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Abstract. We explore the restrictiveness of planarity on the complexity
of computing the determinant and the permanent, and show that both
problems remain as hard as in the general case, i.e. GapL and #P com-
plete. On the other hand, both bipartite planarity and bimodal planarity
bring the complexity of permanents down (but no further) to that of de-
terminants. The permanent or the determinant modulo 2 is complete for
⊕L, and we show that parity of paths in a layered grid graph (which is
bimodal planar) is also complete for this class. We also relate the com-
plexity of grid graph reachability to that of testing existence/uniqueness
of a perfect matching in a planar bipartite graph.

1 Introduction

For many natural problems on graphs, imposing planarity does not reduce the
complexity. For instance, vertex cover is NP-complete, and remains so even for
planar degree-3 restrictions; so does planar 3-dimensional matching [15]. The
circuit value problem is P-complete, and remains so even if the graph underlying
the circuit is restricted to be planar. In [19] and [27], the complexity of several
counting problems has been investigated under planar restrictions. More recently,
[32] establishes that counting vertex covers remains #P-complete even when
restricted to 3-regular planar bipartite graphs. Thus there is some evidence to
believe that planarity is not a real restriction at all.

However, there are notable exceptions. In the circuit setting, for instance,
monotone circuit value is P-complete, but monotone planar circuit value is in
NC [33, 14]. Constant-width circuits characterize NC1 [7], while planar constant-
width circuits characterize its subclass ACC0 [16]. In the graph-theoretic setting,
counting the number of perfect matchings in a bipartite graph is #P-hard [28],
while counting it in a planar bipartite graph (or even in a planar non-bipartite
graph) is in NC [30, 21]. Another very recent exception has to do with reacha-
bility. Given a directed graph G and two vertices s and t, determining whether
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there is a path from s to t is the canonical complete problem for nondetermin-
istic logspace NL. However, if the graph is planar, then a recent result from
[9], building on the techniques of [25, 4], shows that the presence, and even the
absence, of a path can be detected in unambiguous logspace UL. While UL is
known to coincide with NL in the non-uniform setting, and even in the uniform
setting under a plausible hardness condition [6], as of now they are not known to
coincide unconditionally. So the result of [9] is an instance of planarity reducing
the complexity of a problem.

Thus we see that the condition of planarity could be exploited in establishing
better upper bounds in some cases. Motivated by the need to better understand
how planarity can help, we examine the complexity of determinant, permanent,
and unique perfect matchings when restricted to planar instances. Recall that
both the determinant and the permanent of the adjacency matrix of a graph
G count the total weight of all cycle covers in G, with the one difference that
the determinant considers the signed weight. Computing the determinant (over
integers or rationals) is known to be GapL-complete [13, 26, 29, 31], while com-
puting the permanent is known to be #P-complete (see [28]; the 0-1 permanent
equals the number of perfect matchings in a related bipartite graph). However,
testing whether the 0-1 permanent is zero is in P and thus significantly easier
than #P, whereas testing whether the 0-1 determinant is zero is complete for
the exact-counting-in-logspace class C=L [3], and thus at least as hard for NL.
Interestingly, the permanent mod 2 equals the determinant mod 2 and is thus
easy to compute, in fact complete for the parity logspace class ⊕L. Another
complete problem for ⊕L is checking whether the number of s  t paths in a
directed acyclic graph is odd. Testing whether a bipartite graph has a perfect
matching, B-PM, is known to be hard for NL [11], while testing whether a bipar-
tite graph has a unique perfect matching, B-UPM, is known to be hard for NL

and in C=L∩NL⊕L [18].
We examine planar restrictions of these and related problems. Our main

results are summarized in Table 1. (The involved terms are explained in the
respective sections.)

This paper is organised as follows. Section 2 describes the notation needed
to describe the results of the paper. Sections 3 and 4 describe the hardness
and the membership results respectively concerning determinant and permanent.
Section 5 describes the hardness of ⊕LGGR for ⊕L, and Section 6 describes the
results concerning planar B-PM and B-UPM.

