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Abstract

We show that Level-ordered Q-resolution and Tree-like Q-resolution, two
restrictions of the Q-resolution system for proving false QBFs false, are in-
comparable. While the ∀Exp+Res system is known to p-simulate Tree-like Q-
resolution, we observe that it cannot p-simulate Level-ordered Q-resolution.
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1. Introduction

Resolution is a classical proof system for proving unsatisfiability of for-
mulas in conjunctive normal form. Extending this to quantified Boolean
formulas (QBFs), there are two major kinds of proof systems: those based
on conflict-driven clause learning (CDCL), and those based on expansion.
The most important CDCL-based proof system is Q-resolution, defined by
Kleine Büning et al. [1]. An important expansion-based proof system is
∀Exp+Res defined by Janota and Marques-Silva [2]; this system corresponds
to the expansion-based solver RAReQS [3]. The relative powers of both
these systems are well studied, and the sytems are known to be incomparable.
Looking at how incomparability was established, we see that two sub-classes
of Q-resolution are significant: tree-like proofs, where the graph underlying
the resolution structure is a tree, and level-ordered proofs, where at each res-
olution step, the variable on which resolution is performed is at the rightmost
level (quantifier block) among all existential variables in the clauses involved.
Level-ordered Q-resolution is practically important as well. It corresponds to
QBF solvers based on the DPLL (Davis-Putnam-Logemann-Loveland) tech-
nique. One such example is the QBF Solver Evaluate, introduced in [4]
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(see also [5]); note, however, that Evaluate deals with variables in order of
increasing level (as opposed to decreasing level in level-ordered Q-resolution).

The known results (see Figure 1) were established in the following chrono-
logical order.

1. ∀Exp+Res proof system cannot p-simulate Q-resolution.
This was established by Janota and Marques-Silva in 2013 [6] (see also
[7]). They defined a false QBF sentence that we denote φn, and showed
that it is hard for ∀Exp+Res (Proposition 3, [7]) but has a polynomial
size proof in Q-resolution (Proposition 2, [7]).

2. Level-ordered Q-resolution cannot p-simulate ∀Exp+Res.
This too was shown by Janota and Marques-Silva in [7]. They defined a
false QBF sentence CRn and proved that CRn is hard for level-ordered
Q-resolution (Proposition 5, [7]) but has a polynomial size proof in
∀Exp+Res (Proposition 4, [7]).

3. Q-resolution cannot p-simulate ∀Exp+Res.
This was shown by Beyersdorff et al. [8]. They showed that a formu-
lation QPARITYn of the parity function ⊕n is hard for Q-resolution
(Section 4, [8]) but has a polynomial size proof in ∀Exp+Res. From
this and (1) above, it follows that Q-resolution and ∀Exp+Res are in-
comparable.

4. ∀Exp+Res can p-simulate tree-like Q-resolution.
This was shown by Janota and Marques-Silva in 2013 (Section 3, [2]).
The converse direction is ruled out by the QPARITYn formula. Since
φn is hard for ∀Exp+Res, it follows that φn is hard for tree-like Q-
resolution as well.

In this note, we show

Theorem 1. Tree-like Q-resolution and level-ordered Q-resolution are in-
comparable.

If we consider sentences with only existential quantifiers, then aQ-resolution
proof is just a proof in general resolution. In fact, every resolution proof is
level-ordered, since all variables are at the same level. Results from classical
resolution thus imply that there are sentences (with only existential quanti-
fiers) where level-ordered Q-resolution is exponentially more powerful than
tree-like Q-resolution [9]. However this is not interesting since the power of
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Figure 1: Relationships among some QBF resolution systems

the Q-resolution system to deal with universal quantifiers is not used. An-
other refinement of general resolution proofs is ordered resolution, where the
variables are resolved in a specified order. This is known to be incomparable
with tree-like resolution [10] (see also [9, 11]). In the context of QBFs, level-
ordered is a weaker restriction (hence stronger system) than ordered, since
no order is imposed on variables in the same quantifier block. Theorem 1
compares this stronger system with tree-like Q-resolution. Theorem 1 is also
practically interesting because it underlines the fact that QBF solvers limit
themselves greatly by assigning variables in the prefix order.

To prove Theorem 1, we proceed as follows: Firstly, we observe that the
known polynomial size Q-resolution proof of φn ([6]; also in Section 6, [7];
item (1) above) is also in fact level-ordered. Therefore φn is in level-ordered
Q-resolution. Since φn is hard for tree-like Q-resolution (item (4) above),
we conclude that tree-like Q-resolution cannot p-simulate level-ordered Q-
resolution. Furthermore, we conclude that even ∀Exp+Res cannot p-simulate
level-ordered Q-resolution.
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Next, we show that the sentences CRn (item (2) above) have polyno-
mial size tree-like Q-resolution proofs. As CRn is hard for level-ordered
Q-resolution, we conclude that level-ordered Q-resolution cannot p-simulate
tree-like Q-resolution.

This completes the entire picture of relations among the above mentioned
proof systems.

2. Definitions

For formal definitions of prenex form QBFs and of the various proof
systems described above, the reader is referred to [7, 8]. Here we briefly
describe the tree-like Q-resolution system, and the sentence CRn.

