Matchings in Graphs

Lecturer: Meena Mahajan Scribe: Rajesh Chitnis Meeting: 1 6th January 2010

Most of the material in this lecture is taken from the book "Fast Parallel Algorithms for Graph Matching Problems" by Karpinski-Rytter

We will only be considering simple undirected finite graphs unless stated otherwise. Graphs will be denoted as G = (V, E)

1 Some preliminary definitions

Definition 1 Let G = (V, E) be a graph. $M \subseteq E$ is called as a **matching** of G if $\forall v \in V$ we have $| \{e \in M : v \text{ is incident on } e \in E\} | \leq 1$.

Definition 2 A matching M of G is said to be **maximal** if $\forall e \in E \setminus M$ the set of edges given by $M \cup \{e\}$ is not a matching of G

Definition 3 The size of a matching M of G is the number of the edges it contains and is denoted by |M|.

Definition 4 A matching M of G is said to be **maximum** if \forall matching M' of G we have $|M| \geq |M'|$. A maximum matching is always maximal but not vice-versa.

Definition 5 Let M be matching of G. A vertex $v \in V$ is said to be **M**-saturated if M contains an edge incident on v. Otherwise v is said to be **M**-unsaturated

Definition 6 A matching M of G is said to be **perfect** if all vertices of G are M-saturated. A graph with an odd number of vertices can never admit a perfect matching.

Definition 7 A matching M of G is said to be **near-perfect** if exactly one vertex of G is M-unsaturated. A graph with an even number of vertices can never admit a near-perfect matching.

Definition 8 Let $A \subseteq V$. A matching M of G is said to be **A-perfect** if each vertex in A is M-saturated. A perfect matching is a V-perfect matching.

2 Some Remarks

Remark 9 We will later look at weighted graphs i.e graphs with a weight function $w : E \to \mathbb{R}^+ \cup \{0\}$. There we will be interested in finding matchings of maximum weight where the weight of a matching is the sum of weights of edges which are in the matching.

Remark 10 We will consider three types of problems

- Decision Does G have a matching of size $\geq k$?
- Search Find a matching in G of size $\geq k$
- Counting How many matchings of G have size $\geq k$

3 Augmenting Paths

Definition 11 A path P in G is said to be *M*-alternating if the edges of P alternate wrt membership in M.

Definition 12 A path P in G is said to be **M**-augmenting if P is a maximal M-alternating path starting and ending at vertices which are M-unsaturated. Clearly, every M-augmenting path must have odd length.

Lemma 13 Let G be a graph whose maximum degree is atmost 2. Then every component of G is either an isolated point, a path or a cycle.

Proof: Consider any non-isolated vertex v of G. Its atmost two neighbours further have degree atmost 2 and so on. So the component of G containing v is either a path or a cycle. This holds true for all non-isolated vertices of G and hence we are done.

Lemma 14 (Berge 1957) A matching M is maximum iff G has no M-augmenting path.

Proof: Suppose M is maximum and there exists a M-augmenting path P. Consider the symmetric difference $M \oplus P$ (edges which are present in exactly one of M or P). Since P is an M-augmenting path, $M \oplus P$ is also a matching of G and $|M \oplus P| = |M| + 1$.

Suppose G has no M-augmenting path and M is not maximum. Let M' be a maximum matching and so we have |M'| > |M|. Consider $M \oplus M'$. Each vertex has degree atmost 2 in $M \oplus M'$ as each of M and M' can contribute atmost 1 each to degree of each vertex in $M \oplus M'$. By Lemma 13, $M \oplus M'$ consists of cycles and paths and isolated vertices. But edges of $M \oplus M'$ are alternate in belonging exclusively to M and M'. Hence each cycle must be even. So M' can score over M in size only from the paths. So, there exists atleast one path in $M \oplus M'$ which has more number of edges from M' than from M. But such a path is M-augmenting which gives a contradiction.

Corollary 15 (Hopcroft-Karp) Let M^* be a matching of G. Then for any matching M of G such that $|M^*| \ge |M|$, we have $|M^*| - |M|$ vertex-disjoint M-augmenting paths

Proof: Refer to proof of Lemma 14. Every cycle of $M \oplus M^*$ is even and every path of $M \oplus M^*$ which is not *M*-augmenting must have equal number of edges from *M* and M^* as M^* is maximum. Also note that each *M*-augmenting path has exactly one edge more from M^* than from *M*. So we need $|M^*| - |M|$ such paths which are all vertex-disjoint as we defined (see Definition 12) augmenting paths as **maximal** paths starting and ending at unsaturated points.

