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1 Arithmetic Circuits
An arithmetic circuit C over a field F is a circuit with addition and multiplication gates of un-
bounded fanin. The inputs to the circuits are either indeterminates or elements from the field.
Any circuit C over F and having indeterminates x1, x2, · · · , xn naturally computes a polynomial
in F[x1, x2, · · · , xn]. The size of an arithmetic circuit is the number of gates in it. The degree of
the circuit is the degree of the polynomial computed in the output gate. In this talk we consider the
degree of the circuit is bounded by the size of the circuit.

2 Polynomial Identity Testing
The polynomial Identity Testing is the following problem: Given an arithmetic circuitC computing
a polynomial f in F[x1, x2, · · · , xn], test whether f ≡ 0. The polynomial identity testing problem
is a classical problem in complexity theory. It is well known that this problem can be solved in
randomized polynomial time using Schwartz-Zippel Lemma [MR01]. Main open question is that
whether the Polynomial Identity Testing Problem can be solved in deterministic polynomial time.
In 2003, Impagliazzo and Kabanets proved that any such algorithm will imply either NEXP 6⊂
P/poly or Permanent has no polynomial size arithmetic circuit. The deterministic polynomial
time algorithms for this problem are known for some restricted circuit class: for depth 2 circuit
the problem is trivial. Kayal and Saxena [KS07], showed that the identity testing for depth 3 ΣΠΣ
circuit can be done in deterministic polynomial time if the fanin of the top Σ gate s constant. In
2007, Saxena [Sa07], gave a deterministic polynomial time algorithm for depth 3 diagonal circuits.

3 Black-Box derandomization
Let AnF be the set of arithmetic circuit over F of size at most n. Let f : N → (F[y]) be a function
such that for all n,

f(n) = (pn,1(y), · · · , pn,n(y))

where pn,j’s are polynomials over F[y]. Then the function f is a (n, d) pseudo-random generator
against AF if the following are true:

• each pn,i is of degree at most d

• for any circuit C ∈ AnF, C(x1, · · · , xn) = 0 if and only if C(pn,1(y), · · · , pn,n(y)) = 0.
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The function f is an optimal pseudo-random generator for AnF if d = nO(1). In fact, Schwartz-
Zippel Lemma implicitly tells that a random f of degree log n is a pseudo-random generator with
high probability. A pseudo-random generator that can be quickly constructed is very useful.

Definition 3.1 A function f is an efficiently computable (n, d) pseudo-random generator against
AnF if it is pseudo-random generator and can be constructed in time poly(n, d).

If there exists efficiently computable optimal pseudo-random generator then the following are
true:

• The identity testing problem can be solved in deterministic polynomial time.

• There is a multilinear polynomial in EXP that can not be computed by a subexponential size
circuit [A05].

Surprisingly, all the known deterministic polynomial time identity testing algorithm are known
for only depth 3 circuits. Moreover all superpolynomial lower bounds for arithmetic circuits are
also known for monotone circuits, multilinear formulas and depth 3 circuits. For example see
[SW99, GR00, Raz04]. It seems that the progress in identity testing as well as in proving lower
bounds seems to stop in depth 3 circuits only.

4 Main Theorem
In this section we prove that, in some sense, the identity testing of general arithmetic circuits is as
hard as identity testing of depth 4 circuits. This results justifies the lack progress in either identity
testing or proving lower bounds beyond depth 3 arithmetic circuits. More precisely, we prove the
following theorem.

Theorem 4.1 If a polynomial p(x1, x2, · · · , xn) can be computed by an arithmetic circuit C of
degree n and size m = 2o(n), then it can be computed by a depth 4 arithmetic circuit of degree n
and size 2o(n).

Proof. We outline the sketch of the proof. The proof heavily depends on the depth reduction tech-
nique developed in [AJMV94]. The first step of the proof is to apply the depth reduction technique
developed in [AJMV94] to construct a circuit D such that D computes the same polynomial p.
Moreover, the construction of [AJMV94] guarantees that the degree of the circuit D is at most the
degree of the circuit C and size is mO(1). We briefly describe the construction of D (details can be
found in [AJMV94]).

