
Bounded time-stamping in message-passing

systems ?

Madhavan Mukund

Chennai Mathematical Institute, 92 G.N. Chetty Road, Chennai 600 017, India.

K. Narayan Kumar

Chennai Mathematical Institute, 92 G.N. Chetty Road, Chennai 600 017, India.

Milind Sohoni

Department of Computer Science and Engineering, Indian Institute of Technology
Bombay, Mumbai 400 076, India.

Abstract

Consider a distributed system running a protocol in which processes exchange in-
formation by passing messages. The gossip problem for the protocol is the following:
Whenever a process q receives a message from another process p, q must be able
to decide which of p and q has more recent information about r, for every other
process r in the system. With this data, q is in a position to update its knowledge
about the global state of the system.

We propose a solution wherein to each message of the protocol, the sender adds
information about its current state of knowledge about other processes. We do not
add any new messages to the underlying computation. The additional information
tagged onto each message is uniformly bounded if the channels are bounded. This
means that for systems with bounded channels, the overhead of maintaining the
latest gossip is a constant, independent of the length of the underlying computa-
tion. Moreover, gossip information can be used to implement bounded channels by
inhibiting the sending of new messages over channels that are potentially full.

Our solution to the gossip problem has several applications in the analysis of
distributed systems. Many distributed algorithms rely, either explicitly or implicitly,
on the local information available at a process about the global state of the system.
Using our scheme, each process can ensure that during a computation it always
maintains the best possible information about every other process. At a theoretical
level, the gossip problem plays an important role in formal characterizations of
finite-state message-passing systems.

Key words: Message-passing systems, bounded timestamping, labelled partial
orders, finite-state systems

Preprint submitted to Theoretical Computer Science 25 September 2001

1 Introduction

We tackle a natural problem from distributed computing, involving time-
stamps. Let P be a set of computing agents or processes that exchange infor-
mation by passing messages. The gossip problem is the following: Whenever
a process p receives a message from another process q, p must be able to
decide whether q’s message contains “fresh” information about r, for every
other process r. Once p makes this decision, it can systematically collate this
information to maintain, on-line, its “latest gossip” about every other process.

By keeping track of the latest gossip about other agents, each process can
consistently update its knowledge about the global state of the system when-
ever it receives some new information from another process. Since computing
global information about the system from local information is a central issue
in distributed computing, a solution to the gossip problem would be useful in
a wide variety of applications involving distributed systems.

The gossip problem has been investigated in [13] for systems where processes
synchronize periodically and exchange information. We extend the solution
proposed in [13] to a general message-passing model, where processes commu-
nicate by sending messages on point-to-point channels. We assume that the
communication medium is reliable—in particular, all messages in the system
are eventually delivered. However, we permit indefinite delays in transit. Also,
messages need not be received in the order in which they were sent.

In our solution to the gossip problem, processes exchange only a bounded
amount of gossip information with each message they send. At the heart of
our solution is a protocol for time-stamping messages in the system using a
finite set of labels.

Time-stamping is a well-established technique for ordering events in a dis-
tributed setting [10,11]. Time-stamping protocols that use only a bounded set
of labels to tag events have attracted a fair amount of attention in recent
years. Protocols have been exhibited for systems in which processes commu-
nicate via a shared memory [5,6,8], as well as for systems where processes

? A preliminary version of this paper appeared as “Keeping track of the latest gossip
in message-passing systems” in Proc. Structures in Concurrency Theory (STRICT),
Workshops in Computing Series, Springer-Verlag (1995) 249–263.

Email addresses: madhavan@cmi.ac.in (Madhavan Mukund), kumar@cmi.ac.in
(K. Narayan Kumar), sohoni@cse.iitb.ac.in (Milind Sohoni).

2

synchronize periodically and exchange information [3,4,13]. However, no such
protocols seem to exist for message-passing systems.

One of the main complications introduced by message-passing is that informa-
tion flows in only one direction. In general, a process needs to know whether
the information that it has sent out has been incorporated into the local state
of the recipient. In systems with synchronous communication, each transfer of
information is implicitly acknowledged. To transport the protocol in [13] from
the setting of synchronous communication to the setting of message-passing,
we have to introduce an explicit mechanism for collecting acknowledgments,
both direct and indirect. In a message-passing model with both unbounded de-
livery delays and infinite channel capacities, a solution to the gossip problem
using bounded time-stamps is not possible. Consider a producer-consumer
system where the producer sends an arbitrary sequence of messages to the
consumer without any acknowledgments. To avoid ambiguity, the producer
would be forced to use a new time-stamp for each message since it has no
way of knowing which, if any, of its earlier messages have been received by the
consumer. Thus, in order to make the problem tractable, we have to either
constrain delivery delays or bound the channels. We follow the latter route by
bounding the number of unacknowledged messages that can be present in the
system at any time.

