤ d, remove [a, b], [c, d] and add [a, d].)

end if
end while

Before seeing why the algorithm is correct, we first consider the space analysis. Note
that at the beginning of each iteration, T has a set of disjoint intervals and each interval
has size at least 2tε. There can be at most t/(2tε) disjoint intervals from 1 to t, so at any
given time, |T | ≤ 1

ε
. Since T ′ has two intervals for each interval of T , |T ′| is also O(1

ε
). Thus

the algorithm needs to store the endpoints of at most O(1
ε
) intervals. In the unit-cost RAM

model, each endpoint requires one register, so the space used is O(|T |) ∈ O(1
ε
). In the Turing

machine model, since ε < 1, all endpoints are in the range {0, 1, . . . , 2t}, and so the space
required to store any one endpoint is O(log t). Thus the total space used is O( log t

ε
).

We now show that algorithm OnePassApproxDecision is correct; that is, it outputs
YES if and only if there exists a subset of the input numbers that has sum in [t(1−ε), t(1+ε).
The intuition behind the correctness is the following: We maintain the set of intervals T such
that if any number in the union of the intervals in T is seen as input, then there indeed exists
a subset that generates t. This is true in the beginning by the way we initialize T . When a
number a is read, a copy of each interval in T is shifted down by a to create a new interval.
So if a number in any of these new intervals is seen, then it can be combined with a to give
a number in one of the older intervals. (The original intervals are also retained, so we can
also chose to not use a in creating a subset.) And this property is maintained by updating
T with every number seen. Note that no interval in T gets deleted. Intervals in T only get
merged into other intervals to become larger intervals and this does not affect the invariant
property.

We now describe the proof more formally: For a set of intervals T , define

R(T ) = {a | ∃[α, β] ∈ T : a ∈ [α, β]}.

That is, R(T ) is the union of all the intervals in T . Let ` = t(1− ε) and r = t(1+ ε). Initially,
R(T ) = {a | ` ≤ a ≤ r}.

⇒: Assume that OnePassApproxDecision outputs YES. Let Tk denote the collection of
intervals after reading k numbers from the stream. OnePassApproxDecision accepts at
a stage k when it reads a number ak ∈ R(Tk−1). We show below, by induction on k, that if
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a ∈ R(Tk), then there is a subset of {a1, . . . , ak} ∪ {a} with sum in [`, r]. This establishes
that the YES answers are correct.

In the beginning, T0 is initialized to {[`, r]}. Thus a ∈ R(T0)⇒ a ∈ [`, r].
Now assume that the property holds after reading k−1 numbers. That is, if a ∈ R(Tk−1),

then there is a subset of {a1, . . . , ak−1} ∪ {a} with sum in [`, r].
If ak ∈ R(Tk−1), the algorithm terminates here and there is nothing more to prove.

Otherwise, ak 6∈ R(Tk−1), and the algorithm goes on to construct Tk. The update sets R(Tk)
to contain all of R(Tk−1) as well as all numbers b such that ak + b ∈ R(Tk−1). Now consider
an a ∈ R(Tk). If it also holds that a ∈ R(Tk−1), then we can pretend that ak was not read
at all, and using induction, pull out a subset of {a1, . . . , ak−1} ∪ {a} with sum in [`, r]. If
a 6∈ R(Tk−1), then ak+a ∈ R(Tk−1). By induction, we have a subset of {a1, . . . , ak−1}∪{ak+a}
with sum in [`, r]. Hence either way we have a subset of {a1, . . . , ak−1, ak}∪ {a} with sum in
[ell, r], as desired.

⇐: Let S, |S| = k, be the first subset of numbers in the input stream that has sum in [`, r].
That is,

– S = {ai1 , ai2 , . . . , aik} for some i1 < i2 < . . . < ik,

–
∑k

j=1 aij = t− tλ for some |λ| < |ε|, and
– there is no such subset in a1, . . . aik−1.

We will show that OnePassApproxDecision outputs YES on reading aik .
To simplify notation, let sj denote aij .
Observe that if a number a enters R(T ) at any stage, then it remains in R(T ) until the

end of the algorithm. This is because an interval is deleted only when an interval containing
it is added.

Now we observe the way T gets updated. After reading s1, R(T ) will contain the intervals
{[`, r], [` − s1, r − s1]}. (It may contain more numbers too, but that is irrelevant.) After
reading s2, R(T ) will contain {[`, r], [`− s1, r− s1], [`− s2, r− s2], [`− s1 − s2, r− s1 − s2]}.
Proceeding in this way, and using the above observation that R(T ) never shrinks, after
reading s1, s2, · · · , sk−1, R(T ) will contain [` − (s1 + · · · + sk−1), r − (s1 + s2 + · · · + sk−1)].
But this interval is the following:

[t(1− ε)− (s1 + · · ·+ sk−1), t(1 + ε)− (s1 + · · ·+ sk−1)]

= [t(1− ε)− (t− tλ− sk), t(1 + ε)− (t− tλ− sk)]
= [sk + tλ− tε, sk + tλ+ tε]

= [sk − t(ε− λ), sk + t(ε+ λ)]

Since ε > 0 and |λ| < |ε|, sk ∈ [sk + t(λ− ε), sk + t(λ+ ε)]. Hence the algorithm will output
YES when sk is read. ut

We state here some observations concerning algorithm OnePassApproxDecision that
will be useful in later sections. These observations can be proved by induction on r.
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Definition 3. Let S = {a1, . . . , am}, and 0 < γ < 1. A subset S ′ ⊆ S = {a1, . . . , am} is
said to be a good set with respect to t and γ if

(1− γ)t ≤
∑
ai∈S′

ai ≤ (1 + γ)t.

Let S = {a1, . . . , am} of m positive integers, t ∈ Z+, and 0 < γ < 1. Suppose that
algorithm OnePassApproxDecision answers “YES” on input γ, t, S, and let ar be the
last element read from the stream before the algorithm stops.

Observation 2 There exists a good set with respect to t and γ that contains ar.

Observation 3 If (1 − γ)t − ar > 0, then there is a subset H ′ of H = {a1, . . . , ar−1} such
that the sum of the elements in H ′ satisfies

(1− γ)t− ar ≤
∑
ai∈H′

ai ≤ (1 + γ)t− ar.

Observation 4 Let P = {a1, . . . , ap} ⊆ S = {a1, . . . , am} be the first p elements of S read
when reading the set S as a stream. If P contains a good subset (with respect to a given t′

and γ′) then the algorithm stops with YES (when running it on S with t′ and γ′), and the
last element read is a member of P .

The strategy in proving Theorem 1 is to maintain a collection of intervals such that a
single element in any of these intervals guarantees a YES answer. For ε ≥ 1/3, a simpler
strategy is to maintain the sum of small enough elements. This yields a 1-pass deterministic
algorithm even in the strict turnstile model, which we describe next.

First we briefly recall the definition of the turnstile model. Here the input is given as
a stream (α1, α2, . . . , αn), where each αi is a pair 〈x, ci〉, for x ∈ Z and ci ∈ {1,−1}.. If
ci = 1 then αi is said to insert x; otherwise, it is said to delete x. The model is called
strict turnstile if for every prefix of the input stream and for every element in the input the
number of copies inserted is at least as many as the number of copies deleted. Formally, let
Ix = {i | αi = 〈x, ci〉}. Then ∀i ∈ Ix :

∑
j≤i,j∈Ix cj ≥ 0. The turnstile model arises naturally

in applications such as handling updates to a large database and tracking IP traffic on a
network link. Moreover, if the entries/counts are guaranteed to stay non-negative, the model
naturally arising is in fact the strict turnstile model. For more details see [Mut05,GKMS01].