Construction ofD: Make the circuit C layered with alternating layers of + and ∗ gates. Make
the fanin of every multiplication gate two. Arrange the children of all the multiplication gates such
that the degree of the right child is greater than or equal to the degree of the left child. Now, for
every pair of gates g and h in C, introduce the gates [g] and [g, h] as follows: gate [g] computes the
same polynomial as gate g. The gate [g, h] computes the zero polynomial if h does not occur in
the rightmost path of a proof tree rooted at g. Gate [g, h] computes the same polynomial which is
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the sum over all the proof trees rooted at g in which h occurs in the rightmost path of the product
of leaves of the proof tree when h is replaced by 1. It can be seen that [g] =

∑n
i=1[g, xi]xi. For a

+ gate g with children g1, g2, · · · , gt, and for any other gate h, [g, h] =
∑t

i=1[gi, h]. If g is a ∗ gate
with left child gL and right child gR and there are only + gates on a path from g to h, then [g, h] =
[gL]. For otherwise, let g is a ∗ gate and there are multiplication gates g1, g2, · · · , gt that occur in
the path from g to h. Let each of the gi has gi,L and gi,R as of their left and right child. Moreover if
deg(gi) ≥ 1

2
(deg(g) + deg(h)) > deg(gi, R), then [g, h] =

∑t
i=1[g, gi][gi,L][gi,R, h]. The gates of

the circuit D are simply [g] and [g, h]. It is easy to see that deg([g, h]) = deg(g)− deg(h). In the
case when deg(gi) ≥ 1

2
(deg(g) + deg(h)) > deg(gi, R), deg([g, gi]) ≤ 1

2
(deg(g)− deg(h)). Also

in that case, deg([gi,R, h]) = deg(gi,R)− deg(h) < deg(gi)− deg(h) < 1
2
(deg(g)− deg(h)). For

the gate [gi,L], deg([gi,L]) ≤ max{deg(g)− deg(h), 1
2

deg(g)}.
Now it is easy to see that the depth of D is O(log n) and the size is only mO(1). Now the idea

is to replace the circuit D by a depth 4 circuit. The way we do this, cut the circuit D in two halves
and replace each of them by a depth 2 circuit. We now explain it formally.

We cut the circuit in such a way that all the nodes in the bottom half (DB) has degree < e and
all the nodes in the top half (DT ) has degree ≥ e, where we choose e appropriately in the analysis.
Let in the bottom half (DB), D1, · · · , D` are all the circuits such that their output nodes are in the
cutting plane. For each i ∈ [`], write Di as a sum of monomials. Clearly in each of the Di the

number of monomials are bounded by
(
n+ e
e

)
.

The input to the top half DT are the outputs from the ` nodes. So circuit DT computes a
polynomial in the ` variables. Again, we will express DT as a sum of monomials. Furthermore, an
easy induction over the depth of DT proves that the degree of DT is at most 10d

e
.

Let the new depth 4 circuit that is obtained by writing DT and DB as sum of monomials (and

thus replacing by depth 2 circuits) isE. So the size ofE is bounded by
(
n+ e
e

)
+

(
`+ 10d

e

10d
e

)
.

Since ` = mO(1), we can bound the size of E by mc( cn
e
e) +m

cn
e for an appropriate constant c.

Now to bound the size of E further we use the fact that m = 2o(n). Let m = 2
n

g(n) and choose
e = n/

√
g(n). Now it is easy to see that the size of E is bounded by 2o(n). This completes the

proof of the theorem.