This restriction is a natural one—for instance, in the context of Message Se-
quence Charts (MSCs) [16], a popular visual formalism for specifying message-
passing systems, it has been shown that regular (finite-state) specifications
correspond precisely to specifications that impose a bound on the number of
unacknowledged messages [7]. This class of MSC specifications is important
because it permits algorithmic solutions for model-checking and other decision
problems [1,15]. The importance of regularity in message-passing protocols has
been established in [12], where it is shown that every robust asynchronous pro-
tocol is actually finite-state. (A protocol is said to be robust if its behaviour is
insensitive to nondeterminism resulting from differences in relative speeds of
the different components and delays in message delivery.) Thus, most practical
protocols would satisfy the conditions required for our time-stamping protocol
to work.

An important feature of our solution to the gossip problem is that it does
not introduce any additional messages—it just adds additional data to each
message of the underlying computation. The amount of additional data added
to each message is guaranteed to be uniformly bounded. Thus, given any
distributed algorithm that conforms to the restricted model we work with, we
can enhance the algorithm to also keep track of the latest gossip with only a
constant overhead in message complexity.

As we have already mentioned, a solution to the gossip problem is useful in de-

3

signing distributed algorithms. We discuss some applications at the end of this
paper. In addition, our time-stamping algorithm also has important applica-
tions in automata theory for message-passing systems. In [7], it is shown that
finite-state versions of a distributed machine model called message-passing

automata capture precisely the regular sets of message-passing specifications
described by MSCs. One of the main results of the characterization proved
in [7] is a decomposition theorem for automata over regular MSC languages,
along the lines of Zielonka’s theorem for regular trace languages [20]. This
decomposition theorem uses in crucial way the solution to the gossip prob-
lem for message-passing systems. Further, we believe that our solution to the
gossip problem will play a central role in developing local temporal logics for
message-passing systems, just as the solution to the gossip problem in syn-
chronous systems [13] is central to the theory of local temporal logics over
Mazurkiewicz traces [14].

The paper is organized as follows. In the next section we introduce our model
of computation and formulate the gossip problem in terms of a natural partial
order on the events in the system. Section 3 describes ideals, which capture
the notion of a partial view of a distributed computation. Sections 4 and 5
describe a protocol to solve the gossip problem. Each process maintains what
we call primary information about the computation, using potentially un-
bounded labels to distinguish messages in the system. In Section 6 we show
how to convert this protocol to one that uses bounded time-stamps, thereby
establishing a solution to the gossip problem. In the final section, we sketch
how this protocol may be applied to simplify some classes of distributed algo-
rithms.

2 The Model

Let P = {p1, p2, . . . , pN} be a set of processes that communicate with each
other through messages. We assume that messages are never inserted, lost
or modified—that is, the communication medium is reliable. However, there
may be an arbitrary delay between the sending of a message and its receipt.
Further, messages need not be received in the order in which they were sent.

We assume that communication is point-to-point. Each message is addressed
to a specific process and is not seen by any of the other processes in the
system. Thus, each transmission of a message from a process p to a process q
consists of two distinct actions; the action sp→q corresponds to the sending of
the message from p to q and the action rq←p corresponds to its receipt by q.

We can regard a computation of the system as a word over the alphabet
C = CS ∪ CR where CS = {sp→q | p, q ∈ P} is the set of send actions and

4

CR = {rp←q | p, q ∈ P} is the set of receive actions. Since each action in C is
“executed” by a single process, we can also partition C across processes—for
each process p, Cp = {sp→q | q ∈ P} ∪ {rp←q | q ∈ P} is the set of p-actions

that p participates in directly.

We shall regard a word u ∈ C∗ of length m as a function u : [1..m] → C, where
[1..m] denotes the set {1, 2, . . . , m} if m ≥ 1 and is ∅ if m = 0. For u ∈ C∗ and
c ∈ C, #c(u) denotes the number of occurrences of c in u. We can extend this
to subsets X ⊆ C: #X(u) =

∑

c∈X #c(u).

Not every word corresponds to a valid computation—in particular, we must
insist that messages are received only after they are sent. In addition, since
messages need not be received in the order they were sent, to completely spec-
ify a computation we need to match each receive event to the corresponding
send event. With this in mind, we define computations as follows:

Computations A computation over C is a pair (u, ϕ) where u : [1..m] → C
is a word and ϕ : [1..m] → [1..m] is a partial function such that:

(i) The domain of ϕ, dom(ϕ) is the set of positions labelled by receive
actions—that is, dom(ϕ) = {i | u(i) ∈ CR}.

(ii) ϕ is injective over dom(ϕ)—for each i, j ∈ dom(ϕ), i 6= j ⇒ ϕ(i) 6= ϕ(j).
(iii) For each i ∈ dom(ϕ), ϕ(i) < i.
(iv) If u(i) = rq←p then u(ϕ(i)) = sp→q.