Theorem 5. Let S = {a1, . . . , am} be a finite set of m positive integers. There is a deter-
ministic 1-pass streaming algorithm in the strict turnstile model, that given t ∈ Z+, ε ≥ 1/3,
and a stream (α1, α2, . . . , αn), where each αi is a pair 〈a, ci〉, for a ∈ S and ci ∈ {1,−1},
decides if there is a subset S ′ ⊆ S and integers 0 ≤ ba ≤

∑
i∈Ia ci for a ∈ S ′ such that

(1− ε)t ≤
∑
a∈S′

baa ≤ (1 + ε)t

The algorithm runs in linear time and O(log t + logm) space on Turing machines. It runs
in O(m) time and constant space on unit-cost RAMs.
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Proof. The algorithm proceeds as follows. Variables Count and Sum are initialized to 0.
After reading an entry 〈a, ci〉 from the stream, proceed according to the following cases:

1. If a > (1 + ε)t, ignore it and move on to the next entry.
2. If ci = 1 and a < (1− ε)t then Sum← Sum+ a.
3. If ci = 1 and a ≥ (1− ε)t then Count← Count+ 1.
4. If ci = −1 and a < (1− ε)t then Sum← Sum− a.
5. If ci = −1 and a ≥ (1− ε)t then Count← Count− 1.

After finishing the whole stream, output YES if and only if either Count > 0 or Sum ≥
(1− ε)t.

To see that the algorithm is correct, first note that Count > 0 means that at least one
element a such that (1− ε)t ≤ a ≤ (1 + ε)t survived; that is,

∑
i∈Ia ci > 0 after reading the

whole stream. Any such element forms an acceptable sum in itself.
Next suppose that Sum ≥ (1 − ε)t in the end. If we also have Sum ≤ (1 + ε)t, then

the sum of all surviving elements (except those that exceed (1 + ε)t) is an acceptable sum.
If Sum > (1 + ε)t, then we must have a good surviving subset as well, since the elements
contributing to Sum are each less than (1 − ε)t ≤ 2εt = (1 + ε)t − (1 − ε)t. Thus, some
subcollection of them must form an acceptable sum.

Finally, we argue that if both Count ≤ 0 and Sum < (1−ε)t, then no acceptable sum can
be formed by the surviving elements. Count ≤ 0 means that none of the surviving elements
is in the correct range by itself. Sum < (1− ε)t means that the sum of all surviving elements
(except those that exceed (1+ε)t) is smaller than (1−ε)t, but then no subset of the surviving
elements can be in the correct range. ut

2.2 Search Algorithms

Our approximation algorithms for the search and optimization versions of SubsetSum are
based on repeatedly running algorithm OnePassApproxDecision. Unlike in the straight-
forward reduction to the decision version described in Section 1, we do not keep in working
memory the elements found so far, and each time we run the algorithm on the same set S.

First, consider the search for an approximate solution.

Theorem 6. There is a deterministic algorithm, that given a finite set S = {a1, . . . , am} of
m positive integers, t ∈ Z+, and 0 < γ < 1, outputs a subset S ′ ⊆ S such that

(1− γ)t ≤
∑
ai∈S′

ai ≤ (1 + γ)t

if such subset exists, otherwise it outputs “NO”. The algorithm runs in O( 1
γ
mn) = O( 1

γ
n2)

time, and O( 1
γ

log t + logm) space on Turing machines, where n =
∑m

i=1 log ai + log t, and

in O( 1
γ
m2) time, and O( 1

γ
) space on unit-cost RAMs.

Furthermore, if an appropriate subset exists among the first r elements of the set S, the
algorithm reads only the r-element prefix of the input as a stream in at most r passes, and
terminates within O( 1

γ
r2) steps on the unit-cost RAM model, and O( 1

γ
rnr) steps on Turing

machines, where nr =
∑r

i=1 log ai + log t.
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Before we prove the theorem, we make some remarks concerning the result itself.

Remark 1. We note that we could also obtain the same worst case bounds using algorithm
OnePassApproxDecision as a blackbox, with a careful reduction. However, our current
proof yields the additional property that on certain inputs the algorithm may run in sublinear
time, and may not have to read the whole input. This is because the algorithm outputs the
co-lexicographically first subset that gives an appropriate sum with respect to the given input
ordering. If there is such a subset among the first few elements of the input, the algorithm
will run in sublinear time, and does not have to read the whole input. In fact, one can argue
that the algorithm reads only the shortest possible prefix of the input.

Remark 2. Note that the algorithm runs in polynomial time regardless of t, and it uses
constant space on unit cost RAMs for any constant γ > 0.

Remark 3. We state our space bounds on Turing machines in terms of logm. Of course this
could be replaced by log n as well since m ≤ n. However, in general logm may be significantly
smaller than log n if the input includes very large values for some ai-s. As noted above, we
can simply ignore such values if they are larger than (1 + γ)t, and we can detect if a given
value is too large using O(log t) workspace.

Proof. (of Theorem 6) We repeatedly run the algorithm OnePassApproxDecision on the
same set S, thus keeping the workspace used by the algorithm small. We only change the
values of t and γ for the various runs.

First, we run algorithm OnePassApproxDecision on S, γ, and t. If the algorithm
answers “NO”, we stop and output “NO”.

Suppose that the algorithm answers “YES” on this input, and let ar be the last element
read from the stream before the algorithm stops. If r = 1, we write a1 on the output tape
and stop.

If r > 1, we write ar on the output tape. By Observation 2, we know that ar can be part
of a correct output, so we can write it on the output tape, even though we may not have
finished finding a good set yet.

If (1− γ)t ≤ ar ≤ (1 + γ)t, then we stop.
Otherwise, note that (1− γ)t− ar > 0 must hold. Next, we run the algorithm again on

S, and t′ = t− ar with γ′ = γ t
t−ar . Note that we chose t′ and γ′ so that the algorithm in this

run checks if there is a subset of S such that the sum of its elements is at least (1− γ)t− ar
and at most (1 + γ)t − ar. By Observation 3, we know that the algorithm must terminate
with “YES”.

Let ar′ be the last element read. By Observations 3 and 4, we know that r′ < r.
We iterate the above process, until r′ = 1. Since r′ < r in each iteration, the process

must terminate in at most m iterations. When the procedure terminates, a good set is listed
on the output tape.

Next we estimate the space used. In each iteration, we store at most O( 1
γ
) intervals, and

it takes constant space on unit cost RAMs and O(log t) space on Turing machines to store
one interval (by storing its two endpoints). We reuse space for subsequent iterations. The
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time bound follows since each iteration scans the input once, and processing each newly read
integer may take up to O( 1

γ
) steps to update the intervals. ut

In the special case of γ = 1
3
, the same idea that was used in Theorem 5 can be used to get

an algorithm that is even simpler than what would follow by substituting γ = 1
3

in Theorem
6. Not only is the algorithm simpler, it is a 2-pass streaming algorithm.

Theorem 7. There is a deterministic 2-pass streaming algorithm, that given a finite set
S = {a1, . . . , am} of m positive integers and t ∈ Z+, outputs a subset S ′ ⊆ S such that

2

3
t ≤

∑
ai∈S′

ai ≤
4

3
t

if such subset exists, otherwise it outputs “NO”. The algorithm runs in linear time O(n) and
O(log t+logm) space, where n =

∑m
i=1 log ai+log t, on Turing machines, and in O(m) time

and constant space on unit-cost RAMs.

Proof. During the algorithm we will only keep in working memory the value of a current
sum s and some counters.

During the first pass, we start by initializing s to 0. For each i = 1, . . . , n, we look at the
value ai on the input tape. There are 3 cases:

1. If ai >
4
3
t we move to the next element.

2. If 2
3
t ≤ ai ≤ 4

3
t we output ai and stop.

3. If ai <
2
3
t, we let s = s + ai Then, if s < 2

3
t we move to the next element. If we run

out of elements and still have s < 2
3
t, we stop and output NO. If 2

3
t ≤ s ≤ 4

3
t we move to

the second pass, see below. Note that s > 4
3
t is not possible, since the previous sum was less

than 2
3
t and we added a value less than 2

3
t.

The only reason we need a second pass is because during the first pass we did not know
yet if we have to answer NO or output a set, and the output tape is write only.

In the second pass we proceed exactly as in the first pass, but in addition, every time
we add an element ai to the sum, we also write it on the output tape. The algorithm stops
when we reach for the first time a value s ≥ 2

3
t. At this point, we also have the members of

a good subset listed on the output tape.
We argue that the algorithm finds a good subset if one exists as follows. Elements larger

than 4
3
t cannot participate in a good subset, and if a single element ai is in the correct range

we find it during the first scan. If no such element exists, than all members of a good subset
must be less than 2

3
t. If the first scan terminates with s still less than 2

3
t that means that

the sum of all the elements less than 2
3
t is a value also less than 2

3
t. But then the sum of any

subset of these elements is also less than 2
3
t, and no good subset exists. ut

We can extend this argument to other values of γ and keep the running time linear
in n for small values of 1

γ
. In particular, we still get a 2-pass algorithm for γ = 1

5
with

O(log t+ logm) space. But we cannot keep the algorithm linear time and logarithmic space
for arbitrary constant γ. As 1

γ
gets larger, our quadratic time algorithm of Theorem 6 gives

better running time, while still using logarithmic space on Turing machines and constant
space on unit cost RAM, for arbitrary constant γ.

