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Long talks

1. Mrinal Kumar, TIFR
Abstract: The talk will be based on the paper:
Constant-Depth Arithmetic Circuits for Linear Algebra Problems by Robert Andrews, Avi
Wigderson(FOCS 2024).

2. Amit Sinhababu, CMI
Abstract: Multivariate polynomial factoring where the polynomial is given as an arithmetic
circuit reduces to circuit PIT (KSS, CCC 2014). Even if the polynomial to be factored is
simple such as sparse/constant depth circuit, the corresponding PIT instance comes from a
significantly bigger class such as ABPs for which we do not know any nontrivial PIT. Some
recent works have tried to bypass the various bottlenecks and got derandomization results in
various special cases. Furthermore, better understanding of the derandomization challenges
in multivariate factoring (and related problems) led to progress in derandomizing special cases
of PIT. The talk will be based on recent results in multivariate polynomial factorization.

3. Anil Shukla, IIT Ropar
Abstract: Proposition model counting #SAT is a well known computationally hard problem
in the field of computational complexity. In fact Toda [1991] has shown that with a single
#SAT oracle, any problem from the polynomial hierarchy can be solved in polynomial time.
On the other hand, proof complexity studies of #SAT have been very recently started.

In proof complexity, we study the hardness in finding the certificate of #SAT. That is, if the
number of satisfying assignments (models) of a CNF formula F is k, then proof complexity
studies various ways (proof systems) of proving the fact that the given CNF F has indeed
exactly k models. At this moment, this study is in its initial stage. In the literature, there
are only three non-trivial proof systems for #SAT:

• Florent Capelli: Knowledge Compilation Languages as Proof Systems. SAT 2019: This
paper introduces a static proof system for #SAT known as KCPS.
DOI: https://doi.org/10.1007/978-3-030-24258-9_6

• Olaf Beyersdorff, Tim Hoffmann, Luc Nicolas Spachmann: Proof Complexity of Propo-
sitional Model Counting. J. Satisf. Boolean Model. Comput. 15(1): 27-59 (2024): This
paper introduces the MICE’ proof system for #SAT.
DOI: https://doi.org/10.3233/SAT-231507

• Randal E. Bryant, Wojciech Nawrocki, Jeremy Avigad, Marijn J. H. Heule: Certified
Knowledge Compilation with Application to Verified Model Counting. SAT 2023: 6:1-
6:20: This paper introduces CPOG proof systems for #SAT.
DOI:https://doi.org/10.4230/LIPIcs.SAT.2023.6

• In this talk, I plan to discuss all the three proof systems and their simulations among
themselves from the following paper:
Olaf Beyersdorff, Johannes Klaus Fichte, Markus Hecher, Tim Hoffmann, Kaspar Kasche:
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The Relative Strength of #SAT Proof Systems. SAT 2024: 5:1-5:19.
DOI: https://doi.org/10.4230/LIPIcs.SAT.2024.5

4. Nitin Saurabh, IIT Hyderabad
Abstract: The talk will be based on the following papers:

• Hard submatrices for non-negative rank and communication complexity by Pavel Hrubes(CCC
2024).

• The Communication Complexity of Approximating Matrix Rank by Alexander A. Sher-
stov, Andrey A. Storozhenko(FOCS 2024).

5. Pushkar Joglekar, VIT-P.
Abstract: The talk will survey polynomial factorization in the non-commutative setting.

6. Prahladh Harsha, TIFR
Title: Recent Advances in List-Decoding Polynomial Codes Abstract: The field of list-
decoding polynomial codes has seen a flurry of activity in the last 5-6 years. In particular,
we have seen the following results:

(a) resolution of the GM-MDS conjecture, higher-order MDS codes and combinatorial opti-
mal list-decoding of the Reed-Solomon (RS) code

(b) nearly linear-time list-decoding of folded RS and multiplicity codes and

(c) optimal list-size bounds for FRS and multiplicity codes.

In this talk, I will survey these results and then do a deep-dive into optimal list-size bounds
(item (c) from above) due to Srivastava and Chen-Zhang.

We will see detailed proofs from the following 3 papers in the second half of the talk.