2 Notation and Preliminaries

L and P denote deterministic logspace and polynomial time computation, re-
spectively. We consider the nondeterministic classes NP and NL, their counting
counterparts #P and #L, and the closures of these under subtraction GapP and
GapL. We also consider (1) the exact counting in logspace class C=L; a language
L is in C=L if and only if some GapL function vanishes exactly on strings in
L, and (2) the parity logspace class ⊕L; L is in ⊕L if and only if some GapL



Problem General bound Restriction Our New Bound

Total signed weight of GapL-complete planar GapL-hard
cycle covers (Determinant
of adjacency matrix)

Total weight of cycle
covers (Permanent of
adjacency matrix)

#P-complete

planar #P-hard

planar bipartite GapL-complete

planar bimodal GapL-complete

Total weight of perfect #P-complete planar bipartite GapL-complete
matchings (Permanent of
bip-adjacency matrix)

Parity of #s t paths in ⊕L-complete planar, even ⊕L-hard
directed acyclic graph layered grid graph

Bipartite UPM NL-hard, planar in ⊕L, L-hard,

in C=L∩NL⊕L co-LGGR-hard,
equiv to GGUPM

Bipartite PM NL-hard planar L-hard, GGR-hard,
equiv to GGPM

Table 1. Main results

function takes odd values exactly on strings in L. It is known that NL ⊆ C=L

and that ⊕L⊕L = ⊕L. The canonical complete problem for NL is Reachability
in a directed acyclic graph. A complete problem for GapL is computing the de-
terminant of an integer matrix; hence testing singularity of a matrix is complete
for C=L. See for instance [1].

We consider planar graphs specified by planar combinatorial embeddings:
such an embedding specifies, for each vertex, the cyclic ordering of edges incident
on it in some plane drawing. Testing planarity and obtaining planar combinato-
rial embeddings can be done in L by the results of [5, 24]. A planar embedding
of a directed graph is bimodal if at every vertex, all the incoming edges ap-
pear contiguously in the cyclic ordering. Not every planar graph has a bimodal
embedding. See for instance [23].

A grid graph is a directed graph with vertices laid out on the plane at integer
coordinates, and edges going unit distance east-west or north-south only. A grid
graph is layered if all horizontal edges are in the same direction (say left-to-right,
or x-monotone), and so are all vertical edges (y-monotone).

We will frequently use the following observation:

Proposition 1. A bipartite graph can be drawn on the plane with straight-line
edges, and with no two crossings sharing the same coordinates. The combinatorial
embedding corresponding to such a drawing can be obtained in logspace.

(To draw Kn,n, place vertices of the first part on the x-axis, vertex ui at (0, i).
Place vertices of the second part on the x = 1 line suitably spaced apart; place
vertex vj at (1, n2j).)

For any directed graph H with a special source vertex s and sink vertex t,
define the split graph Split(H) as follows: (1) split every node v into two nodes,
vin and vout, (2) for every edge (u, v) in the original graph, draw an edge from



uout to vin, with the same weight, (3) draw the edges from vin to vout for each
v, with weight 1, and (4) delete sin and tout; rename sout and tin as s and
t. Note that Spilt(H) is always bipartite. Further, if H has a bimodal planar
embedding, then Split(H) is also bimodal planar, and the witnessing embedding
can be easily obtained from that of H . (If H is planar but not bimodal, then
Split(H) may not be planar at all.)

Corresponding to any n×n matrix M , we can associate two graphs: GM is a
directed graph on n vertices, with edge 〈i, j〉 having weight M(i, j), and HM is
an undirected bipartite graph on 2n vertices, with edge (i, n + j) having weight
M(i, j). M is said to be the adjacency matrix of GM and the bipartite adjacency
matrix of HM . A cycle cover in a graph is a collection of vertex disjoint cycles
spanning the graph. The determinant of a matrix M , Det(M), equals the total
signed weight of all cycle covers in GM , while its permanent, Perm(M), equals
the total unsigned weight of all cycle covers in GM . The sign of a cycle cover
is (−1)k, where k is the number of even length cycles in the cover. Perm(M)
also equals the total weight of all perfect matchings in HM . Here the weight of
a cycle cover or matching is the product of the weights of its constitutent edges.

3 Planarizing the Determinant and the Permanent:
retaining hardness

Computing the determinant (over integers) is known to be GapL-complete [13,
26, 29, 31]. We show that it remains hard if the matrix is restricted to be the
adjacency matrix of a planar graph. Weights in {0,1} suffice, and if the graph
is required to be bipartite then weights in {-1,0,1} suffice. Further, a natural
complete problem for GapL is DAG-WT-s t-PATHS: finding the total weight
of all s t paths in a weighted directed acyclic graph DAG. We show that this
problem remains GapL-hard even restricting the DAG to be planar, if we allow
negative weights.