12



2.3 FPTAS for the optimization version of SubsetSum

We now describe an FPTAS for the optimization question.

Theorem 8. There is a deterministic approximation scheme for SubsetSum optimization,
that for any ε > 0 achieves approximation factor 1 + ε, and runs in time O(1

ε
n2) and space

O(1
ε

log t + logm) on Turing machines, where n =
∑m

i=1 log ai + log t, and in O(1
ε
m(m +

logm+ log 1
ε
)) time and O(1

ε
) space on unit-cost RAMs.

Proof. At the outset, we compute the sum of all elements ai that do not exceed t. If all
elements exceed t (or if the set S is empty) we stop and output NO. If the above sum is
nonzero and it is smaller than t then this is the optimal sum and there is nothing else to do.
Thus, in what follows we may assume that the sum of all elements ai that do not exceed t is
nonzero, and t is bounded above by this sum. On the other hand, the optimal sum t∗ is at
least as large as the largest ai not exceeding t. This implies t∗ ≥ t/m. We will use this fact
later when we analyze the running time.

First we do a procedure similar to “binary search” to find the value of the optimal sum t∗

approximately, by repeatedly running the algorithm OnePassApproxDecision. We will
show that O(logm) iterations will suffice. Thus our running time will not depend on t. Note
that with a more straightforward reasoning we would get up to log t iterations, which we
want to avoid.

Given an instance of SubsetSum optimization with S, t ∈ Z+, and ε > 0, we run algo-
rithm OnePassApproxDecision on S and pairs ti, γi for i = 1, . . . , `, defined as follows.

We use the notation t0 = t
2
. Let t1 = 3

4
t, ξ1 = 1

4
and let γ1 = ξ1

t
t1

= 1
3
. That is, in the first

run, we check if there exists a subset with sum between t
2

and t. Next we let ξi+1 = 1
2
ξi, and

depending on the answer to the i-th run, we set ti+1 = ti−1 − ξi+1t if the answer is NO, or
ti+1 = ti + ξi+1t, if the answer is YES. For example, if in the first run the answer is NO then
t2 = 3

8
t, and if in the first run the answer is YES then t2 = 7

8
t. Let γi = ξi

t
ti

. Note that this

way γiti = ξit and we maintain the invariant that ti = t̂ − γiti, where t̂ is the upper end of
the current target-search interval. That is, sums larger than t̂ have already been eliminated
from consideration.

Let ` denote the index such that γ` ≤ ε
2+ε

for the first time. We will estimate the value
of ` below.

Let t′ = t` − γ`t if the answer is NO after running the algorithm on t`, γ`, or let t′ = t`,
if the answer is YES. Let γ = γ` and let δ = 2γ

1+γ
.

Notice that the way our search proceeds we have

(1− γ)t′ ≤ t∗ ≤ (1 + γ)t′.

where t∗ denotes the value of the optimal sum.
At this point, we know that there exists a good subset S ′ of S with respect to t′ and γ,

that is
(1− γ)t′ ≤

∑
ai∈S′

ai ≤ (1 + γ)t′.
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Next we run our approximation-search algorithm from Theorem 6 that outputs such a
subset. Note that we have chosen the parameters so that (1− δ)t∗ ≤ (1−γ)t′ . By definition,
we cannot find a sum larger than the optimal sum. Thus we obtain an approximation scheme
with approximation factor 1

1−δ = 1 + ε.
It remains to estimate `. Recall, that by our initial remarks, t∗ ≥ t/m. Thus, t` ≥ t′ ≥

1
1+γ

t
m

, and t
t`
≤ (1 + γ)m ≤ 2m. Recall that γ` = ξ`

t
t`

, and we stop as soon as γ` ≤ ε
2+ε

,

that is, we stop as soon as ξ` ≤ ε
2+ε

t`
t
. Thus, we stop after at most ` = O(logm + log 1

ε
)

iterations. ut

3 An Application: Finding Balanced Separators

Balanced separators are used in VLSI circuit design (Ullman [Ull84]), algorithms on planar
graphs (Lipton and Tarjan [LT79,LT80], Miller [Mil86]), graphs with excluded minors (Alon,
Seymour, and Thomas [AST90]), and in general in algorithmic applications on graphs that
involve a divide and conquer strategy.

Informally, a balanced separator of a graph G is a set of nodes whose removal yields two
disjoint subgraphs of G that are comparable in size. More formally, balanced separators are
defined as follows.

Definition 4. (Lipton and Tarjan [LT79]) Let G = (V,E) be an undirected graph. A set
of nodes S ⊆ V is a balanced separator of G if the removal of S disconnects G into two
subgraphs G1 = (V1, E1) and G2 = (V2, E2), that satisfy |Vi| ≥ 1

3
|V | for i = 1, 2.

We say that S is a balanced h-separator of G if S is a balanced separator of G and S
consists of h vertices. We say that G is h-separable, if it has a balanced h-separator.

Note that the definition can be easily extended to directed graphs. Also, instead of requir-
ing that the size of both components is between 1

3
|V | and 2

3
|V |, we can consider components

with size closer to 1
2
|V |.

Definition 5. Let G = (V,E) be an undirected graph. A set of nodes S ⊆ V is a γ- balanced
separator of G if the removal of S disconnects G into two subgraphs G1 = (V1, E1) and

G2 = (V2, E2), that satisfy |Vi| ≥ (1− γ) |V |
2

for i = 1, 2.

The two subgraphs G1 and G2 could be disconnected within themselves. This implies that
any graph G = (V,E) has a γ-balanced separator of size |V |, for any constant 1 > γ > 0.

One special case of the SubsetSum problem is the Partition problem, which was also
listed among Karp’s first 21 NP-complete problems [Kar72b]. The problem is defined as
follows. Given a finite set S of positive integers, decide if there is a subset S ′ ⊆ S such
that

∑
ai∈S′ ai =

∑
bi∈S\S′ bi. For the search version, output such a subset if it exists. In the

SubsetSum problem, if we set t = A
2
, where A =

∑
ai∈S ai, then we get the Partition

problem. As for the SubsetSum problem, the classical solution for Partition is to use
dynamic programming (Dantzig [Dan57], Bellman [Bel57]), which runs in time O(mt) and
space O(t).

We observe that space efficient approximation algorithms for the decision version of the
Partition problem yield space efficient algorithms to find balanced separators.
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Theorem 9. There is a deterministic algorithm, that given an undirected graph G = (V,E)
and 0 < γ < 1 as input, outputs a smallest-size γ-balanced separator. If the smallest γ-
balanced separator has size h, the algorithm runs in time O( 1

γ
|V |(h+O(1))), and uses space

O((h+ 1
γ
) log |V |).

Some comments before we formally prove the theorem: Note that the value h is not
provided as input to the algorithm, and the algorithm outputs a separator of the smallest
possible size. The algorithm runs in polynomial time and logarithmic space for graphs with
constant size balanced separators.

As far as we know, this is the first space efficient algorithm that finds balanced separators
in the sense of Definition 4 for general graphs. In the case of planar graphs, [INP+13] gave a
polynomial timeO(n1/2+ε) space algorithm to find balanced separators. In [EJT10], Elberfeld,
Jakoby, and Tantau considered a different notion of separators, (also commonly referred to
as balanced separators in the literature) that we call component-wise balanced separators,
to distinguish them from the definition of Lipton and Tarjan [LT79] that we use.

Definition 6. [EJT10] Let G = (V,E) be an undirected graph. A set of nodes S ⊆ V is a
component-wise balanced separator of G if the removal of S disconnects G into subgraphs
Gi = (Vi, Ei) that satisfy |Vi| ≤ 1

2
|V | for each i.