(a) Itzhak Tamo, Tighter list-size bounds for list-decoding and recovery of folded Reed-
Solomon and multiplicity codes. Ref: https://doi.org/10.1109/TIT.2024.3402171,
http://arxiv.org/abs/2312.17097.

(b) Shashank Srivastava. Improved list size for folded Reed-Solomon codes. Ref: https:

//doi.org/10.1137/1.9781611978322.64, http://arxiv.org/abs/2410.09031

(c) Yeyuan Chen and Zihan Zhang. Explicit folded Reed-Solomon and multiplicity codes
achieve relaxed generalized singleton bound, 2024. Ref: http://arxiv.org/abs/2408.
15925

7. Jayalal Sarma M N, IITM
Abstract: The talk will be based on the paper:
Tree Evaluation is in Space O(log n log log n) by James Cook; Ian Mertz(STOC 2024).

8. Yadu Vasudev, IITM
Abstract: The talk will be based on recent advances in Property Testing.

9. Chandra Kanata Mohapatra, CMI
Abstract: The talk will be based on the paper:
Power Series Composition in Near-Linear Time by Yasunori Kinoshita, Baitian Li(FOCS
2024)
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Abstracts: Short talks

1. Title: One-way functions and Polynomial-time dimension
Speaker: Akhil S (IIT K)
Abstract: This work explores the connections between notions in cryptography (OWFs)
with notions in algorithmic information theory(Polynomial-time dimension). Ref: https:

//arxiv.org/pdf/2411.02392.

Polynomial time dimension is a quantification of the density of information present in an
infinite binary string, as measured by polynomial time algorithms. Denoted cdimP, it is
measured using betting algorithms called s-gales. Formally, fixing s ≤ 1, bets (pi, 1− pi) are
placed on the next bit X[i] of string X, such that the payoff after the bet is 2s.pi or 2s.(1−pi).
The betting algorithm (or the gale) wins on the sequence if an arbitrary amount of money
can be procured. The information density is measured by making the betting environment
more hostile by decreasing s, and finding the least value of s at which winning is still possible.
In this approach, we quantify information density using the predictability of the next bit in
the sequence.

Analogously, a notion of information density can also be quantified using time-bounded Kol-
mogorov complexity. Formally, for a finite string x, we find the shortest description (or
program) from which a polynomial time algorithm can recover the string. For an infinite
string X, we consider its finite n-length prefixes, divide the time-bounded Kolmogorov com-
plexity by the length of the string n and take its limiting values. The corresponding value is
denoted as Kpoly. In this approach, we quantify information density using the compressibility
of the finite prefixes of the sequence.

In the unbounded time setting, these notions are shown to be equivalent [Mayordomo,Lutz
2002]. It has been a long standing open question [Hitchcock and Vinodchandran [2006] if the
polynomial time notions, cdimP and Kpoly are equivalent. Recently, works by Pass and Liu
[2021] have unearthed interesting connections between time bounded Kolmogorov complexity
and the existence of One-way functions. In a similar spirit, we give a resolution to this open
question, relating it with the existence of one-way functions.

We show that the notions cdimP and Kpoly are unequal if One-way functions(OWFs) exist.
Existence of OWFs and pseudo random generators (PRG) are known to be equivalent. The
idea is that outputs of PRG by design have low Kpoly. Our proof involves new constructions
that utilise s-gales that wins on outputs of PRG (which exist if the notions are equivalent)
to come up with distinguishers that break the PRG. We also use some measure theoretic
tools like the Borel-Cantelli Lemma, which is central in the analysis. We hope that our work
sheds new light in the current line of research that explores connections between concepts in
cryptography and meta-complexity.

2. Title: Fast list-decoding of univariate multiplicity codes
Speaker: Ashutosh Shankar, TIFR
Abstract: Univariate multiplicity codes are a generalization of Reed-Solomon codes and
are among the first families of efficiency list-decodable codes all the way up to capacity
(Guruswami-Wang and Kopparty). In this work, we show how these efficient list-decoders for
univariate multiplicity codes can in fact be made to run in nearly linear time. Our results also
hold for Folded Reed-Solomon codes. An important intermediate step in our nearly-linear
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time decoding algorithm is obtaining a nearly-linear time solver for ordinary differential equa-
tions.