If ϕ(i) = j, then u(i) is a receive action whose corresponding send action is
u(j). By condition (ii), we may also refer to i unambiguously as ϕ−1(j).

Example: Let P = {p, q} and let u be the string sp→qsp→qsp→qrq←prq←p and

ϕ be the function where ϕ(4) = 3 and ϕ(5) = 1. In this computation, the

message sent from p to q at u(1) is overtaken by the message sent at u(3).
Moreover, the message sent at u(2) has not yet reached q.

Events and causality The word u imposes a total, temporal order on the
actions observed during a computation (u, ϕ). However, in order to analyze the
flow of information between processes, we need a more accurate description of
the cause and effect relationship between the different actions in u.

Let (u, ϕ) be a computation, where u : [1..m] → C. We associate with (u, ϕ) a
set of events Eu = {(i, u(i)) | i ∈ [1..m]}.

Let e = (i, u(i)) be an event in Eu. When there is no ambiguity, we shall use e
to denote both i and u(i). For instance, e ∈ Cp denotes that u(i) ∈ Cp—in other

5

words, e is a p-event. Similarly, if we say f = ϕ(e) we mean that f = (j, u(j))
is an event such that ϕ(i) = j. We shall also use Eu and u interchangeably in
expressions such as #c(Eu), which denotes #c(u).

As we mentioned earlier, u imposes a total, temporal order on the events in
Eu. Let e, f ∈ Eu. Then e < f provided e = (i, u(i)), f = (j, u(j)) and i < j.
As usual e ≤ f if e < f or e = f .

Messages introduce causality across processes. For each pair (p, q) ∈ P × P
such that p 6= q, define /pq to be the ordering

e /pq f
4
= e ∈ Cp, f ∈ Cq and ϕ(f) = e.

In addition, each process p orders the events it participates in. Define /pp to
be the strict ordering

e /pp f
4
= e < f, e ∈ Cp, f ∈ Cp and for all e < g < f, g /∈ Cp.

The set of all p-events in Eu is totally ordered by /∗pp, the reflexive, transitive
closure of /pp.

Define e / f if for some p, q ∈ P (where p and q need not be distinct), e /pq f
and let v denote the reflexive, transitive closure of /. If e v f then we say that
e is below f . The partial order v records the information we require about
causality and independence between events in Eu.

Let e ∈ Eu be a p-event. The set of events below e is e↓ = {f | f v e}. These
represent the only actions that are known to p when e occurs.

Latest information Consider a computation (u, ϕ) and its associated set of
events Eu. The v-maximum p-event in Eu is denoted max p(Eu)—this is the last
event in Eu in which p has taken part. This quantity is well defined whenever
#Cp(Eu) > 0, since all p-events in Eu are totally ordered by v. (Recall that
Cp ⊆ C is the set of p-actions, so #Cp(Eu) denotes, by convention, the number
of p-actions mentioned in the string u.)

Let p, q ∈ P. If #Cp(Eu) > 0, the latest information p has about q in Eu corre-
sponds to the v-maximum q-event in the set max p(Eu)↓, provided the set of
q-events below max p(Eu) is not empty. We denote this event by latestp←q(Eu).
(If there are no q-events in max p(Eu)↓, then latestp←q(Eu) is undefined.)

Example: Let P = {p, q, r}. Consider the computation (u, ϕ), where u =
sp→qsp→rsp→rrr←psr→qrq←rsp→qrr←prq←psr→q, ϕ(4) = 2, ϕ(6) = 5, ϕ(8) = 3

6

p

q

r

1

sp→q

2

sp→r

3

sp→r

4
rr←p

5
sr→q

6rq←r

7

sp→q

8
rr←p

9 rq←p

10
sr→q

@@
@@R

@
@

@
@

@@R

@
@

@
@@

@@R�
���

- - -

-

- - -

Fig. 1. An example

and ϕ(9) = 1. Figure 1 is a picture of (Eu,v). The arrows in the figure corre-

spond to the basic relations /pq, which generate v.

In this computation, max q(Eu) = (9, rq←p). Though at max q(Eu), process q
hears from process p, latest q←p(Eu) does not correspond to ϕ(max q(Eu)). In-

stead, latest q←p(Eu) = (2, sp→r)—process q hears this information indirectly,

via process r.

The gossip problem

Let p, q and r be processes and (u, ϕ) a computation such that latestp←r(Eu)
and latest q←r(Eu) are both defined. Since both of these are r-events, they must
be ordered by /∗rr. Thus, the latest information that p and q have about r will
always be comparable.

The gossip problem is the following.

Whenever a process p receives a message from another process q, p must be

able to decide whether the message from q contains more recent information

about r than p already has, for every other process r in the system.