Elberfeld, Jakoby, and Tantau [EJT10] observed the following simple space efficient al-
gorithm for finding component-wise balanced separators. Enumerate all possible subsets S
of V first by size and then by lexicographic order for each size, starting from subsets of size
1. For each subset S use Reingold’s algorithm [Rei08] that solves undirected connectivity
in logspace to compute the size of each component in the graph obtained by removing S
from G. Output the first subset such that the size condition is satisfied by each component.
It is clear that this algorithm can compute the component-wise balanced separator with
minimum size, and uses O(h log |V |) space if the smallest component-wise separator has size
h.

In particular, this algorithms runs in logspace for graphs that have constant size component-
wise separators. This was used in [EJT10] to find the tree decomposition of graphs with
constant tree-width in logarithmic space.

However, for finding balanced separators in the sense of Definition 4, we also need to
check whether the components obtained after removing a given subset of vertices can be
grouped into two subsets of vertices, such that each has size at least (1− γ) |V |

2
. We observe

that this corresponds to solving an instance of the γ-approximate Partition problem (a
special case of γ-approximate SubsetSum), where the set S = {ai} consists of the sizes of
the components ai = |Vi|.

Moreover, since the values ai are sizes of subsets of vertices of the graph, we are guaranteed
that the value A =

∑
i ai is polynomial in n = |V |. Thus, our space efficient algorithms for

approximating the SubsetSum and Partition problems yield space efficient algorithms
for finding balanced separators.
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Since for finding balanced separators we only need to check if a subset of components
with the appropriate sum of sizes exists, algorithm OnePassApproxDecision, that solves
the decision version of approximate SubsetSum, can be used.

Putting all this together we obtain the proof of Theorem 9.

Proof. (of theorem 9.) We define three logspace bounded Turing machines, to perform the
following tasks. Note that each machine uses the original graph G as input together with
some additional inputs, including the list of vertices in a fixed set W . Other than the space
used for storing their respective inputs, each machine uses at most O(log |V |) workspace,
where V is the set of vertices of V . Moreover, the length of the output of each machine is
O(log |V |).

For an undirected graph G = (V,E), a set W ⊆ V and a node v ∈ V \W we denote
by GW the graph obtained from G by removing the vertices in W and all edges adjacent to
vertices in W . We denote by GW (v) the connected component of GW that contains v.

The first Turing machine M1 on input G, W and v computes the number of nodes
connected to v in GW , that is, M1 outputs |GW (v)|. This can be done by using Reingold’s
logspace algorithm for undirected connectivity [Rei08] to check, one-by-one, for each node
u ∈ V \W \{v} if u is connected to v in GW . We let Reingold’s algorithm run on the original
graph G (we do not store the representation of GW ), we simply ignore edges of G adjacent
to vertices in W when running the algorithm. We reuse space for each repetition.

M2 on input G and W outputs the number of connected components of GW . Note that
there is always at least one component, so we start by initializing a counter to count = 1.
We assume that the first vertex belongs to the first component. Next, for i = 2, . . . , |V \W |,
we check (using Reingold’s algorithm) if vi ∈ V \ W is connected to any of the vertices
vj ∈ V \W for 1 ≤ j < i. If vi is not connected to any of the previously considered vertices,
we increase the counter, and move on to considering the next vertex. If vi is connected to
some previously considered vertex, then we move on to the next vertex without increasing
the value of count. When all vertices in V \ W have been considered, the value of count
equals to the number of connected components of GW .

Let G`
W denote the `-th connected component of GW , that is G1

W = GW (v1), and G`
W =

GW (vi), where i is the smallest integer such that vi is not contained in any of the components
G1
W , . . . , G

`−1
W .

M3 on input G, W and ` computes the size of the `-th connected component |G`
W |, as

follows. Initialize a counter to count = 1. Next, similarly to M2, for i = 2, . . . , |V \W |, we
check (using Reingold’s algorithm) if vi ∈ V \W is connected to any of the vertices vj ∈ V \W
for 1 ≤ j < i. If vi is connected to some previously considered vertex, then we move on to
the next vertex without increasing the value of count. If vi is not connected to any of the
previously considered vertices, we increase the counter by 1, and then if count < `, move on
to considering the next vertex. If count = `, we let v = vi, and use M1 on input G, W and
v to compute |G`

W | = |GW (v)|.
We are now ready to describe the algorithm. We consider integers 1 ≤ k ≤ |V | in

increasing order, and for each k we consider subsets W ⊆ V of size k in lexicographic order.
For fixed k and W , we use k log |V | workspace to keep the list of vertices in W . We use M2 on
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G and W to compute the number of connected components of GW . We denote this number
by m. For ` = 1, . . . ,m, let a` denote |G`

W |, the size of the `-th connected component.
We now need to check whether the connected components can be grouped into two subsets

of vertices, such that each has size at least (1− γ) |V |
2

. That is, we need to solve an instance

of γ-approximate SubsetSum on input S = {a`} and t = |V |
2

. However, we do not have
enough work space to explicitly keep the list of integers in S.

We run algorithm OnePassApproxDecision (the decision algorithm for solving γ-

approximate SubsetSum) on S = {a`} and t = |V |
2

, by using M3 to compute the value a`
when the algorithm needs it. Note that since the values ai are sizes of subsets of vertices of
the graph, we are guaranteed that the value A =

∑
i ai is polynomial in |V |. Thus, the space

used for solving approximate SubsetSum is always bounded by O(log |V |). Storing the sets
W takes O(h log |V |) space, where h is the size of the smallest γ-balanced separator. ut

Note that our running time is mostly dominated by the time we spend enumerating
the

(|V |
k

)
possible subsets of size k ≤ h. All other computations take polynomial time. For

graphs with constant size balanced separators our algorithm finds a minimum size separator
in polynomial time and logarithmic space.

Even the simpler problem of finding minimum size component-wise balanced separators is
NP -hard for general graphs [HR73], and as far as we know, our running time is comparable to
the running time of previously known algorithms to find minimum size balanced separators.
However, our algorithm is more space efficient than previous solutions.

4 Extensions to Other Variants of Knapsack

We also consider variants of the more general Knapsack problem. Similarly to SubsetSum
one can consider decision, search, and optimization versions. The decision version of the 0-1
Knapsack problem can be defined as follows. Given a capacity c ∈ Z+, a target value
t ∈ Z+, and a set of size m, where each element has value ai and weight wi, output YES if
and only if there is a subset S ⊆ [1,m] such that

∑
i∈S ai = t and

∑
i∈S wi ≤ c. See Karp

[Kar72b]. In the search version, we have to output the subset S if it exists. The optimization
version is defined as follows. Given a capacity c ∈ Z+, and a set of size m, where each element
has value ai and weight wi, find a subset S ⊆ [1,m] such that

∑
i∈S wi ≤ c and

∑
i∈S ai is as

large as possible. See Section 6.1 of Garey and Johnson [GJ79]. Note that the optimal value
is not known in advance. An equivalent definition of the optimization version is to maximize∑m

i=1 aixi with the constraints
∑m

i=1wixi ≤ c and xi ∈ {0, 1} for 1 ≤ i ≤ m. Note that we get
the SubsetSum problem as a special case of 0-1 Knapsack by letting wi = ai and c = t.
A common generalization of the 0-1 Knapsack problem is the integer Knapsack problem,
where every xi is a non-negative integer. This is also known as the unbounded Knapsack
problem, since the number of times we can pick each item is unbounded.

An interesting variant is the change-making problem. The decision version is defined as
follows. Given positive integers ai for 1 ≤ i ≤ m, t, and c, output YES if and only if∑m

i=1 aixi = t and
∑m

i=1 xi ≤ c, where xi ≥ 0 is an integer. This corresponds to paying a
fixed amount t using a limited number of coins, where ai are the coin denominations. Note
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that this is a special case of the unbounded Knapsack problem by letting wi = 1. The
change-making problem was first studied by Lueker [Lue75], who showed that the problem
is NP-hard. It was later studied by Kozen and Zaks [KZ94], and Adamaszek and Adamaszek
[AA10]. Also see Martello and Toth [MT90], and Kellerer and Pferschy and Pisinger [KPP04]
for a comprehensive coverage of the problem.

As we noted in Remark 1, the algorithm in Theorem 6 finds the co-lexicographically first
subset with acceptable weight. This yields the property that the algorithm reads the shortest
possible prefix of the input: it has to read at least as far as the last element of the subset
with the earliest last element with respect to the given ordering of the input.

