Most of the material in this lecture is taken from the book “Fast Parallel Algorithms for Graph Matching Problems” by Karpinski-Rytter.

We will only be considering simple undirected finite graphs unless stated otherwise. Graphs will be denoted as $G = (V, E)$.

1 Some preliminary definitions

Definition 1 Let $G = (V, E)$ be a graph. $M \subseteq E$ is called as a **matching** of G if $\forall \ v \in V$ we have $|\{e \in M : v \text{ is incident on } e \in E\}| \leq 1$.

Definition 2 A matching M of G is said to be **maximal** if $\forall \ e \in E \setminus M$ the set of edges given by $M \cup \{e\}$ is not a matching of G.

Definition 3 The **size** of a matching M of G is the number of the edges it contains and is denoted by $|M|$.

Definition 4 A matching M of G is said to be **maximum** if \forall matching M' of G we have $|M| \geq |M'|$. A maximum matching is always maximal but not vice-versa.

Definition 5 Let M be matching of G. A vertex $v \in V$ is said to be **M-saturated** if M contains an edge incident on v. Otherwise v is said to be **M-unsaturated**.

Definition 6 A matching M of G is said to be **perfect** if all vertices of G are M-saturated. A graph with an odd number of vertices can never admit a perfect matching.

Definition 7 A matching M of G is said to be **near-perfect** if exactly one vertex of G is M-unsaturated. A graph with an even number of vertices can never admit a near-perfect matching.

Definition 8 Let $A \subseteq V$. A matching M of G is said to be **A-perfect** if each vertex in A is M-saturated. A perfect matching is a V–perfect matching.
2 Some Remarks

Remark 9 We will later look at weighted graphs i.e graphs with a weight function \(w : E \rightarrow \mathbb{R}^+ \cup \{0\} \). There we will be interested in finding matchings of maximum weight where the weight of a matching is the sum of weights of edges which are in the matching.

Remark 10 We will consider three types of problems

- **Decision** - Does \(G \) have a matching of size \(\geq k \) ?
- **Search** - Find a matching in \(G \) of size \(\geq k \)
- **Counting** - How many matchings of \(G \) have size \(\geq k \)

3 Augmenting Paths

Definition 11 A path \(P \) in \(G \) is said to be **M-alternating** if the edges of \(P \) alternate wrt membership in \(M \).

Definition 12 A path \(P \) in \(G \) is said to be **M-augmenting** if \(P \) is a maximal \(M \)-alternating path starting and ending at vertices which are \(M \)-unsaturated. Clearly, every \(M \)-augmenting path must have odd length.

Lemma 13 Let \(G \) be a graph whose maximum degree is atmost 2. Then every component of \(G \) is either an isolated point, a path or a cycle.

Proof: Consider any non-isolated vertex \(v \) of \(G \). Its atmost two neighbours further have degree atmost 2 and so on. So the component of \(G \) containing \(v \) is either a path or a cycle. This holds true for all non-isolated vertices of \(G \) and hence we are done. ■

Lemma 14 (Berge 1957) A matching \(M \) is maximum iff \(G \) has no \(M \)-augmenting path.

Proof: Suppose \(M \) is maximum and there exists a \(M \)-augmenting path \(P \). Consider the symmetric difference \(M \oplus P \) (edges which are present in exactly one of \(M \) or \(P \)). Since \(P \) is an \(M \)-augmenting path, \(M \oplus P \) is also a matching of \(G \) and \(|M \oplus P| = |M| + 1 \).

Suppose \(G \) has no \(M \)-augmenting path and \(M \) is not maximum. Let \(M' \) be a maximum matching and so we have \(|M'| > |M| \). Consider \(M \oplus M' \). Each vertex has degree atmost 2 in \(M \oplus M' \) as each of \(M \) and \(M' \) can contribute atmost 1 each to degree of each vertex in \(M \oplus M' \). By Lemma 13, \(M \oplus M' \) consists of cycles and paths and isolated vertices. But edges of \(M \oplus M' \) are alternate in belonging exclusively to \(M \) and \(M' \). Hence each cycle must be even. So \(M' \) can score over \(M \) in size only from the paths. So, there exists atleast one path in \(M \oplus M' \) which has more number of edges from \(M' \) than from \(M \). But such a path is \(M \)-augmenting which gives a contradiction. ■
Corollary 15 (Hopcroft-Karp) Let M^* be a matching of G. Then for any matching M of G such that $|M^*| \geq |M|$, we have $|M^*| - |M|$ vertex-disjoint M-augmenting paths.

Proof: Refer to proof of Lemma 14. Every cycle of $M \oplus M^*$ is even and every path of $M \oplus M^*$ which is not M-augmenting must have equal number of edges from M and M^* as M^* is maximum. Also note that each M-augmenting path has exactly one edge more from M^* than from M. So we need $|M^*| - |M|$ such paths which are all vertex-disjoint as we defined (see Definition 12) augmenting paths as maximal paths starting and ending at unsaturated points.