3. Title: On the Composition of the Complexity Measures of Boolean Functions
Speaker: Chandrima Kayal, IMSc
Abstract: We can compose two Boolean functions f and g to obtain a new function f ◦ g, but
what happens to the complexity measures? Can we express the complexity of the composed
function in terms of the smaller functions (f and g) ? Precisely, the question is if the following
holds: M(f ◦ g) = Θ(M(f) · M(g)) for some particular complexity measure ( of Boolean
function ) M . This is one of the fundamental questions in the area of Analysis of Boolean
functions. Following a long line of work there are two big open problems in this area:

(a) Does approximate degree compose?

(b) Does randomized query complexity compose?

Although these two measures are standard and well-studied, still it is not known if they behave
nicely under composition or not. In these studies, we have explored two different directions
and generalized the existing results, which gave an affirmative answer to both the problems
for larger classes of functions. In this talk, we will describe some of the recent results and the
related open problems.

Talk is based on the two following works:

• On the Composition of Randomized Query Complexity and Approximate Degree(joint
work with Sourav Chakraborty, Rajat Mittal, Manaswi Parashaar, Swagato Sanyal, and
Nitin Saurabh).

• Approximate degree composition for recursive functions (joint work with Sourav Chakraborty,
Rajat Mittal, Manaswi Parashaar, and Nitin Saurabh).

4. Title: Circuits, Proofs and Propositional Model Counting
Speaker: Sravanthi Chede, IIT-Ropar
Abstract: In this short talk, we present and discuss the new proof system CLIP (Circuit
Linear Induction Proposition) for #SAT. CLIP efficiently simulates all the existing #SAT
proof systems. Also, CLIP has an easy upper bound for a family of CNF formulas which are
hard for other existing proof systems. Infact, proving lower bounds in the CLIP system is
equivalent to solving major open problems in various fields of computational complexity.

This is a joint work with Leroy Chew (TU Wien, Austria) and Anil Shukla (IIT Ropar). DOI:
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.18

5. Title: Fourier analysis of Boolean valued functions over finite Abelian groups.
Speaker: Swarnalipa Dutta, ISI Kolkata.
Abstract: A Boolean valued function is a function from some domain set D to a range set
of cardinality two, for example {−1,+1}, {0, 1} etc. These Boolean valued functions are an
important topic in the field of theoretical computer science, additive combinatorics and many
other areas. They also have immense importance in the study of algorithms and complexity,
when the domain D is endowed with some nice algebraic structure, such as finite Abelian
groups. It helps us to study the Fourier analysis of Boolean valued functions, understand
various properties of the Fourier spectrum and structure of the Fourier coefficients.
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Studies have mostly been done when the domain D = Zn
2 , that is binary strings of length

n, on various measures of these functions. The question is, can these results be generalized
for Boolean-valued functions over finite Abelian groups? This talk will cover the following
problems that we have generalized for finite Abelian groups.

Granularity: Fourier sparsity is the number of nonzero Fourier coefficients of f . Let’s say the
Fourier sparsity of a Boolean valued function is small. What can one say about the size of
the Fourier coefficients? Gopalan et. al, in the year 2011 showed that any nonzero Fourier
coefficient of a Boolean function when the domain is Zn

2 is at least 1
sf

in its absolute value,

where sf is the size of the Fourier support, that is, the number of nonzero Fourier coefficients
of f .

Upper bound on the Fourier dimension: Fourier dimension rf is the dimension of the Fourier
support of f . Sanyal in the year 2019 showed that rf = O(

√
sf log sf ), which was improved

by Chakraborty et. al in the year 2020, they showed that rf = O(
√
sfδf log sf ), where

δf = Prx[f(x) = −1]. These results show that for a function with small sparsity, the Fourier
dimension cannot be too big.