However, this does not mean that the algorithm finds a good subset with the smallest
possible number of elements. For example there may be a good subset of size k among the
first r input elements, but the last k′ < k elements might also form a good subset, which
will not be found, since the algorithm will not read further than the first r elements of the
input sequence. This may be reasonable, if faster running time is more important.

We can modify our algorithm to always find the smallest possible good subset, but for
this we always have to read the whole input, so this version will never run in sublinear time.

The problem of finding a good subset with fewest elements is in fact another variant of
the more general Knapsack problem: the (search version) of the 0-1 Knapsack problem
with weights wi = 1 and capacity c = k, corresponds to finding a good subset of size at most
k.

4.1 0-1 Knapsack with Equal Weights

To keep the notation simple we present our results for wi = 1, but they directly generalize
to any Knapsack instance where all weights are equal.

Theorem 10. There is a deterministic one pass streaming algorithm, that given an integer
m ≥ k > 0, a finite set S = {a1, . . . , am} of m positive integers, t ∈ Z+, and 0 < γ < 1,
decides if there is a subset S ′ ⊆ S of size at most k such that

(1− γ)t ≤
∑
ai∈S′

ai ≤ (1 + γ)t.

The algorithm runs in O( 1
γ
kn) time and O( 1

γ
k log t + logm) space on Turing machines,

and in O( 1
γ
km) time and O( 1

γ
k) space on unit-cost RAMs.

Moreover, if a good subset of size at most k exists among the first r elements of the set
S, the algorithm terminates within O( 1

γ
kr) steps on the unit-cost RAM model, and O( 1

γ
knr)

steps on Turing machines, where nr =
∑r

i=1 log ai + log t.

Proof. Similarly to algorithm OnePassApproxDecision, we maintain a collection of inter-
vals. In addition, for each interval, we assign an index, indicating the length of partial sums
associated with the interval. At the beginning of the algorithm, there is only one interval
and its index is 0. As we proceed, whenever we form a new interval, its index will be the
index of the interval from which the new interval is formed plus 1. We also merge overlapping
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intervals like before, but now we only merge intervals that have the same index. This way,
every partial sum associated with a given interval has the same size, and the index of a given
interval corresponds to the number of elements participating in the possible partial sums
associated with the interval. More precisely, if the index of an interval is j, and we find that
some ai ∈ S belongs to the interval, then we know that there is a good sum using ai and
some other j elements a` with ` < i.

Also, whenever creating a new interval would result in an index greater than or equal to
k, we do not create the interval, and continue with the algorithm. This is because creating
an interval with index at least k would only be useful for detecting sums of size greater than
k.

This way, the space bound is increased by a factor of k, and we maintain up to 1
γ
k

intervals.. The algorithm stops with yes if it finds that some ar belongs to one of the existing
intervals. In this case, ar is the last element read from the input, and the rest of the input
is never read. The algorithm stops with “NO” if it read all of the input and none of the
elements belonged to an existing interval. The bounds on running time follow since we read
each input element at most once, and for each input we perform at most O( 1

γ
k) comparisons

to check if it belongs to one of the intervals. ut

We can use this algorithm to find the smallest good subset without knowing its size in
advance in a space efficient way.

Theorem 11. There is a deterministic algorithm, that given a finite set S = {a1, . . . , am}
of m positive integers, t ∈ Z+, and 0 < γ < 1, outputs the smallest subset S ′ ⊆ S such that

(1− γ)t ≤
∑
ai∈S′

ai ≤ (1 + γ)t

if such subset exists, otherwise it outputs “NO”. If the size of the smallest good subset is k,
the algorithm runs in O( 1

γ
k2n) time and O( 1

γ
k log t+ logm) space on Turing machines, and

in O( 1
γ
k2m) time and O( 1

γ
k) space on unit-cost RAMs.

Proof. We run the algorithm from Theorem 10 repeatedly for increasing k′ starting from
k′ = 1. If a good set of size k′ exists, the algorithm will stop with “YES”. If the smallest
good set has size k, we will get a “YES” answer during the k-th repetition of running the
algorithm.

After this, another k − 1 repetitions allow us to output the good set, similarly to the
proof of Theorem 6, by running the algorithm of Theorem 10 again repeatedly, this time for
decreasing k′ starting from k′ = k − 1. ut

4.2 Change-Making Problem: Unbounded Knapsack with Equal Weights

In the SubsetSum problem, as well as in the 0-1 Knapsack problem, each element ai can
be used at most once to contribute to the sum. The unbounded Knapsack problem allows
to use the same element ai several times towards the sum.
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If such repetitions are allowed, then we can save a factor of k in the space bounds, where
k is the number of elements (counted with multiplicities) contributing towards the sum. The
running time remains the same, but there is a catch: in the case of 0-1 Knapsack the size
k of a good subset must be always at most m, since each element can be used at most once.
Hence our algorithms for 0-1 Knapsack with equal weights are always polynomial time. But
if repetitions are allowed, then in general k may be much larger than m, so our algorithms
are not polynomial time in general: they are polynomial in k and n (and in k and m on
unit-cost RAMs). On the other hand, since the space bound does not depend on k, they run
in constant space on unit-cost RAMs for any constant approximation factor.

This version of unbounded Knapsack with weights wi = 1 is sometimes called the
“Change-Making problem” (see introduction). In the terminology of the Change-Making
problem k (the size of the subset counted with multiplicities) corresponds to the number
of coins used. To keep the notation simple we present our results for wi = 1, that is for
the Change-Making problem, but they directly generalize to any unbounded Knapsack
instance where all weights are equal.

Theorem 12. Given an integer k > 0, there is a deterministic k pass streaming algorithm,
that given a finite set S = {a1, . . . , am} of m positive integers, t ∈ Z+, and 0 < γ < 1,
decides if there is a subset S ′ ⊆ S such that

(1− γ)t ≤
∑
ai∈S′

aixi ≤ (1 + γ)t,

where each xi ≥ 0 is an integer, and
∑

ai∈S′ xi ≤ k. The algorithm runs in O( 1
γ
kn) time

and O( 1
γ

log t + logm) space on Turing machines, and in O( 1
γ
km) time and O( 1

γ
) space on

unit-cost RAMs.

Proof. The proof is similar to the proof of Theorem 10, but now we only need to maintain
O( 1

γ
) intervals at a time. First we run the algorithm from Theorem 10 once with k = 1.

Unless a good subset of size 1 exists, this will read the whole input without finding an
element that belongs to the initial interval [l, r]. We keep the intervals created by this run
in working memory, note that each of these intervals has index 1, except the initial interval
[l, r] which has index 0. At this point, we discard the interval with index 0, we will not need
it anymore. Next, we proceed similarly to running the algorithm of Theorem 10 with k = 2,
but now we already have a collection of intervals with index 1 stored in memory. Every time
we read a new element ai, we check if it belongs to one of the intervals with index 1. If yes,
we stop with “YES”. If not, we create a new interval, but only using the intervals with index
1, thus we only create intervals with index 2 during this pass. If we do not succeed in finding
an element that belongs to one of the intervals during this pass, we eliminate all the intervals
with index 1 but keep all the intervals with index 2.

During the j-th pass we will check if the elements read belong to one of the intervals
with index j − 1 that we kept from the previous pass. During the j-th pass, we only create
new intervals with index j. At the end of the j-th pass, we discard the intervals with index
j − 1, and keep all intervals with index j.
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Thus, at any time during the process we keep at most 2 1
γ

intervals. Each pass of the input

will take O( 1
γ
n) time, and we make at most k passes. ut

The reason this approach with the smaller space bound could not be used in the proof
of Theorem 10 is that this way we cannot prevent including the same element ai more than
once into the sum. The algorithm in Theorem 10 is a one pass algorithm, so we never even
consider the same element more than once. But in the algorithm in the proof of Theorem 12
we keep restarting reading the input, and we have no way of knowing if the currently read
element ai has already contributed towards one of the partial sums associated with a given
interval.

We can use this algorithm to find the smallest possible k (that is the smallest number
of coins in the Change-Making problem) without knowing its value in advance in a space
efficient way.