We also investigate the complexity of the planar permanent. The permanent
itself is #P-complete, though the hardness is under Turing reductions. There are
two types of planar restrictions we can consider, and they have quite a different
flavour. We want to compute Perm(M) when either the graph GM or the graph
HM (see Section 2) is planar. If we require HM to be planar, then #P-hardness
is lost, because the total weight of perfect matchings in a planar (bipartite or
otherwise) graph can be done in GapL using the framework of Pfaffians; see [30,
21]. We show that this is in fact not just in GapL but also GapL-complete. Though
[21] shows that computing the Pfaffian is GapL-complete, the underlying graphs
are not planar. We show hardness without recourse to Pfaffians.

If we require that the graph GM is planar, then we are counting the total
weight of cycle covers in a planar graph. We show that this restriction continues
to be as hard as the original problem, i.e.#P-hard. On the other hand, if GM

is restricted to be bimodal planar, or simultaneously planar and bipartite, then
we show that computing Perm(M) is GapL-hard. This is the best lower bound



possible, since in the next section we also show that in these cases we can also
evaluate the permanent in GapL.

The results of this section can be summarized as follows:

Theorem 1. The following problems are hard for GapL via ≤log
m reductions.

1. DAG-WT-s  t-PATHS for planar graphs (total weight of all s  t paths
in a weighted directed acyclic graph DAG).

2. Det(M) for planar GM (total signed weight of cycle covers in planar graph).
3. Perm(M) for planar bipartite GM (total weight of cycle covers in GM ).
4. Perm(M) for planar bimodal GM (total weight of cycle covers in GM ).
5. Perm(M) for planar bipartite HM (total weight of perfect matchings in HM ).

Further, computing Perm(M) for planar GM (total weight of cycle covers in
planar graph) is hard for #P.

We now sketch the proofs for each of these claims.

GapL ≤log
m Planar-DAG-WT-s  t-PATHS: We start with the canonical

GapL-complete problem Directed Path Difference (see for instance [26, 22]). The
input is a directed graph G with special vertices s, t+ and t−, and the desired
output #(G, s, t+, t−) is the difference in the number of s  t+ paths and the
number of s  t− paths. Without loss of generality, we can assume that (1) G
is acyclic and layered (vertices appear in layers and all edges go from a layer to
the next layer), (2) s is on the first layer and t+ and t− on the last layer, and all
s  t+ or s  t− paths are of even length, (3) all edges having weight 1, and
(4) the number of vertices is odd.

We create a new vertex t and add edge 〈t+, t〉 with weight 1, and edge 〈t−, t〉
with weight −1, to get G1. All s t paths are of odd length. The hard function
is the total weight of all s t paths in G1.

Now we planarize G1 as follows: We draw G1 in the plane, with edge crossings
(as described in Proposition 1). We replace each crossing by the gadget shown
alongside to get a planar graph G2. Observe
that for any vertices a, b in G1, the weight of
each a b path as well as the parity of the
length of the path is preserved in G2. Since
G (and G1) was bipartite, so is G2. (Here bi-
partiteness is in the undirected sense: there
are no undirected odd cycles.) Also, the em- Fig. 1: Planarizing Gadget 1

bedding of G2 we have is upward planar; it is planar and all edges are monotonic
w.r.t. the x-coordinate 4. In particular, this implies that the embedding of G2

is bimodal. Without loss of generality, assume that G2 has an odd number N of
vertices.

We want to map paths in G2 to (signed) cycle covers in a related graph. Toda
[26] achieves this by subdividing every edge, adding self-loops everywhere except
at s and then adding edge 〈t, s〉. We adapt this proof in two different ways.

4 Using the techniques of Section 5, we can even ensure that G2 is a layered grid graph.



GapL ≤log
m PLANAR 0-1 DET: The method of [26] does not eliminate neg-

ative weights. To handle this, we selectively subdivide only those edges with
weight 1. Edges with weight −1 are not subdivided, but their weight is changed
to 1. We can then show that this graph, say G3, has the desired properties.

GapL≤log
m {-1,0,1} BIPARTITE PLANAR BIMODAL DET/PERM:

The above method loses bipartiteness not just because it adds self-loops, but
also because of asymmetric subdivisions for weight 1 or −1. Instead, we can
construct Split(G2) and add to it edges 〈vout, vin〉 for each v 6∈ {s, t}, and the
edge 〈t, s〉; all these edges have weight 1. Call this graph G4; we can now show
that it has the desired properties.