Linear Isomorphism testing: The Linear Isomorphism testing for Boolean functions over Zn
2 is

also an important problem to study. For A ∈ Zn×n
2 , let f ◦A : Zn

2 → {−1, 1} be the function
f ◦A(x) = f(Ax) for all x ∈ Zn

2 . The Linear Isomorphism Distance between f : Zn
2 → {−1, 1}

and g : Zn
2 → {−1, 1} is defined as distZn

2
(f, g) = minA∈Zn×n

2 :A is non-singular δ(f ◦A, g). Assume

that f and g satisfy the promise that either distZn
2
(f, g) = 0 or distZn

2
(f, g) ≥ ε, the question

of Linear Isomorphism testing is that of deciding which is the case.

Studies have also been made on the approximate degree of a Boolean function, pseudorandom
generators, and many more.

An important point to note here is that an Abelian group is not a vector space in general.
So most of the results in Zn

2 cannot be directly extended for finite Abelian groups as the
properties of a vector space do not hold in this case. The major drawbacks of generalizing
the results to finite Abelian groups will be discussed in this talk.

6. Title: Inclusion matrices and polynomial approximations
Speaker: Vaibhav Krishan, IMSc
Abstract: Inclusion matrices are widely studied objects, especially in combinatorial design
theory, with notable contributions from Gottlieb (Proc. Amer. Math. Soc. 1966), Wilson
(Util. Math. 1973), Bapat (Linear Algebra Appl. 2000), and countless others. Several works
have studied various properties of these matrices, such as their eigenvalues, pseudo-inverses,
etc. Many of these properties are useful in constructing designs.

Polynomial approximations are useful in combinatorics as well as computer science. Various
models of polynomial approximations have applications in learning theory, Boolean circuit
lower bounds, query/communication complexity, quantum query/communication complexity,
secret-sharing schemes, and many more.

We will focus on a recently proposed model of polynomial approximations, called torus polyno-
mials. Torus polynomials arise out of higher order Fourier analysis, proposed by Bhrushundi,
Hosseini, Lovett and Rao (ITCS 2019) as a method to prove a long-standing conjecture about
Boolean circuits.
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In this talk, we will describe how inclusion matrices are intricately connected to polynomial
approximations. We will discuss some results about torus polynomials, and some future work,
both based on the study of inclusion matrices. In fact, we are able to prove a nearly tight
result about torus polynomials, whereas no lower bounds were known prior to our work.

This is a joint work with S. Vishwanathan at CSE, IITB.

7. Title: Towards Deterministic Algorithms for Constant-Depth Factors of Constant-Depth Cir-
cuits
Speaker: Varun Ramanathan, TIFR.
Abstract: Multivariate polynomial factorization is a natural algebraic problem with a lot
of applications. von zur Gathen, Kaltofen, Trager et al gave us randomized algorithms for
factoring black-box polynomials as well as polynomials given as explicit arithmetic circuits.
Derandomization of factorization is connected to the derandomization of polynomial identity
testing by a line of beautiful results; some are general and some are specific to constant-depth
circuits. Yet, recent breakthroughs in deterministic PIT for constant-depth circuits have not
immediately led to improvements in deterministic factorization of constant-depth circuits.

In this talk, we will see an algorithm that makes some modest progress towards this problem.
In particular, we will see a deterministic subexponential time algorithm that takes as input
a multivariate polynomial f computed by a constant-depth circuit over rational numbers,
and outputs a list L of circuits (of unbounded depth and possibly with division gates) that
contains all irreducible factors of f computable by constant-depth circuits. This list L might
also include circuits that are spurious: they either do not correspond to factors of f or are
not even well-defined, e.g. the input to a division gate is a sub-circuit that computes the
identically zero polynomial.

The key technical ingredient of our algorithm is a notion of the pseudo-resultant of f and
a factor g, which serves as a proxy for the resultant of g and f/g, with the advantage that
the circuit complexity of the pseudo-resultant is comparable to that of the circuit complexity
of f and g. This notion, which might be of independent interest, together with the recent
results of Limaye, Srinivasan and Tavenas, helps us derandomize one key step of multivariate
polynomial factorization algorithms - that of deterministically finding a good starting point
for Newton Iteration for the case when the input polynomial as well as the irreducible factor
of interest have small constant-depth circuits.

This is joint work with Mrinal Kumar, Ramprasad Saptharishi and Ben Lee Volk.
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