Theorem 13. There is a deterministic algorithm, that given a finite set S = {a1, . . . , am}
of m positive integers, t ∈ Z+, and 0 < γ < 1, outputs the smallest integer k, and a sequence
b1, . . . , bk such that bi ∈ S for i = 1, . . . , k and

(1− γ)t ≤
k∑
i=1

bi ≤ (1 + γ)t.

The algorithm runs in O( 1
γ
k2n) time and O( 1

γ
log t+ logm) space on Turing machines, and

in O( 1
γ
k2m) time and O( 1

γ
) space on unit-cost RAMs.

Proof. Similarly to the proof of Theorem 11 we run the algorithm from Theorem 12 repeat-
edly for increasing k′ starting from k′ = 1. If a good set of size k′ exists, the algorithm will
stop with “YES”. If the smallest good set has size k, we will get a “YES” answer during the
k-th repetition of running the algorithm.

After, this another k − 1 repetitions allow us to output the good set, similarly to the
proof of Theorem 6, by running the algorithm of Theorem 12 again repeatedly this time for
decreasing k′ starting from k′ = k − 1, ut

5 Exact Unary Subset Sum in the Streaming Model

We first show lower bounds for 1-pass and many-pass streaming algorithms that decide
unary SubsetSum. We do so by lower bounding a communication game corresponding to
SubsetSum. A communication game corresponding to SubsetSum is as follows: both Alice
and Bob are given an integer B. Further, each of them has a set of numbers and they have
to determine if there is a subset of numbers among the union of their sets that adds to B.
The goal is to minimize the number of bits exchanged between Alice and Bob. Additionally,
there may be constraints on how often the communication exchange changes direction (the
number of rounds).

A standard lower bound technique (see [AMS99]) shows that an s-pass spaceO(S) stream-
ing algorithm yields a protocol with communication complexity O(sS) and 2s − 1 rounds.
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Thus a communication complexity lower bound yields a streaming space lower bound. We
use this technique to show that any 1-pass streaming algorithm for unary SubsetSum needs
Ω(
√
N) space.

Lemma 1. Any deterministic or randomized 1-pass streaming algorithm for unary
SubsetSum uses space Ω(

√
N).

Proof. We reduce the Index problem to SubsetSum. The Indexn function is defined as
follows: Alice has x ∈ {0, 1}n and Bob has an index k ∈ [n]. The goal is to find xk. Alice can
send one message to Bob, after which Bob should announce what he believes is the value
of xk. It is known that the 1-way randomized communication complexity of Indexn is Θ(n)
(see [BYJKS02] or [KNR95]).

The reduction from Indexn to SubsetSum is as follows: The target sum is B = 2n.
Alice creates a set S = {2n − i|xi = 1}. Bob creates the set T = {k}. Since each number
in S is at least n, any subset of S that has two or more numbers would have a sum strictly
greater than 2n. Hence any subset of S ∪ T that has a sum of 2n can have at most one
number from S. Now it is easy to see that if xk = 1, the subset {(2n − k), k} has sum 2n.
Whereas if xk = 0, there is no subset of S∪T that has sum 2n. Thus a protocol that correctly
decides the SubsetSum game instance where B = 2n, Alice has S and Bob has T , with
communication cost c also correctly decides Indexn(x, k) with communication cost c.

Assume that there is a space f(N) 1-pass streaming algorithm for unary SubsetSum,
where f is some non-decreasing function. Then there is a cost f(N) protocol for the SubsetSum
game, and hence by the above reduction, a cost f(`) protocol for Indexn, where ` is the
length of the resulting unary SubsetSum instance. Since ` ≤ n2, f(`) ≤ f(n2). By the lower
bound for Index, f(n2) ∈ Ω(n), and so f(N) ∈ Ω(

√
N). ut

A generalization of the above proof gives a space lower bound for streaming unary
SubsetSum that depends on the number of passes.

Theorem 14. Any deterministic or randomized s-pass streaming algorithm for unary
SubsetSum uses space Ω(

√
N/s).

Proof. We give a reduction from Disjn to SubsetSum. The Disjointness problem Disjn is
defined as follows: for x, y,∈ {0, 1}n, DISJn(x, y) = ∧ni=1¬(xi ∧ yi). (That is, if x and y are
characteristic vectors of sets X, Y ⊆ [n], then Disjn(x, y) = 1 if and only if X ∩ Y = ∅.)
Its complement Disjn is the intersection problem. Alice and Bob are given x ∈ {0, 1}n
and y ∈ {0, 1}n respectively. The goal is to determine if there exists an i ∈ [n] such that
xi = y1 = 1. It is known [KS92,Raz92,BYJKS04] that any randomized protocol for Disjn,
with any number of rounds, must exchange Ω(n) bits to bound error probability by 1/3.

The reduction from Disjn to SubsetSum is as follows: We set the target to B = 12n−1.
Alice constructs the set S = {8n−2i|xi = 1}. Bob constructs the set T = {4n+2i−1|yi = 1}.
Notice that all numbers in S are greater than B/2, and that all numbers in T lie in the interval
(B/3, B/2). Further note that each number in S is even and that each number in T is odd.
We claim that Disjn = 1 exactly when S ∪ T has a subset adding to B. To see why, first
observe that
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1. Using numbers only from S cannot give a sum of B since B itself does not appear in S,
and the sum of any two numbers from S exceeds B.

2. Using numbers only from T cannot give a sum of B since

(a) B does not appear in T ;
(b) Any two numbers in T add to an even number greater than B/2, but B is odd; and
(c) adding three or more numbers from T gives a sum greater than B.

Thus we see that if any subset of S ∪ T adds to B, then it must contain exactly one number
from S and one from T . That is, it must be of the form {8n− 2i, 4n+ 2j− 1}. To add up to
12n− 1, it must be the case that i = j. Hence such a subset exists if and only if there exists
an i ∈ [n] such that xi = yi = 1.

Now, as in Lemma 1, assume that there is an s-pass streaming algorithm for unary
SubsetSum using space f(N), where f(.) is some non-decreasing function. Then there is
a cost (2s − 1)f(N) protocol for the SubsetSum game with 2s − 1 rounds, and hence by
the above reduction, a cost (2s − 1)f(n2) protocol for Disjn. (The reduction from Disjn
creates unary SubsetSum instances of length N ∈ O(n2).) By the lower bound for Disjn,
(2s− 1)f(n2) ∈ Ω(n), and so f(n) ∈ Ω(

√
N/s). ut

Next we show that the above lower bounds are close to tight, by giving a deterministic
two pass algorithm using O(

√
N logN) space.

Theorem 15. There is a deterministic 2-pass streaming algorithm for unary SubsetSum
that uses space O(

√
N logN) and runs in polynomial time.

Proof. In the first pass, we simply read the input to learn its length, that is the value of N ,
as well as the value B. We write these down using O(logN) space. Next, we initialize an
array C of size

√
N to all zeros. We will use the entries of this array as counters, with values

at most N , so we reserve
√
N logN space for the entries of the array. In addition we will

write a list of numbers, using space not occupied by the array.
In the second pass, whenever we see a number ai ≤

√
N , we increment the entry C[ai] of

the array by one. If we see a number ai >
√
N , we append its value (in binary) to the list

after the array.
After finishing the second pass, we have all of the input sequence stored locally in an

implicit form using space O(
√
N logN). Next, we run the algorithm of Kane [Kan10] on this

locally stored input. This will take at most O(logN) additional space, and time polynomial
in N . ut

We also observe that there are two simple one pass streaming algorithms for SubsetSum
that can be used for unary SubsetSum as well as SubsetSum when the input is represented
in binary. We assume that B is the first number in the stream. The first algorithm uses
space O(m logB) storing those input numbers that do not exceed B. The other algorithm
uses space O(B logm) storing how many times each integer in [B] appears in the input.
Then both algorithms run Kane’s algorithm [Kan10] on the locally stored implicit input
representation. Note however that these bounds are incomparable with

√
N in general.
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6 Circuit Complexity of Monotone Approximate Unary Subset
Sum

6.1 Problem Formulation

In this section, we consider the monotone circuit complexity of USS. Without the monotone
restrictions, it is known that USS is complete for the circuit class TC0 ([EJT12]). However, in
a very natural sense, Subset Sum is a monotone problem, and so we can consider monotone
circuits for it. The encoding of the input becomes crucial for achieving monotonicity. We
choose the following encoding:

For each positive integer B, the input consists of the frequency of each number in the
stream in unary. An instance w ∈ {0, 1}B2

consists of B blocks of B bits each. For each
k ∈ [B], if k occurs in the stream mk times, then the kth block wk has exactly mk 1s; that is,∑B

j=1wkj = mk. Thus the input records the multiplicity of each number in [B] (we assume
that no multiplicity exceeds B).