If A3, A4 are the adjacency matrices of G3, G4 respectively, then

Det(A4) = Perm(A4) = Det(A3) = #(G2, s, t) = #(G1, s, t) = #(G, s, t+, t−)

GapL- ≤log
m BIPARTITE PLANAR PERFECT MATCHINGS: Let G5

be the undirected graph underlying Split(G2); then G5 is planar bipartite, and
s  t paths in G2 are in 1-1 correspondence with perfect matchings in G5 of
the same weight. Thus the sum of the weights of the perfect matchings in G5 is
precisely #(G2, s, t). (See [11, 18] for details.)

PERM ≤log
m PLANAR PERM: We now show that computing Perm(M),

when GM is planar, is as hard as computing arbitrary permanents (i.e. #P-
hard). Recall that Perm(M) computes the total weight of all cycle covers in GM .
Let N be the n × n matrix whose permanent we wish to compute. Consider

the matrix A =

(

0n N
In 0n

)

where In and 0n denote the identity and the all-

zeros matrices of size n. Clearly Perm(A) = Perm(N). Consider a drawing of the
directed bipartite graph GA as described in Proposition 1.

As was done for the determinant, we replace each crossing with a planarity
gadget so as to preserve the total weights of cycle covers. The planarity gad-
get used is shown alongside. Cycle covers us-
ing exactly one of the two edges AB or CD
will now use the corresponding length 3 path
AXY B or CY XD. Cycle covers using nei-
ther of these edges will now use the 2-cycle

A C

BD

A C

BD

X Y

Fig. 2: Planarizing Gadget 2

XY . Cycle covers using both edges are essentially spliced; locally, we use instead
the paths AXD and BY C.

Applying this planarity gadget to all crossings, we obtain a planar graph
G6 with adjacency matrix M . Since Perm(M) = Perm(A) = Perm(N), we have
established the hardness of planar permanent.

Note that this planarity gadget preserves neither bipartiteness nor bimodal-
ity. This is not surprising, given the results of the next section.



4 Easy versions of Planar Permanent restrictions

We now show that certain planar restrictions of the permanent are significantly
easier than #P, in fact, they are computable in GapL. We establish the following.

Theorem 2. The following functions are computable in GapL.

1. Perm(M) for planar bipartite GM (total weight of cycle covers in GM ).

2. Perm(M) for planar bimodal GM (total weight of cycle covers in GM ).

3. Even-Odd Crossings Difference: The difference between the total weight of
cycle covers with even number of crossings and the total weight of cycle
covers with odd number of crossings, in a given plane drawing of a graph G.

The proof of the first two results exploits the fact that finding the total weight
of perfect matchings in planar graphs can be computed in GapL ([30, 21]).

Let GM = (V, E) be the given bipartite (directed) graph, with bipartition
X ∪̇ Y . Let E1 be those edges of E directed from X to Y , and E2 be the re-
maining edges, and let Gi = (V, Ei) for i = 1, 2 be planar bipartite undirected
graphs. Then, with an appropriate renumbering of vertices (that can be com-
puted in logspace since bipartite-testing is in L as a consequence of [24]), we have

M =

(

0n A1

A2 0n

)

where HA1
= G1 and HA2

= G2. (If GM were undirected, we

would have A1 = AT
2 .) Clearly, Perm(M) = Perm(A1)×Perm(A2). But Perm(Ai)

equals the total weight of perfect matchings in the planar graph Gi, this can be
computed in GapL.

If GM is planar bimodal, then Split(GM ) is planar bipartite bimodal, and the
cycle-covers in the two graphs are in bijection. So Perm(M) is the total weight
of cycle covers in Split(GM ); we have just shown that this is in GapL.

The third result is really an exploration into how far planarizing gadgets can
be pushed. If we can replace the crossings in a graph drawing by a gadget which
preserves the weighted sum of cycle covers and also preserves bipartiteness or
bimodality, then arbitrary pemanents would be expressible as planar bipartite
permanents, implying the unlikely collapse of #P to GapL. This suggests that
such gadgets are unlikely to exist.