Tree-like Q-resolution system: A proof in the Q-resolution system is a
derivation of the empty clause (denoted �) from the initial clauses or axioms
using the following rules: (1) resolve A∨x and B∨ x̄ to get A∨B, provided x
is existentially quantified and A∨B is not a tautology (this is the ‘Resolution’
rule), and (2) replace A∨ u by A provided u is universally quantified and all
existential variables in A are quantified before u (this is the ‘∀-Reduction’
rule). If the underlying graph is a tree (that is, no derived clause is used
more than once), then we have a tree-like Q-resolution proof.

Completion Principle and the sentence CRn ([7]) :
Consider two sets A = {a1, . . . , an} and B = {b1, . . . , bn}, and depict

their cross product A×B as in the table below.

a1 a1 . . . a1 a2 a2 . . . a2 . . . . . . an an . . . an
b1 b2 . . . bn b1 b2 . . . bn . . . . . . b1 b2 . . . bn

The following two-player game is played on the above table. In the first
round, player 1 deletes exactly one cell from each column. In the second
round, player 2 chooses one of the two rows. Player 2 wins if the chosen row
contains either the complete set A or the set B; otherwise player 1 wins. It
is well known that player 2 has a winning strategy: suppose, after player 1
plays, some ai is missing in the top row. Then the entire set B below the ai
chunk is present in the bottom row and so player 2 chooses the bottom row
to win. Otherwise, no ai is missing in the top row, so player 2 can win by
choosing the top row. This fact (that player 2 can always win) is called the
completion principle.
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Based on the completion principle, the false sentence CRn is formulated
to express the notion that player 1 has a winning strategy. For each column[
ai
bj

]
of the table (denote this the (i, j)th column), there is a boolean variable

xi,j. Let xi,j = 0 denote that player 1 ‘deletes bj’ (i.e, keeps ai) from the
(i, j)th column, and xi,j = 1 denotes that player 1 keeps bj in the (i, j)th

column. There is a variable z to denote the choice of player 2: z = 0 means
‘choose top row’. The Boolean variables ai, bj, for i, j ∈ [n] encode that for
the chosen values of all the xk,`, and the row chosen via z, at least one copy
of the element ai and bj respectively is kept. (eg. (xi,j ∧ z) ⇒ bj). Let x̃,
ã and b̃ stands for the vector of variables {x1,1, x1,2, . . . , xn,n}, {a1, . . . , an},
and {b1, . . . , bn} respectively. Now CRn can be framed as follows:

∃(x̃i,j) ∀z ∃ã∃b̃

(
(ã,b̃ consistent with x̃, z) ∧

∨
i

āi ∧
∨
j

b̄j

)

The inner formula can be expressed as the conjunction of the following
clauses:

For i, j ∈ [n], Ci,j : (xi,j ∨ z ∨ ai) (1)

For i, j ∈ [n], Di,j : (x̄i,j ∨ z̄ ∨ bj) (2)∨
i∈[n]

āi (3)

∨
i∈[n]

b̄i (4)

3. Tree-like Q-resolution proof for CRn

Observe that to begin we cannot apply the ∀-Reduction rule because the
only universal variable z has been blocked, in all clauses where it appears, by
existential variables from ã and b̃. We also cannot resolve any Ci,j and Di,j

on variable xi,j because the resolvent is a tautology, which is not allowed in
Q-resolution. We are thus forced to resolve on ã and b̃ variables initially.

We proceed as follows: We derive z̄, and then apply a ∀-Reduction to
derive �. To derive z̄, we first derive each of the clauses Wj = z̄ ∨ bj in a
distinct tree Tj. Then we can put together these trees with the clause from
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(4), and in n resolution steps, obtain z̄, as follows: let C1 denote the clause
(4). For ` ∈ [n], resolve C` and W` (on variable b`) to get C`+1. Note that
for ` > 1, C` has the form z̄ ∨

∨
k≥` b̄k. So Cn+1 is z̄ as desired.

Now we describe the trees Tj that derive Wj = z̄ ∨ bj. We first derive
the clause x1,j ∨ x2,j ∨ . . . ∨ xn,j ∨ z in a tree T ′j described later. Now the
∀-Reduction rule is applicable, since all the x̃ variables are quantified before
z. Thus we can obtain the clause Y1,j = x1,j ∨ x2,j ∨ . . . ∨ xn,j. Now for
` ∈ [n], resolve Y`,j with the clause D`,j from (2) (on variable x`,j ) to get
Y`+1,j. Note that for ` > 1, Y`,j has the form z̄ ∨ bj ∨

∨
k≥` xk,j. So Yn+1,j is

z̄ ∨ bj as desired.
It remains to describe tree T ′j deriving x1,j ∨ x2,j ∨ . . . ∨ xn,j ∨ z. This is

similar to the above step, using clause (3) which we shall denote Z1,j along
with the clauses C`,j from (1). For ` ∈ [n], resolve Z`,j and C`,j on variable
(a`) to get Z`+1,j. For ` > 1, Z`,j has the form z ∨

∨
k<` xk,j ∨

∨
k≥` āk. So

Zn+1,j is z ∨
∨

k∈[n] xk,j as desired.

Size of the Refutation: Each T ′j has n resolution steps. Each Tj has T ′j ,
one ∀-reduction, and then n more resolution steps. Once all Tj’s are con-
structed, we use another n resolutions steps followed by one last ∀-reduction.
Overall, there are n(2n + 1) resolution steps and n + 1 ∀-reductions. Thus
the total refutation size is O(n2).
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