Define the transitive relation�: For u = (u1, u2, . . . , uB), v = (v1, v2, . . . , vB) with uk, vk ∈
{0, 1}B, u � v if and only if ∀k ∈ [B],

∑B
j=1 ukj ≤

∑B
j=1 vkj.

We define the multiplicity-USS problem, denoted as mUSS, and its approximation variant
ε-mUSS, as follows.

mUSS(w,B) = 1⇐⇒ ∃y = (y1, y2, . . . , yB) :

yk ∈ {0, 1}B ∀k ∈ [B], y � w, and

B =

(
B∑
k=1

k

(
B∑
j=1

ykj

))
ε-mUSS(w,B) = 1⇐⇒ ∃y = (y1, y2, . . . , yB) :

yk ∈ {0, 1}B ∀k ∈ [B], y � w, and

B(1− ε) ≤

(
B∑
k=1

k

(
B∑
j=1

ykj

))
≤ B(1 + ε)

We call such a y a witness for (w,B). The vector y represents a subset of the multi-set
represented by w such that the elements in y sum to B (or to a number within ε of B,
respectively).

For example, for B = 4, the stream 1 3 2 2 1 4 3 can be encoded by any of the following
strings (and by many more): 1100 1100 1100 1000, 1010 0101 0011 0010. Some witnesses for
this instance are 1100 1000 0000 0000 (use two 1s and a 2), 0100 0000 0001 0000 (use a 1
and a 3), 0000 0000 000 1000 (use the 4).

Fact 16 mUSS is a monotone function, i.e. for each positive integer B, and for each u =
(u1, u2, . . . , uB), if mUSS(u,B)= 1, and if v = (v1, v2, . . . , vB) is obtained from u by changing
some 0s to 1s, then mUSS(v,B)= 1.
Similarly, for each ε and B, ε-mUSSis a monotone function.
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6.2 Monotone Depth Upper Bound

It has been known for over three decades ([MS80]) that USS is in nondeterministic logspace;
hence USS reduces to the problem Reach defined below:

Given: a layered directed acyclic graph G, two designated nodes s, t
Output: 1 if there is a path from s to t in G, 0 otherwise.

It is well-known that Reach has monotone circuits of depth O(log2 n), where n is the number
of vertices in the input instance. (This follows from the construction of [Sav70]. See for
example [AB09].) We show that with the encoding described above, exact and approximate
versions of mUSS reduce to Reach via a very weak form of reduction known as monotone
projections.

f : A→ B is called a monotone projection if ∀x ∈ A, y ∈ B such that f(x) = y, it holds
that ∀i,∃j such that yi = xj. In other words, a monotone projection produces an output
string by either rearranging bits of the input or copying bits of the input or both.

Showing a monotone projection from mUSS to Reach gives us small depth monotone
circuits for mUSS.

Theorem 17. For every positive integer B, mUSS(·, B) and ε-mUSS(·, B) have monotone
circuits of depth O(log2B).

Proof. We prove this by reducing an instance of mUSS into an instance of Reach via a
monotone projection.

The following is the high level idea:
For every integer B, and given w ∈ {0, 1}B2

= (w1, w2, . . . , wB) we create a graph with B2+1
layers. The zero-th layer consists of the source vertex and the other B2 layers have (B + 1)
vertices each. We further partition the set of B2 layers into B blocks of B consecutive layers
each.

Let vij,k denote the i-th vertex in the layer j in the block k. Intuitively, each layer corre-
sponds to a bit position in the input string. We add edges in order to ensure that a vertex
vik,j is reachable from the source vertex if and only if the stream corresponding to the first
k − 1 blocks of w and j bits from the kth block has a subset that adds to i.

If after reading l bits of w there is a subset that adds to i then this subset continues
to exist even after reading more bits. To capture this phenomenon, we add horizontal edges
from every vertex v in layer l to the copy of v in layer l + 1.

If the bit wkj = 1, then using this copy of k, for each existing subset sum s, the subset
sum s + k can also be created. To capture this, we include slanted edges from each vij,k to

vi+kj+1,k.

Thus, there is a path form the source to vertex viB,B exactly when there is a subset that
sums to i. By connecting viB,B for appropriate i to a new target node t, we reduce mUSS or
ε-mUSS to Reach.

Formally, the graph for reducing mUSS to Reach is defined as follows. Let vij,k denote the
i–th vertex in the layer j in the block k, where 0 ≤ i ≤ B, and j, k ∈ [B]. Let V = {vij,k | 0 ≤
i ≤ B, 1 ≤ j, k ≤ B} ∪ {v00,0}. We now describe the edge set for the graph. We first describe
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the horizontal edges. Let E1 = {vij,k → vij+1,k, | 0 ≤ i ≤ B, 1 ≤ j ≤ B − 1, 1 ≤ k ≤ B} be
the edges that connect the i–th vertex in the layer j, of the block k to the i–th vertex in the
layer j + 1 of the same block. Let E2 = {viB,k → vi1,k+1 | 0 ≤ i ≤ B, 1 ≤ k ≤ B − 1, } be
the inter-block edges that connect the i–th vertex in the layer B of the block k to the i–th
vertex in the first layer of the block k + 1. Let Ew

1 and Ew
2 denote sets of intra-block and

inter-block edges obtained from the input instance w of mUSS, respectively (these are the
slant edges):

Ew
1 =

{
vij,k → vi+kj+1,k | wjk = 1, 0 ≤ i ≤ B − k, 1 ≤ j ≤ B − 1, 1 ≤ k ≤ B

}
Ew

2 =
{
viB,k → vi+k1,k+1 | wBk = 1, 0 ≤ i ≤ B − k, 1 ≤ k ≤ B − 1

}
The Reach instance we create is:(

G = (V,E = E1 ∪ E2 ∪ Ew
1 ∪ Ew

2 ∪ {v00,0 → v01,1}), s = v00,0, t = vBB,B
)
.

Claim. After reading the j–th bit of wk if s1, s2, . . . , sα are all possible subset sums which
have sum at most B, then the set of vertices reachable from v00,0 in the j–th layer of the
block k is {vs1j,k, v

s2
j,k, . . . , v

sα
j,k}

Proof. We prove this by induction on j, k. The base case is: j = 1, k = 1, i.e. the first bit of
w1 is read. Either w1,1 = 0 or w1,1 = 1. In the first case, the possible subset sum is 0. And
from our construction, v00,0 → v01,1 is an edge in G. In the latter case, the possible subset
sums are 0, 1. As w1,1 = 1, there is an edge v00,0 → v11,1 in Ew

1 . And v00,0 → v01,1 is also an edge
in E. Hence the base case.

After reading j–th bit in wk, let the possible subset sums be s1, s2, . . . , sα. By induc-
tion hypothesis the set of vertices reachable from v00,0 in the j–th layer of the block k is
{vs1j,k, v

s2
j,k, . . . , v

sα
j,k}. Inductive step –

Case 1 [j < B, i.e. next bit in the same block]: Either wj+1,k = 0 or 1. If
wj+1,k = 0, then the possible subset sums after reading j + 1–th bit remain unchanged,
i.e. s1, s2, . . . , sα. By our construction, {vs1j,k → vs1j+1,k, v

s2
j,k → vs2j+1,k, . . . , v

sα
j,k → vsαj+1,k} is a

subset of E1. By induction hypothesis, vs1j,k, v
s2
j,k, . . . , v

sα
j,k are reachable from v00,0. Therefore,

vs1j+1,k, v
s2
j+1,k, . . . , v

sα
j+1,k are reachable. No other vertex in layer j + 1 is reachable (as Ew

1 has
no edges in this layer).