One way to resolve this problem is as follows. As the computation progresses,
each action is assigned a label by the process involved in that action. These
labels allow processes to refer to events in an unambiguous manner. Each pro-
cess then maintains the labels corresponding to its latest information. These
labels are passed on with each communication in such a way that the process
receiving the message can consistently update its own latest information.

The labels that are assigned to events during a computation are essentially
time-stamps. A trivial solution to the time-stamping problem is for each pro-
cess to maintain a local counter and assign strictly increasing counter values
to the actions it executes. Along with each message, the sender attaches the
largest labels it knows for every other process. Then, when process p receives
a message from process q, p can compare its latest information about r with
the information that q has sent about r in the message by checking whether

7

p’s “latest” r label is larger than the r label recorded in the message from q.

This scheme has the following drawback: As the computation progresses, the
time-stamps assigned to events grow without bound. As a result, processes
need to send longer and longer messages to transfer the labels corresponding
to their latest information.

We seek a solution to the gossip problem where message lengths are bounded.
This will ensure that the overhead of maintaining gossip information remains
a constant, regardless of the length of the underlying computation.

To achieve this, we need to devise a scheme for labelling events using a bounded
set of time-stamps. This means that the same time-stamp will be assigned,
eventually, to more than one event. We need to ensure that time-stamps are
reused in such a way that the update of latest information is not affected.

In principle, this should be possible. Let Eu be the events corresponding to
the computation (u, ϕ) and let the number of processes in the system be N .
Regardless of the number of events in Eu, at most N2 of them are relevant for
solving the gossip problem—we only need to be able to compare the labels
of events of the form latestp←q(Eu) for each pair p, q ∈ P. In effect, at most
N2 of the events in Eu constitute “current” gossip. Moreover, once an event
becomes “obsolete” its time-stamp can be safely reused—an “obsolete” event
can never become “current” at a later stage in the computation.

However, in the completely general model we have considered so far, it is
impossible to achieve our goal. Since messages can be delayed indefinitely, a
process pmay send unboundedly many messages to q without knowing whether
any or all of them have reached. Until p receives some confirmation from q
that a particular message has reached, that message’s time-stamp cannot be
reused. Thus, p will potentially need to use an unbounded number of time-
stamps to label its messages to q. (Notice that this problem arises even if
messages are delivered in the order in which they were sent—the main source
of difficulty is the fact that there is no bound on the delay in delivering a
particular message.)

B-bounded computations To overcome this problem, we need to restrict
the class of computations we permit. Intuitively, we must bound the number of
unacknowledged messages between any pair of processes. One way to achieve
this is to ensure that p can send a fresh message to q only if, as far as it
knows, the number of messages that it has already sent to q and that are as
yet undelivered is less than B, where B ∈ N is a prespecified bound. More
formally, we say that (u, ϕ) is a B-bounded computation provided the following
holds:

8

For each event e = (i, sp→q) in Eu, #sp→q
(e↓) − #rq←p

(e↓) ≤ B.

Notice that p need not get direct acknowledgments from q. For instance, r
may hear from q that q has received a particular message m from p and p, in
turn, may pick up this indirect information about m from r.

Even forB-bounded computations, it is not immediate that the gossip problem
has a solution. Suppose process p sends process q a message m. Though p is
guaranteed to receive an acknowledgment for this message by the time it
sends its next B messages to q, it cannot näıvely reuse m’s time-stamp once
m is acknowledged. In between, q may have passed on the information in m to
another process r, in which case the messagem would still constitute “current”
gossip for r. The process p has to have some means of recording which of its
time-stamps are “in use” in the system at any given time.

For the next four sections, we assume that every computation we deal with is
B-bounded.

3 Ideals

Let us fix a computation (u, ϕ), where u : [1..m] → C, and the corresponding
set of events Eu, which we shall denote as just E from now on, for convenience.

The main source of difficulty in solving the gossip problem is the fact that
the processes in P need to compute global information about the computa-
tion (u, ϕ) while each process only has access to a local, “partial” view of u.
Although partial views of (u, ϕ) correspond to subsets of E , not every subset
of E arises from such a partial view. Those subsets of E that do correspond to
partial views of (u, ϕ) are called ideals.

Ideals A set of events I ⊆ E is called an order ideal if I is closed with
respect to v—that is, e ∈ I and f v e implies f ∈ I as well. We shall always
refer to order ideals as just ideals.

The requirement that an ideal be closed with respect to v guarantees that
the observation it represents is “consistent”—whenever an event e has been
observed, so have all the events in the computation that necessarily precede
e. Clearly the entire set E is an ideal, as is e↓ for any e ∈ E . It is easy to see
that if I and J are ideals, so are I ∪ J and I ∩ J .