Corollary 16 Let M^* be a maximum matching and M be any matching. If M is not maximum, then the shortest M-augmenting path has length $\leq \frac{|V|}{|M^*| - |M|} - 1$

Proof: From Corollary 15 we know that there are $|M^*| - |M|$ vertex (and hence edge)-disjoint M-augmenting paths. By Pigeonhole Principle, one of the paths must have at most $\frac{|V|}{|M^*| - |M|}$ vertices and thus has length at most $\leq \frac{|V|}{|M^*| - |M|} - 1$.

4 Algorithm for finding maximum matching using augmenting paths

Consider the following algorithm whose correctness follows immediately from Lemma 14

1. $M = \emptyset$
2. while there is an M-augmenting path P
 do $M \leftarrow M \oplus P$
3. return M

5 An $O(n^3)$ algorithm for finding maximum matching in bipartite graphs

Let $G = (A \cup B, E)$ be a bipartite graph and let M be a matching of G. We want to find a maximum matching of G. Denote by A_0, B_0 the sets of M-unsaturated vertices in A, B respectively. We consider a new directed graph H on the vertex set $A \cup B$ and edge set E. Edges which are in M are directed $A \rightarrow B$ and edges not in M are directed $B \rightarrow A$.

Claim 17 G has a M-augmenting path iff H has a path from B_0 to A_0.

1-3
Proof: Suppose \(G \) has a \(M \)-augmenting path say from \(u \in A_0 \) to \(v \in B_0 \). The same path directed from \(v \) to \(u \) is clearly a path in \(H \) from \(B_0 \) to \(A_0 \).

Suppose \(H \) has a path from \(b \in B_0 \) to \(a \in A_0 \). The underlying undirected path from \(a \) to \(b \) is clearly a \(M \)-augmenting path.

So we do \(DFS \) from \(B_0 \) and stop as soon as we reach some vertex in \(A_0 \) thus giving us a \(M \)-augmenting path \(P \). Augment the \(M \)-augmenting path and repeat same process wrt new matching \(M \oplus P \). If we ever do not reach any vertex of \(A_0 \), then we can conclude from Claim 17 that \(G \) has no \(M \)-augmenting path i.e. \(M \) is maximum.

Let us now analyse the time complexity of our algorithm. Denote \(|V| = n \) and \(|E| = m \).

1. Given an augmenting path we can augment it easily in \(O(m) \) time.

2. Assume \(|B| \leq |A| \) as otherwise we could have just swapped roles of \(A \) and \(B \) in our algorithm. Thus \(|B_0| \leq |B| \leq \frac{n}{2} \). Also at each stage of our algorithm by augmenting, we saturate a previously-unsaturated vertex from \(B \) without doing anything to the vertices which are already saturated. So we need atmost \(|B_0| \leq \frac{n}{2} \) stages.

3. At each stage the maximum number of times we need to do \(DFS \) is \(|B_0| \) as in the worst-case only the last vertex from \(B_0 \) we apply \(DFS \) to may lead to a path in \(A_0 \). Recollect that a single \(DFS \) can be done in \(O(n + m) \) time.

Thus the Total Time taken by algorithm is \(\leq \frac{n}{2} \left[O(m) + |B_0| \times O(n + m) \right] \). However now we use a trick to shave off the \(|B_0| \) factor. Add a super-vertex \(\beta \) and draw edges directed from \(\beta \) to every point in \(B_0 \). Thus we need to apply \(DFS \) only once viz. for vertex \(\beta \). Thus the time complexity becomes \(O\left(\frac{n}{2}[m + (n + m)]\right) = O\left(n^2 + nm\right) \). Since a bipartite graph on \(n \) vertices can contain atmost \(\left(\frac{n^2}{4}\right) \) edges the time complexity of our algorithm is \(O(n^3) \).

6 Hopcroft-Karp Algorithm for finding a maximum matching in bipartite graphs in \(O(n^{2.5}) \) time

In the algorithm given in the previous section we looked for a single augmenting path at a time and augmented it. Instead we will now find a maximal family of vertex-disjoint shortest-length augmenting paths and augment all of them together in a single step. This improvement will help us to bring the time complexity down to \(O(n^{2.5}) \).

Consider the following algorithm

1. \(M = \emptyset \)
2. while there is an M-augmenting path, find a maximal family \mathcal{F} of vertex-disjoint shortest M-augmenting paths

 do $M \leftarrow M \oplus \mathcal{F}$

3. return M

The correctness of the algorithm follows from Lemma 14

Lemma 18 Let M be a matching of G and let P be a M-augmenting path of shortest length. Let P' be a $(M \oplus P)$-augmenting path. Then $|P'| \geq |P| + |P \cap P'|$

Proof: Consider $N = (M \oplus P) \oplus P'$. Then N is clearly a matching and $|N| = |M| + 2$. Thus by Corollary 15 $M \oplus N$ contains 2 vertex-disjoint M-augmenting paths say P_1 and P_2. Note that $M \oplus N = P \oplus P'$ and thus we have $|P \oplus P'| \geq |P_1| + |P_2|$. But P_1, P_2 are both M-augmenting paths and P is shortest M-augmenting path. Therefore $|P \oplus P'| \geq 2|P|$. However $|P \oplus P'| = |P| + |P'| - |P \cap P'|$ and so the desired inequality follows.