However, we do have a bipartiteness-preserving gadget which reduces the
Even-Odd Crossings Difference problem to cycle covers in planar graphs: Given
a specific drawing of the graph, count the
difference between the number of cycle cov-
ers with even number of crossings and the
number of cycle covers with odd number of
crossings. The gadget shown alongside will
do the job. Now, if we start with a bipartite
graph, then the resulting graph will be bipar-
tite planar. So, for bipartite graphs, Even-

Fig. 3: Planarizing Gadget 3

Odd Crossings Difference can be computed in GapL.



5 Hardness of ⊕LGGR for ⊕L

Although the permanent is #P-hard, the permanent mod 2 equals the determi-
nant mod 2 and is thus complete for ⊕L. A canonical ⊕L-complete problem is
⊕PATH-DAG: counting the number of s t paths, mod 2, in a directed acyclic
graph (DAG). We show that this remains ⊕L hard (under ≤log

m -reductions) even
if the DAG is planar, further, even if it is a layered grid graph. ⊕LGGR, referred
to below, is layered grid graph reachability (LGGR) mod 2, that is, the problem
of counting the number of s t paths mod 2 in a layered grid graph.

Theorem 3. ⊕L ≤log
m ⊕LGGR

The result is significant because for the decision version (reachability in a
DAG), the general case is NL-complete while its restriction to planar graphs is
known to be in UL ∩ co-UL [9]. (Planar Directed Reachability PDR is known
to be L-hard, and equivalent to reachability in grid graphs GGR [4], but its
exact complexity is still unknown. Reachability in layered grid graphs LGGR is
not even known to be L-hard. The complexity of various versions of grid graph
reachability is investigated in [2].)

The following chain of reductions establishes the result.
⊕PATH-DAG ≤log

m ⊕PATH-PLANAR-DAG ≤log
m ⊕PATH-x-MON-GG ≤log

m

⊕PATH-LGG = ⊕LGGR

The first reduction considers a layered DAG (without loss of generality),
draws it according to Proposition 1, and then uses the planarizing gadget of
Figure 1, except that all edges have weight 1. This preserves the parity of the
number of paths. From here, going to ⊕LGGR is achieved by using the grid-
graph-embedding technique of [8, 10].

6 (Unique) Perfect Matchings in Planar Bipartite Graphs

We now investigate the complexity of checking existence and uniqueness of a
perfect matching in a bipartite graph, B-PM and B-UPM, respectively when
restricted to planar instances. Both B-PM and B-UPM are known to be NL-hard
([11, 18]), but B-UPM is believed to be easier since unlike B-PM, it is known

to be in NC (in both C=L and NL⊕L [18]). We provide two further pieces of
evidence that B-UPM may be easier by considering the planar restrictions of
these problems, Pl-B-PM and Pl-B-UPM. Firstly, we show that while both are L-
hard, Pl-B-PM is hard for Planar Directed Reachability PDR, whereas Pl-B-UPM

is hard only for co-Layered Grid Graph Reachability co-LGGR. (It is known that
PDR is equivalent to co-PDR and to its restriction Grid Graph Reachability
GGR, [4]). The hardness of Pl-B-PM for PDR can be viewed as a planarization of
the result “Reachability reduces to B-PM”. We do not know how to planarize the
result “co-Reachability reduces to bipartite-UPM” from [18]. Secondly, we obtain
an upper bound of ⊕L for Pl-B-UPM. This can be viewed as a planarization of the

result “B-UPM is in Reach⊕L” from [18]: our algorithm is a GGR
⊕L algorithm,

and since Section 5 shows that ⊕LGGR is hard for ⊕L, it is in fact in GGR⊕LGGR.



We note, however, that the complexity of LGGR (and co-LGGR) is an inter-
esting question in its own right. It is not known whether it is in L, or L- hard,
or reducible to its complement co-LGGR. However, its best known upper bound
is the same as that for PDR, namely UL ∩ co-UL.

Also, analogous to the equivalence of PDR and GGR, we show that Pl-B-PM

and Pl-B-UPM are equivalent to searching for or testing uniqueness of perfect
matchings in grid graphs GGPM and GGUPM respectively.

We also consider the related problem of testing uniqueness of a minimum-
weight perfect matching. In a bipartite graph with unary weights, this is known

to be hard for NL and in LC=L and NL⊕L [18]. No better upper bound is known
for the planar restriction, though the lower bound is also not known to hold. We
show that GGR reduces to this planar restriction.