If wj+1,k = 1, then the possible subset sums after reading j+1–th bit are: s1, s2, . . . , sα, s1+
k, s2 + k, . . . , sα + k. (If sl + k > B for some l, then sl + k need not be considered.) By
our construction, {vs1j,k → vs1+kj+1,k, v

s2
j,k → vs2+kj+1,k, . . . , v

sα
j,k → vsα+kj+1,k} is a subset of Ew

1 . And
{vs1j,k → vs1j+1,k, v

s2
j,k → vs2j+1,k, . . . , v

sα
j,k → vsαj+1,k} is a subset of E1. Using the induction hypoth-

esis and these edges, the inductive step follows.
Case 2 [j = B, i.e. next bit in block k+ 1]: the proof of this case is similar to that of

Case 1. The arguments goes through by using the induction hypothesis and the inter-block
edges from sets E2, E

w
2 . ut

For the given instance, mUSS(w,B) = 1 iff after reading the last bit of wB there is a
subset that adds to B iff vBB,B is one of the reachable nodes from v00,0 (using Claim 6.2). As
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the graph G has B2(B + 1) + 1 = O(B3) vertices, Reach can be computed by a O(log2B)
depth monotone circuit. Since the reduction can be performed using projections, the theorem
follows. ut

6.3 Monotone Approximate Subset Sum as a circuit primitive

We now examine the power of ε-approximators for mUSS when used as a primitive to compute
other functions. In [Nis94], Nisan showed that any circuit for DISJn using linear threshold
gates requires Ω(n/ log n) gates. We introduce a new kind of gate, an ApproxUSS gate, that
we show is at least as powerful as a Threshold or Majority gate, and show that any circuit
that uses ApproxUSS gates to compute Disjointness needs size Ω(n/ log n). However, we do
not know whether linear threshold gates can simulate ApproxUSS gates with at most sub-
logarithmic blowup in the number of gates or vice versa.

We define approximate USS gates, denoted ApproxUSS, as gates that solve the ε-mUSS
problem defined in Section 6. An ApproxUSSε,B gate takes a bit string x of length B2 as
input, and outputs 1 exactly when ε-mUSS(x,B) =1.

While it is trivial to see that majority can be computed with a single call to an oracle
for mUSS, it is not immediately clear that oracle access to ε-mUSS when ε > 0 is also
sufficient. We show that this is indeed the case, by showing that ApproxUSS gates are at
least as powerful as standard threshold gates. Specifically, we show that an ApproxUSS gate
can simulate majority with only a polynomial blowup in the number of wires.

Lemma 2. The MAJ2n+1 function can be computed by an ApproxUSSε,B gate with B =
O(n3) and a suitable non-zero value for ε.

Proof. Given w ∈ {0, 1}2n+1 as an input to MAJ, we come up with a vector y ∈ {0, 1}B2

such that MAJ(w) = 1 if and only if ApproxUSSε,B(y) = 1. We will specify B and ε, and
also another parameter N , shortly. The reduction from w to y is a simple projection given
as follows:

The string y we wish to compute represents a stream of numbers. We describe the pro-
jection in terms of the stream. If wi = 1, then we add bN/ic copies of i to the stream. So
yi,j = 1 exactly when wi = 1 and j ≤ bN/ic. Thus, if wi = 0, adding all copies of i in y
gives 0, whereas if wi = 1, adding all copies of i in y gives i× bN/ic. Note that for every i,
N − 2n ≤ N − (i− 1) ≤ i× bN/ic ≤ N .

Let α = nN , β = (n + 1)(N − 2n), and γ = (2n + 1)N . Let M denote the maximum
subset sum in the stream corresponding to y. (Add up all the numbers in the stream.) If w
is a No instance of MAJ, then M ≤ α. If w is a Yes instance of MAJ, then β ≤M ≤ γ.

To turn this into a proper reduction, it suffices to ensure that

– N ≤ B, so that it is possible to create bN/ic copies of i for each i,

– α < β, so that we can distinguish between yes and no instances,

– The range [β, γ] coincides with [B − Bε,B + Bε], so that a Yes instance of MAJ gets
mapped to a YES instance of ApproxUSS.
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We see that the above conditions are met by choosing N = 2(n+1)2, B = (β+γ)/2, and
ε = γ−β

2B
= γ−β

γ+β
. This gives β = 2n3 + o(n3), γ = 4n3 + o(n3), and hence B = 3n3 + o(n3),

and ε = 2n3+o(n3)
6n3+o(n3)

∼ 1/3. ut

On the other hand, it is not known whether ApproxUSS, for ε 6= 0, can be decided with
a single oracle call to majority. It is conceivable that demanding a YES answer for a wider
range of inputs (the approximation) makes the problem harder. It is therefore interesting to
examine the power of circuits using ApproxUSS gates. We follow this thread below.

The communication problem ccApproxUSS corresponding to ApproxUSS can be described
as follows. Let S ⊆ [B2]. Both Alice and Bob know S, B and ε. Alice knows the bits xi for
i ∈ S, and Bob knows the remaining bits of x. They must decide whether ApproxUSSε,B(x) =
1, that is, whether ε-mUSS(x,B) =1.

In Theorem 1 we proved that for every ε, there is a one-pass streaming algorithm that ε-
approximates USS using space O ((logB)/ε). The algorithm works for every possible ordering
of the numbers in the input stream. This implies that there is a O ((logB)/ε) bit one-round
protocol for ccApproxUSS for worst case partitioning of the input (for every S ⊆ [B2]). (The
string x determines the multi-set of numbers. For any partition of x, Alice and Bob can
construct a stream of numbers forming this multi-set, where Alice has the initial part of the
stream and Bob has the latter part. Treat the indices in B2 as pairs k, j where k is the block
number and j is the index within the block. Alice includes in her stream a copy of k for each
bit xkj = 1 in her part. Bob does the same.) Therefore, using an argument similar to that of
[Nis94], we can prove the following lemma:

Lemma 3. Let C be a circuit that computes DISJn using s ApproxUSSε,B gates, where ε ∈
Θ(1), and the value of B at each ApproxUSSε,B is bounded above by a polynomial in n. Then
s ∈ Ω(n/ log n).

Proof. Let C be such a circuit, with s ApproxUSS gates. Let t denote the maximum value
of B in any of the gates. We use C to obtain a protocol for DISJn as follows. Alice and
Bob evaluate C bottom-up, reaching a gate only after all its children have been evaluated.
At each ApproxUSS gate, we know that logB ∈ O(log t) ⊆ O(log n). When an ApproxUSS
gate has to be evaluated, an efficient protocol of O ((log t)/ε) bits for ccApproxUSS is in-
voked with the appropriate partition of the inputs of the gate. As there are s ApproxUSS
gates, the entire protocol for computing DISJn uses O(((log t)/ε) × s) bits of communi-
cation. However, we know that any protocol for DISJn requires Ω(n) bits of communi-
cation ([KS92,Raz92,BYJKS04]). Hence, s log t = Ω(εn). By assumption, ε ∈ Θ(1), and
log t = O(log n). Hence s = Ω(n/ log n). ut

7 Open Problems

We now discuss a few aspects of our results and some open questions.

– Our algorithms work for multi-set versions, where an element may appear in the input
stream more than once. If the multiplicities of all numbers are restricted to be between
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{0, 1}, then the problem does not become easier. In fact, our lower bound proof for USS
in Section 5 (Theorem 14) generates such instances.

– Our algorithms for 0-1 Knapsack with equal weights are fully polynomial time, but the
space bounds depend on k, the size of the smallest good subset. Thus, in general, the space
bounds for this problem may be linear in m if k is large (e.g. constant fraction of m). As
we noted above, our algorithms for unbounded Knapsack with equal weights eliminate
the dependence on k in the space bounds, but the running time is not polynomial, since
in this version of the problem k does not have to be bounded by m.
It remains open if Knapsack can be approximated in polynomial time and o(m) space
simultaneously, even in the case of equal weights.

– We know that USS is in TC0 [EJT12] and we have proved that mUSS is in monotone
NC2. It is known that there exists a monotone formula of polynomial size which cannot
be computed by constant depth polynomial sized monotone threshold circuits [Yao89].
However, the question of whether monotone TC0 is contained in monotone NC1 is open
(see for instance [Ser04]). Majority is known to be in monotone NC1 [Val84]. And it is
easy to observe that majority reduces to USS. In the light of these results, the question
of whether mUSS is contained in monotone NC1 is interesting.
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