Example: In Figure 1, the set I = {(1, sp→q), (2, sp→r), (4, rr←p), (5, sr→q),

9

(6, rq←r)} is an ideal. However, the set J = {(1, sp→q), (2, sp→r), (3, sp→r),
(5, sr→q), (6, rq←r)} is not an ideal, since (4, rr←p) v (5, sr→q) but (4, rr←p) /∈ J .

We need to generalize the notion of max p(E), the maximum p-event in E , to
all ideals I ⊆ E .

p-views For an ideal I, the v-maximum p-event in I is denoted max p(I),
provided #Cp(I) > 0. The p-view of I is the ideal Ip = max p(I)↓. Thus, Ip
consists of all events in I that p can “see”. (By convention, if max p(I) is
undefined—that is, if there is no p-event in I—the p-view Ip is empty.)

Example: In Figure 1, consider the ideal I = {(1, sp→q), (2, sp→r), (4, rr←p),
(5, sr→q), (6, rq←r)} Then Ip, the p-view of I is {(1, sp→q), (2, sp→r)} whereas

Iq, the q-view of I, is the entire ideal I.

4 Primary information

For processes p, q ∈ P, we have already defined latestp←q(E), the latest in-
formation that p has about q after (u, ϕ). We can extend this definition to
arbitrary ideals.

Let I ⊆ E be an ideal and p, q ∈ P. Then latestp←q(I) denotes the v-maximum
q-event in Ip, provided #Cq(Ip) > 0. Thus, latestp←q(I) is the latest q-event
in I that p knows about. (As usual, if there is no q-event in Ip, the quantity
latestp←q(I) is undefined.)

It is clear that for p 6= q, latestp←q(I) always corresponds to a send action from
Cq. However latestp←q(I) need not be of the form sq→p; the latest information
that p has about q in I may have been obtained indirectly.

To maintain and update the latest information of processes, we need to keep
track of an expanded set of events that we call primary information. The
primary information of a process contains not only its latest information about
every other process but also information about unacknowledged messages in
the system.

Message acknowledgments Let I ⊆ E be an ideal and e ∈ I an event
of the form sp→q. Then, e is said to have been acknowledged in I if ϕ−1(e)
belongs to Ip. Otherwise, e is said to be unacknowledged in I.

10

Notice that it is not enough for a message to have been received in I to deem
it to be acknowledged. We demand that the event corresponding to the receipt
of the message be “visible” to the sending process.

For an ideal I and a pair of processes p, q, let unackp→q(I) be the set of
unacknowledged sp→q events in I. Formally,

unackp→q(I) = {e = sp→q | ϕ
−1(e) /∈ Ip}

The following observation is immediate.

Proposition 4.1 Let (v, ψ) be a B-bounded computation. For every ideal I ⊆
Ev, unackp→q(I) contains at most B events.

Proof Suppose that I ⊆ Ev and p, q ∈ P such that unackp→q(I) contains more
than B events. Let e be the maximum sp→q event in I. Then, it follows that
unackp→q(e↓) contains more than B messages. In other words, #sp→q

(e↓) −
#rq←p

(e↓) > B, which violates the definition of B-boundedness.

2

Primary information Let I ⊆ E be an ideal. The primary information of
I, primary(I), consists of the following events in I:

• The set latest(I) = {max p(I) | p ∈ P}.
• The collection of sets unack(I) = {unackp→q(I) | p, q ∈ P}.

Let I ⊆ E be an ideal and p a process such that Ip 6= ∅. Then, primary(Ip)
denotes the primary information of p in I—that is, p’s primary information is
just the primary information of the p-view of I. Clearly, the “latest informa-
tion” of p after I is contained in its primary information—for every process q,
latestp←q(I) is just max q(Ip).

We need to propagate implicit “acknowledgments” so that processes can up-
date their primary information.

Pending acknowledgments For an ideal I and processes p, q, let ack-pendingq←p(I)
denote the set of messages from p to q that have been received by q in I but
whose receipt, as far as q knows, is not yet known to the sender p. Formally,

ack-pendingq←p(I) = {e = sp→q | ϕ
−1(e) ∈ Iq \ (Iq)p}

It is clear that ack-pendingq←p(I) ⊆ unackp→q(Iq) and thus never contains
more than B events. As with latest(I) and unack(I), we write ack-pending(I)

11

to denote the collection {ack-pendingq←p(I) | p, q ∈ P}.

To compare and update primary information, processes will also need to re-
member how their primary events are ordered by v.

Primary graph Let I ⊆ E . The primary graph of I, primary-graph(I), is
the directed graph (V,E) where:

• V =
{

(e, α) | e ∈ primary(I), α ∈ {latest , unack}
}

. For (e, α) ∈ V , α indi-

cates the component of primary(I) to which e belongs. The flag α is required
because e may play multiple roles in primary(I), and these roles may change
independent of each other. For instance, an event that is initially both in
unack(I) and latest(I) may cease to be in latest(I ′) for I ⊆ I ′ but still
remain in unack(I ′).