The results in this section can be summarized as follows. (See Figure 4. The
pairs of dotted and dashed arrows show the planarizing results.)

Theorem 4. 1. (L ∪ co-LGGR) ≤proj Pl-B-UPM ≡proj GGUPM ∈ ⊕L

2. (L ∪ GGR) ≤proj Pl-B-PM ≡proj GGPM

3. Testing uniqueness of a min-weight perfect matching in a planar bipartite
graph with unary weights is hard for GGR.

Reach⊕L = NL⊕L C=L B-PM

B-UPM
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Fig. 4. Pl-B-UPM and Pl-B-PM and their relationships with other classes



L≤proj Pl-B-UPM; L≤proj Pl-B-PM: We start with the logspace-complete prob-
lem of determining whether there is an s  t path in a directed forest G [12].
Given an instance (G, s, t), first construct its split graph G′. Then define H1 to
be the undirected version of G′ and H2 to be H1 ∪{(s, t)}. Since G was a forest,
H1 and H2 are clearly planar bipartite. Also their construction involves simple
projections; it is FO-uniform.

Now, as in [11, 18], for every s  t path in G, the alternate edges of the
corresponding path in H , along with edges of the form (vin, vout) for vertices
v not on the path, form a perfect matching in H1 and H2. H1 has no other
matching, H2 has one more which is the added (s, t) edge along with all the
edges of the form (vin, vout). Thus H1 ∈ Pl-B-PM if and only if H2 ∈ Pl-B-UPM

if and only if (G, s, t) is not in Forest-Reachability.

co-LGGR≤proj Pl-B-UPM; GGR≤proj Pl-B-PM: This follows from carefully
analysing the requirements in the above reduction, and some pre-processing.

Unique minimum weight Pl-B-UPM is hard for GGR: For the purpose of
this section alone, the weight of a matching is the sum of its constituent edges.

Let (G, s, t) be the GGR instance; as discussed above, we can assume that
G is bimodal and has s and t on the external face. We now assign weights to
the edges of G according to the weighting scheme of [9] to get graph G′; this
weighting scheme has the property that s G t ⇐⇒ s G′ t ⇐⇒ the minimum
weight s G′ t path is unique. Now construct H = Split(G′), copying the weight
of an edge (u, v) in G′ to the edge (uout, vin) of H and assigning weight zero
toall the edges of the form (vin, vout). H is a planar bipartite graph and can be
obtained via simple projections.

If (G, s, t) /∈ GGR, then it is easy to see that H has no perfect matching.
If (G, s, t) ∈ GGR, then the unique minimum-weight path ρ : s  G′ can

be extended to a perfect matching in H Mρ = {(uout, vin) | 〈u, v〉 ∈ ρG′} ∪
{(vin, vout)|v ∈ G′and v /∈ ρ} of the same weight. Since all (vin, vout) edges in H
have weight 0, it is easy to see that this matching is the unique minimum-weight
matching in H .

Pl-B-UPM≤log
m GGUPM; Pl-B-PM≤log

m GGPM: Both these results hold because
there is a parsimonious (in the number of perfect matchings) reduction from
planar bipartite graphs to grid graphs. This reduction is obtained by a slight
modification of the grid graph embedding technique of [4], applied on an equiv-
alent graph with maximum degree 3; the equivalent graph can also be obtained
in logspace ([20]).

Pl-B-UPM is in ⊕L: In [18], an NL⊕L algorithm for B-UPM is described. Given a

bipartite graph G, it proceeds in two stages. In the first stage, an L⊕L procedure
either constructs some perfect matching M , or detects that G is not in B-UPM.



In the second stage, an NL procedure, with oracle access to M , verifies that M
is indeed unique.

We show that for planar bipartite G, the second stage can be performed in

LPDR. Since PDR is known to be in UL∩co-UL[9] which is contained in ⊕L, and

since ⊕L⊕L = L⊕L = ⊕L ([17]), it then follows that Pl-B-UPM is in ⊕L.

The key idea in obtaining the LPDR bound is the following: As described in
[18], a given perfect matching M is unique in a bipartite graph G if and only if
G has no alternating (with respect to M) cycles. We can consider an auxiliary
graph H where an alternating path of length 2 in G, beginning with an M -edge,
becomes a directed edge in H ; then M is unique in G if H has no cycles. We

show that H is planar. This implies that detecting cycles in H is in LPDR.
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