5 Identity Testing for the Depth four circuits
Suppose there exists an optimal efficiently computable pseudo random generator against depth four
circuits over F. Let f be such a generator with f(n) = (pn,1(y), · · · , pn,n(y)). Moreover assume
that the degree of pn,i’s are bounded by d = nO(1). Fix ` = log n. Define the polynomial r2` as
follows:

r(x1, x2, · · · , x2`) =
∑

S⊆[1,2`]

cS
∏
i∈S

xi

such that the coefficients cS satisfy the following relation:
∑

S⊆[1,2`] cS
∏

i∈S pn,i = 0. Simply
counting the number of cS’s and the number of homogeneous constraints, one can easily argue that
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a non zero polynomial r2` always exists whose coefficients satisfy the above relation. Furthermore,
r2` can easily be computed by solving a system of 2O(`) linear equations and so the computation
can be performed in EXP. Can the polynomial r2` be computed by a depth four circuit of size of
size 2ε` for some ε > 0. We will use the pseudo random generator f(n) for depth four circuits to
argue that r2` can not be computed by a depth four circuit of size 2ε`. or otherwise let C be such
a circuit. By the definition of r2`, we know that C(pn,1, · · · , pn,n) = 0. But r2` = C(x1, · · · , xn)
is a non zero polynomial. That contradicts the assumption that f is a pseudo random generator
against the depth four circuits. Now it follows directly from the Theorem 4.1 that the polynomial
r2` requires a circuit of size 2Ω(`). Recall that ` = log n. Now we will use this hard polynomial
r2` to construct a (n, nlog n) pseudo random generator against the entire class of arithmetic circuits
over F.

5.1 Construction of the pseudo random generator
Fix n. Let b be an appropriately chosen large constant. Define the standard Nisan-Wigderson
design [NW94] S1, S2, · · · , Sn such that:

• Si ⊆ [1, b log n].

• Si = a log n for constant a < b.

• |Si ∪ Sj| ≤ log n.

Define the polynomial qi(z1, z2, · · · , zb log n) = ra log n(z|Si). Let pn,i(y) = qi(y, y
n+1, y(n+1)2 , · · · , y(n+1)b log n−1

)
and define f(n) = (pn,1(y), · · · , pn,n(y)). We claim that f(n) is a required pseudo random gener-
ator.

5.1.1 Correctness of the generator

We use the standard hybrid argument to prove that f(n) is indeed a pseudo random generator for
the entire class of arithmetic circuits C over F. Let C be any arithmetic circuit of size and degree
at most n such that:

C(pn,1(y), · · · , pn,n(y)) = 0.

So,

C(q1(y, yn+1, y(n+1)2 , · · · , y(n+1)b log n−1

), · · · , qn(y, yn+1, y(n+1)2 , · · · , y(n+1)b log n−1

)) = 0.

Now the univariate transformation that is developed in [AB03], indeed implies that

C(q1(z1, · · · , zb log n), · · · , qn(z1, · · · , zb log n)) = 0.

Let j be the largest number such thatC(q1, · · · , qj−1, xj, · · · , xn) 6= 0 butC(q1, · · · , qj−1, qj, xj+1, · · · , xn) =
0. Fix values to the variables xj+1 = aj+1, · · · , xn = an such thatC(q1, · · · , qj−1, xj)|xj+1=aj+1,··· ,xn=an 6=
0 (By the Schwartz-Zippel Lemma we know such fixing for xk’s, j + 1 ≤ j ≤ n exist). Similarly
fix values for all zi’s except those in Sj such that C(q1, · · · , qj−1, xj) 6= 0. Let the resulting circuit
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be Ĉ(z|Sj
, xj). Since the size of the circuits for qi’s are bounded by n, the size of the circuit Ĉ

is bounded by n2. Moreover, since Ĉ(z|Sj
, qj) = 0, it implies that (xj − qj) is a factor of the

polynomial computed by the circuit Ĉ(z|Sj
, xj). By the result of [Kal89], xj− qj can be computed

by a circuit of size nc (for some c > 0), that uses the circuit Ĉ. This circuit computes ra log n which
is a contradiction to the hardness of ra log n. This completes the correctness proof of the pseudo
random generator.

6 Open Problem
Can we improve the construction of the pseudo random generator described in the section 5.1 to a
optimal easily computable pseudo random generator ? The generator that we have described is a
(n, nO(log n)) generator. Another very interesting problem is to design an optimal generator for the
depth four circuits.
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