Corollary 16 Let M^* be a maximum matching and M be any matching. If M is not maximum, then the shortest M-augmenting path has length $\leq \frac{|V|}{|M^*|-|M|} - 1$

Proof: From Corollary 15 we know that there are $|M^*| - |M|$ vertex(and hence edge)-disjoint M-augmenting paths. By Pigeonhole Principle, one of the paths must have atmost $\frac{|V|}{|M^*| - |M|}$ vertices and thus has length atmost $\leq \frac{|V|}{|M^*| - |M|} - 1$

4 Algorithm for finding maximum matching using augmenting paths

Consider the following algorithm whose correctness follows immediately from Lemma 14

- 1. $M = \emptyset$
- 2. while there is an *M*-augmenting path *P* do $M \leftarrow M \oplus P$
- 3. return M

5 An $O(n^3)$ algorithm for finding maximum matching in bipartite graphs

Let $G = (A \cup B, E)$ be a bipartite graph and let M be a matching of G. We want to find a maximum matching of G. Denote by A_0, B_0 the sets of M-unsaturated vertices in A, Brespectively. We consider a new directed graph H on the vertex set $A \cup B$ and edge set E. Edges which are in M are directed $A \to B$ and edges not in M are directed $B \to A$.

Claim 17 G has a M-augmenting path iff H has a path from B_0 to A_0 .

Proof: Suppose G has a M-augmenting path say from $u \in A_0$ to $v \in B_0$. The same path directed from v to u is clearly a path in H from B_0 to A_0 .

Suppose *H* has a path from $b \in B_0$ to $a \in A_0$. The underlying undirected path from *a* to *b* is clearly a *M*-augmenting path.

So we do DFS from B_0 and stop as soon as we reach some vertex in A_0 thus giving us a *M*-augmenting path *P*. Augment the *M*-augmenting path and repeat same process wrt new matching $M \oplus P$. If we ever do not reach any vertex of A_0 , then we can conclude from Claim 17 that *G* has no *M*-augmenting path i.e. *M* is maximum.

Let us now analyse the time complexity of our algorithm. Denote |V| = n and |E| = m.

- 1. Given an augmenting path we can augment it easily in O(m) time.
- 2. Assume $|B| \leq |A|$ as otherwise we could have just swapped roles of A and B in our algorithm. Thus $|B_0| \leq |B| \leq \frac{n}{2}$. Also at each stage of our algorithm by augmenting, we saturate a previously-unsaturated vertex from B without doing anything to the vertices which are already saturated. So we need at most $|B_0| \leq \frac{n}{2}$ stages.
- 3. At each stage the maximum number of times we need to do DFS is $|B_0|$ as in the worst-case only the last vertex from B_0 we apply DFS to may lead to a path in A_0 . Recollect that a single DFS can be done in O(n+m) time.

Thus the Total Time taken by algorithm is $\leq \frac{n}{2} \Big[O(m) + |B_0| * O(n+m) \Big]$. However now we use a trick to shave off the $|B_0|$ factor. Add a super-vertex β and draw edges directed from β to every point in B_0 . Thus we need to apply DFS only once viz. for vertex β . Thus the time complexity becomes $O\Big(\frac{n}{2}[m+(n+m)]\Big) = O\Big(n^2+nm\Big)$. Since a bipartite graph on n vertices can contain atmost $(\frac{n^2}{4})$ edges the time complexity of our algorithm is $O(n^3)$

6 Hopcroft-Karp Algorithm for finding a maximum matching in bipartite graphs in $O(n^{2.5})$ time

In the algorithm given in the previous section we looked for a single augmenting path at a time and augmented it. Instead we will now find a maximal family of vertex-disjoint shortest-length augmenting paths and augment all of them together in a single step. This improvement will help us to bring the time complexity down to $O(n^{2.5})$.

Consider the following algorithm

1.
$$M = \emptyset$$

- 2. while there is an *M*-augmenting path, find a maximal family \mathcal{F} of vertex-disjoint shortest *M*-augmenting paths do $M \leftarrow M \oplus \mathcal{F}$
- 3. return M

The correctness of the algorithm follows from Lemma 14

Lemma 18 Let M be a matching of G and let P be a M-augmenting path of shortest length. Let P' be a $(M \oplus P)$ -augmenting path. Then $|P'| \ge |P| + |P \cap P'|$

Proof: Consider $N = (M \oplus P) \oplus P'$. Then N is clearly a matching and |N| = |M| + 2. Thus by Corollary 15 $M \oplus N$ contains 2 vertex-disjoint M-augmenting paths say P_1 and P_2 . Note that $M \oplus N = P \oplus P'$ and thus we have $|P \oplus P'| \ge |P_1| + |P_2|$. But P_1, P_2 are both M-augmenting paths and P is shortest M-augmenting path. Therefore $|P \oplus P'| \ge 2|P|$. However $|P \oplus P'| = |P| + |P'| - |P \cap P'|$ and so the desired inequality follows.