• For v1, v2 ∈ V , let e1 and e2 be the corresponding events from I. Then,
(v1, v2) ∈ E iff e1 v e2.

As with primary information, the primary graph of a process p in I is just the
graph primary-graph(Ip).

For the moment we shall ignore the issue of assigning bounded time-stamps
to events and assume that events are assigned unambiguous labels by some
mechanism. For instance, as we mentioned earlier, each process could maintain
a local counter and assign an increasing sequence of unique time-stamps to
the events that it participates in.

Our first goal is to exhibit a procedure by which processes update their primary
graphs without relying on the temporal order implicit in the event labels.
Processes will only utilize the information about causality recorded in the
primary graphs. All comparisons and updates of primary information will
based purely on equality of event labels. This feature will allow us to extend
the algorithm smoothly to the case where processes reuse labels.

5 Comparing primary information

Let E be the set of events corresponding to a computation (u, ϕ). Recall that
each ideal I ⊆ E corresponds to a possible partial computation of (u, ϕ). Let us
assume that at the end of any partial computation I, each process maintains
the information primary-graph(Ip) and ack-pending(Ip).

In general, for an ideal I ⊆ E , each pair of processes p and q will have in-
comparable information about I. The events known to both p and q lie in the

12

ideal Ip ∩ Iq. Events lying “above” the intersection are known to one of p or q
but not both.

Suppose that q receives a message from p during the computation. Then, we
have an event eq ∈ E of the form rq←p and a corresponding event ep ∈ E of
the form sp→q such that ϕ(eq) = ep.

Let e′q = max q(eq↓\{eq})—that is, e′q is the maximum q-event strictly below eq.
Thus, e′q↓ represents the state of q’s knowledge before receiving this message
from p. Let I be the ideal ep↓ ∪ e

′
q↓.

There are two possibilities for the information contained in the message sent
at ep.

(i) ep /∈ e′q↓
Either max p(e

′
q↓) is undefined or max p(e

′
q↓) @ ep, so the message sent

at ep has “new” information for q about the state of p. Thus q, on receiving
the message at eq, has to make some non-trivial updates to its primary
information.

(ii) ep ∈ e′q↓
Since ep v max p(e

′
q↓), the message sent at ep and received at eq is

“stale” and should essentially be ignored by q.

Fortunately, it is easy to determine which of the two situations hold.

Proposition 5.1 Let ep be a sp→q event such that ϕ−1(ep) = eq and let e′q =
max q(eq↓ \ {eq}). Then ep v max p(e

′
q↓) iff ep ∈ unackp→q(e

′
q↓).

It is easy to see that if ep ∈ e′q↓ then ep↓ ⊆ e′q↓. For every other process
r, max r(ep↓) v max r(e

′
q↓). It then follows that the only update that q has

to make to its local information is to add ep to the set ack-pendingq←p(eq↓).
The rest of ack-pending(eq↓) and all of primary-graph(eq↓) are inherited from
ack-pending(e′q↓) and primary-graph(e′q↓), respectively.

For the rest of the section, we concentrate on the non-trivial situation where
ep /∈ e′q↓. Then, ep↓ = Ip and e′q↓ = Iq. Our strategy is to arrange for p to
send primary-graph(Ip) and ack-pending(Ip) along with the message sent at
ep. On the other hand, before receiving this message, q’s information consists
of primary-graph(Iq) and ack-pending(Iq). We will establish that q can con-
struct primary-graph(eq↓) and ack-pending(eq↓) if it knows primary-graph(Ip),
ack-pending(Ip), primary-graph(Iq) and ack-pending(Iq).

Our first observation is that if q knows both primary-graph(Ip) and primary-graph(Iq),
it can determine which events in the two primary graphs lie within Ip ∩ Iq and
which lie outside this intersection.

13

Lemma 5.2 Let I ⊆ E be an ideal and p, q a pair of distinct processes.

Then, for each maximal event e in Ip ∩ Iq, either e ∈ latest(Ip)∩ unack(Iq) or

e ∈ unack(Ip) ∩ latest(Iq).

Proof First suppose that Ip \ Iq and Iq \ Ip are both nonempty. Let e be
a maximal event in Ip ∩ Iq. Suppose e is an r-event, for some r ∈ P. Since
Ip \ Iq and Iq \ Ip are both nonempty, it follows that the event e must have /-
successors in both Ip and Iq. However, observe that any event f in E can have
at most two /-successors—one “internal” successor within the process and,
if f is a send event, one “external” successor corresponding to the matching
receive event.