Lemma 19 Let $M_0 = \emptyset$ and M_1 be a matching of G. Consider the sequence $M_0, M_1, M_2, M_3, ...$ where P_i is shortest M_i-augmenting path and $M_{i+1} = M_i \oplus P_i \forall i$. Then $|P_i| \leq |P_j|$ for $i < j$ and $|P_i| = |P_j|$ implies P_i and P_j are vertex-disjoint.

Proof: Suppose that $|P_i| = |P_j|$ for some $i < j$ and P_i and P_j are not vertex-disjoint. Then there exist some k, l such that $i \leq k < l \leq j$ and P_k and P_l are not vertex-disjoint and further for all m between l and k we have P_m is vertex-disjoint from both P_k and P_l. Therefore P_l is a $(M_k \oplus P_k)$-augmenting path and so by Lemma 18 we have $|P_l| \geq |P_k| + |P_l \cap P_k|$. However we are given that $|P_l| = |P_k|$ which implies that $|P_l \cap P_k| = 0$ i.e. P_l and P_k have no edges in common. However since P_l and P_k are not vertex-disjoint, they have a common vertex say x and then they must have in common the edge from $M_k \oplus P_k$ which is incident on x leading to a contradiction.

Lemma 20 Let \mathcal{F} be maximal (wrt inclusion) family of vertex-disjoint shortest M-augmenting paths. Let their common length be l_1. Let l_2 be length of shortest $(M \oplus \mathcal{F})$-augmenting path. Then $l_2 \geq l_1 + 2$

Proof: Let $\mathcal{F} = \{P_1, P_2, ..., P_r\}$. Let P' be a shortest $(M \oplus \mathcal{F})$-augmenting path. Note that $M \oplus \mathcal{F} = (...) (M \oplus P_1) \oplus P_2) (...) \oplus P_r$. Suppose P' is disjoint from each element of \mathcal{F}. Then P' is also a M-augmenting path and thus $l_2 \geq l_1$. If we however have $l_1 = l_2$ then we could have added P' to \mathcal{F} thus contradicting its maximality. So, let us assume P' has a vertex in common with atleast one path in \mathcal{F}. By Lemma 19 we have $l_2 > l_1$. Finally note that l_1, l_2 are both lengths of augmenting paths and hence must both be odd.
Let us look at the graph H considered at beginning of Section 5. Let $|A \cup B| = n$ and $|E| = m$. Note that Claim 17 holds.

Lemma 21 The algorithm described at start of Section 6 makes atmost $2\sqrt{n}$ iterations

Proof: Let M^* be a maximum matching and let M be matching after \sqrt{n} iterations. By Lemma 20 length of shortest augmenting path $\geq (2\sqrt{n} - 1) \geq \sqrt{n}$. By Corollary 16 we have $\sqrt{n} \leq \text{length of shortest } M \text{-augmenting path} \leq \frac{n}{|M^*| - |M|}$ and so $|M^*| - |M| \leq \sqrt{n}$. From this point onwards even if we augment just one path in each iteration we can finish in $2\sqrt{n}$ iterations as each augmentation increases size of matching by 1.

Lemma 22 Each iteration of the algorithm can be implemented in $O(m)$ time.

Proof: First we will use BFS to find the length k of shortest path from B_0 to A_0 and to produce the sequence of disjoint layers $B_0 = L_0, L_1, L_2, ..., L_k \subseteq A_0$ where for all $0 \leq i < k$ the set of vertices at distance i from B_0 and L_k is the subset of A_0 which is at distance k from B_0. Add a super-vertex β and draw edges from it to all vertices of B_0. Start a BFS from β to get distance of β from A_0. Subtract one to get length of shortest path from B_0 to A_0. This takes $O(m)$ time.

Now consider a modified DFS which starts at a vertex $v \in B_0$ and stops as soon as it reaches a vertex say w in L_k and outputs this $v \rightarrow w$ path. Add this M-augmenting path to F and delete all vertices visited in the modified DFS. (Let x be a vertex seen at some L_j in DFS started from $v \in B_0$. If x is not on a M-augmenting path of length k starting at v then x cannot be on any M-augmenting path of length k and so we can delete all vertices visited in modified DFS which began at v). Redo the whole procedure now starting at another vertex in B_0. This clearly gives us a maximal family of vertex-disjoint shortest-length augmenting paths. Let m_i be the number of edges visited in the i^{th} DFS which takes $O(m_i)$ time. Noting that $m \geq \sum_i m_i$ the time taken is $O(m)$

Theorem 23 The algorithm runs in $O(n^{2.5})$ time.

Proof: From Lemma 22 we know that each phase can be implemented in $O(m)$ time. Also from Lemma 21 we know that there are atmost $2\sqrt{n}$ iterations. Thus time taken by our algorithm is $O(\sqrt{n}) \cdot O(m) = O(n^{2.5})$