Lemma 19 Let $M_0 = \emptyset$ and M_1 be a matching of G. Consider the sequence $M_0, M_1, M_2, M_3, ...$ where P_i is shortest M_i -augmenting path and $M_{i+1} = M_i \oplus P_i \quad \forall i$. Then $|P_i| \leq |P_j|$ for i < jand $|P_i| = |P_j|$ implies P_i and P_j are vertex-disjoint.

Proof: Suppose that $|P_i| = |P_j|$ for some i < j and P_i and P_j are not vertex-disjoint. Then there exist some k, l such that $i \le k < l \le j$ and P_k and P_l are not vertex-disjoint and further for all m between l and k we have P_m is vertex-disjoint from both P_k and P_l . Therefore P_l is a (M_{k+1}) -augmenting path and so by Lemma 18 we have $|P_l| \ge |P_k| + |P_l \cap P_k|$. However we are given that $|P_l| = |P_k|$ which implies that $|P_l \cap P_k| = 0$ i.e. P_l and P_k have no edges in common. However since P_l and P_k are not vertex-disjoint, they have a common vertex say xand then they must have in common the edge from $M_k \oplus P_k$ which is incident on x leading to a contradiction.

Lemma 20 Let \mathcal{F} be maximal (wrt inclusion) family of vertex-disjoint shortest M-augmenting paths. Let their common length be l_1 . Let l_2 be length of shortest $(M \oplus \mathcal{F})$ -augmenting path. Then $l_2 \geq l_1 + 2$

Proof: Let $\mathcal{F} = \{P_1, P_2, .., P_r\}$. Let P' be a shortest $(M \oplus \mathcal{F})$ -augmenting path. Note that $M \oplus \mathcal{F} = (..(M \oplus P_1) \oplus P_2)..) \oplus P_r$. Suppose P' is disjoint from each element of \mathcal{F} . Then P' is also a M-augmenting path and thus $l_2 \ge l_1$. If we however have $l_1 = l_2$ then we could have added P' to \mathcal{F} thus contradicting its maximality. So, let us assume P' has a vertex in common with atleast one path in \mathcal{F} . By Lemma 19 we have $l_2 > l_1$. Finally note that l_1, l_2 are both lengths of augmenting paths and hence must both be odd.

Let us look at the graph H considered at beginning of Section 5. Let $|A \cup B| = n$ and |E| = m. Note that Claim 17 holds.

Lemma 21 The algorithm described at start of Section 6 makes at most $2\sqrt{n}$ iterations

Proof: Let M^* be a maximum matching and let M be matching after \sqrt{n} iterations. By Lemma 20 length of shortest augmenting path $\geq (2\sqrt{n}-1) \geq \sqrt{n}$. By Corollary 16 we have $\sqrt{n} \leq (\text{length of shortest } M\text{-augmenting path}) \leq \frac{n}{|M^*| - |M|}$ and so $|M^*| - |M| \leq \sqrt{n}$. From this point onwards even if we augment just one path in each iteration we can finish in $2\sqrt{n}$ iterations as each augmentation increases size of matching by 1.

Lemma 22 Each iteration of the algorithm can be implemented in O(m) time.

Proof: First we will use BFS to find the length k of shortest path from B_0 to A_0 and to produce the sequence of disjoint layers $B_0 = L_0, L_1, L_2, ..., L_k \subseteq A_0$ where for all $0 \le i < k$ the set of vertices at distance i from B_0 and L_k is the subset of A_0 which is at distance k from B_0 . Add a super-vertex β and draw edges from it to all vertices of B_0 . Start a BFSfrom β to get distance of β from A_0 . Subtract one to get length of shortest path from B_0 to A_0 . This takes O(m) time.

Now consider a modified DFS which starts at a vertex $v \in B_0$ and stops as soon as it reaches a vertex say w in L_k and outputs this $v \to w$ path. Add this M-augmenting path to \mathcal{F} and delete all vertices visited in the modified DFS. (Let x be a vertex seen at some L_j in DFSstarted from $v \in B_0$. If x is not on a M-augmenting path of length k starting at v then xcannot be on any M-augmenting path of length k and so we can delete all vertices visited in modified DFS which began at v). Redo the whole procedure now starting at another vertex in B_0 . This clearly gives us a maximal family of vertex-disjoint shortest-length augmenting paths. Let m_i be the number of edges visited in the $i^{th}DFS$ which takes $O(m_i)$ time. Noting that $m \geq \sum_i m_i$ the time taken is O(m)

Theorem 23 The algorithm runs in $O(n^{2.5})$ time.

Proof: From Lemma 22 we know that each phase can be implemented in O(m) time. Also from Lemma 21 we know that there are atmost $2\sqrt{n}$ iterations. Thus time taken by our algorithm is $O(\sqrt{n}) * O(m) = O(n^{2.5})$