Thus, the maximal event e must be a send event, with a /rr successor er and
a /rs successor es, corresponding to some s ∈ P. Assume that er ∈ Iq \ Ip
and es ∈ Ip \ Iq. Since the r-successor of e is outside Ip, e = max r(Ip), so e
belongs to latest(Ip). On the other hand, e is an unacknowledged sr→s event
in Iq. Thus, e ∈ unackr→s(Iq), which is part of unack(Iq).

Symmetrically, if er ∈ Ip\Iq and es ∈ Iq\Ip, e belongs to unack(Ip)∩latest(Iq).

We still have to consider the case when Ip ⊆ Iq or Iq ⊆ Ip. Suppose that Ip ⊆
Iq, so that Ip∩Iq = Ip. Let e = max p(Iq). Clearly, Ip = e↓ and the only maximal
event in Ip is the p-event e. Since e has a successor in Iq, e must be a send event
and is hence in unack(Ip). Thus, e ∈ unack(Ip) ∩ latest(Iq). Symmetrically, if
Iq ⊆ Ip, the unique maximal event e in Iq belongs to latest(Ip) ∩ unack(Iq).

2

Thus, when q receives p’s primary graph, q can collect together in a set M all
the events that lie in latest(Ip)∩ unack(Iq) and unack(Ip)∩ latest(Iq). Clearly
M ⊆ Ip ∩ Iq and, by the preceding lemma, the events in M subsume the
maximal events in Ip ∩ Iq.

The process q can use M to check whether a primary event e ∈ primary(Ip)∪
primary(Iq) lies inside or outside the intersection—e lies inside the intersection
iff it lies below one of the elements inM . These comparisons can be made using
the edge information in the graphs primary-graph(Ip) and primary-graph(Iq).

Now, it is easy for q to compare the events in latest(Ip) with those in latest(Iq)
to determine which of p and q have more recent information about every other
process r.

Lemma 5.3 Let I ⊆ E be an ideal and p, q a pair of processes. Let e =
max r(Ip) and f = max r(Iq) such that e 6= f . Then, e @ f iff f ∈ Iq \ Ip.
Moreover, one can effectively determine whether f belongs to Iq \ Ip using the

14

information in primary-graph(Ip) and primary-graph(Iq).

Proof We first establish that e @ f iff f ∈ Iq \ Ip. If e @ f and f ∈ Ip then
e 6= max r(Ip), which is a contradiction. Thus, f ∈ Iq \ Ip. On the other hand,
suppose that f ∈ Iq \ Ip. If f @ e, then f ∈ Ip since Ip is an ideal, which is a
contradiction. Since f 6= e and all r-events are totally ordered by v, we must
have e @ f .

Next, we have to show that one can effectively determine whether f be-
longs to Iq \ Ip using the information available in primary-graph(Ip) and
primary-graph(Iq). Observe that f ∈ Iq \ Ip iff f /∈ Ip ∩ Iq. We know that
the set of events M = (latest(Ip) ∩ unack(Iq)) ∪ (unack(Ip) ∩ latest(Iq)) is
contained in Ip ∩ Iq and subsumes all the maximal events in Ip ∩ Iq. Thus,
f ∈ Ip ∩ Iq iff f is dominated by some element from M . Since all events in
M lie in primary(Ip) and primary(Iq), this can be checked using the edge
information in primary-graph(Ip) and primary-graph(Iq).

2

Recall that for an ideal J and a pair of distinct processes r, s

unackr→s(J) = {e = sr→s | ϕ
−1(e) /∈ Jr}

Once q has compared all events of the form max r(Ip) and max r(Iq), it can
easily update its sets unackr→s(Iq), where r 6= q. The process that has better
information about r also has better information about unacknowledged events
of the form sr→s in I. In other words, q inherits the sets unackr→s(Ip) for every
process r such that max r(Ip) is more recent than max r(Iq). On the other hand,
if max r(Ip) is older than max r(Iq), then q ignores p’s sets unackr→s(Ip) since
it already has better information about these events. Formally, we have the
following.

Proposition 5.4 For every pair of processes (r, s) such that r 6= q,

unackr→s(eq↓) =

unackr→s(Ip) if max r(Iq) @ max r(Ip)

unackr→s(Iq) otherwise

Recall that eq was the event where q received p’s message sent at ep. At
this stage, using the data in primary-graph(Ip) and primary-graph(Iq), q has
updated all of primary(eq↓) except for the sets {unackq→r(eq↓)}r∈P . Process
q has also yet to update ack-pending(eq↓).

We first describe how to construct ack-pending(eq↓). We begin by purging from

15

ack-pendingq←p(Iq) any event e such that ϕ−1(e) no longer appears in unackp→q(eq↓).
We then add the newly sent event ep to ack-pendingq←p(Iq). More formally,
ack-pendingq←p(eq↓) = (ack-pendingq←p(Iq) ∩ unackp→q(eq↓)) ∪ {ep}. For s 6=
p, we perform a similar update to obtain ack-pendingq←s(eq↓), except we
don’t add ep at the end. In other words, for s 6= p, ack-pendingq←s(eq↓) =
ack-pendingq←s(Iq)∩ unacks→q(eq↓). To fill in the rest of ack-pending(eq↓), we
need the following observation, which we state without proof.

Proposition 5.5 For every pair of processes (r, s) such that s 6= q,

ack-pendings←r(eq↓) =

ack-pendings←r(Ip) if max s(Iq) @ max s(Ip)

ack-pendings←r(Iq) otherwise

Process q can now use the information in ack-pending(eq↓) to update the sets
{unackq→r(Iq)}r∈P by purging acknowledged events from these lists. Formally,
for every process r, unackq→r(eq↓) = unackq→r(Iq) \ ack-pendingr←q(eq↓).

Having constructed the sets latest(eq↓) and unack(eq↓), we need to add edges
between the (annotated) events in these sets to obtain the graph primary-graph(eq↓).

Let f1 = (e1, α1), f2 = (e2, α2) ∈ primary(eq↓), where e1, e2 ∈ E and α1, α2 ∈
{latest , unack}. Recall that we draw an edge from f1 to f2 in primary-graph(eq↓)
iff e1 v e2.

If both f1 and f2 came from primary(Ip), then e1 v e2 iff there was an edge
from f1 to f2 in primary-graph(Ip). A symmetric situation applies if both f1

and f2 were contributed by primary(Iq).

The only interesting case is when f1 and f2 originally came from different
processes. Without loss of generality, suppose that f1 came from primary(Ip)
and f2 from primary(Iq). From the definition of primary information, it is not
difficult to argue that the underlying events e1 and e2 are different from each
other. Our method for comparing primary events then guarantees that e1 was
in Ip \ Iq and e2 was in Iq \ Ip. Thus, e1 and e2 are unordered in E and there
should be no edge in either direction between f1 and f2 in primary-graph(eq↓).

The following general statement summarizes the results of this section.

Lemma 5.6 Let ep be a sp→q event in E such that ϕ−1(ep) = eq. Let e′q =
max q(eq↓\{eq}). Then, q can construct primary-graph(eq↓) and ack-pending(eq↓)
from primary-graph(ep↓), ack-pending(eq↓), primary-graph(e′q↓) and ack-pending(e′q↓).

16

6 Bounded time-stamps

To make the protocol described in the previous section effective, we have
to bound the amount of information recorded in the primary graph of each
process by limiting the size of the labels used to identify events.

As in the previous section, assume that q receives a message from p at eq, with
ep = ϕ(eq) and e′q = max q(eq↓ \ {eq}). When constructing primary-graph(eq↓)
and ack-pending(eq↓), the only events whose labels have to be compared are
those that lie in primary-graph(ep↓)∪primary-graph(e′q↓)∪{ack-pendingq←r(e

′
q↓)}r∈P∪

{ack-pendingr←q(e
′
q↓)}r∈P . In other words, q never needs to compare labels of

events in ack-pending(ep↓) or sets of the form
ack-pendingr←s(e

′
q↓), q /∈ {r, s}. Call an event e “current” in I if e belongs

to primary(Ip)∪{ack-pendingp←q(Ip)}q∈P ∪{ack-pendingq←p(Ip)}q∈P for some
process p.

Let N be the number of processes in the system. Since the underlying compu-
tation is B-bounded, we know that there are at most N +BN2 distinct events
in primary(Ip) for process p—there are at most N events in latest(Ip) and for
each pair of processes (q, r), there at most B events in the sets unackq→r(Ip).
Similarly, there are at most BN events each in {ack-pendingp←q(Ip)}q∈P and
{ack-pendingq←p(Ip)}q∈P . Thus, at any given time, the number of events across
the system that are current is bounded by N((2B+1)N +BN2).

Each send event sp→q begins by being current—the moment the message is
sent, the event is added to the list of unacknowledged messages from p to q.
Eventually, q acknowledges this message, p purges it from its unacknowledged
list and, finally, q eliminates it from its list of pending acknowledgments.
Meanwhile, as the computation progresses, this event may get added to the
primary information or pending acknowledgments of other processes. However,
gradually it recedes into the past, until it drops out of the primary information
and pending acknowledgments of all processes. At this time, the label assigned
to this event can be reused—the old event with the same label can never

become current again.

Processes can keep track of which events in the system are current by main-
taining one additional level of data, called secondary information.

Secondary information Let I be an ideal. The secondary information of I
is the collection of (indexed) sets primary(e↓) for each event e in primary(I).
This collection of sets is denoted secondary(I).

The following lemma says that the only p-events that can be current in the
system are those that occur in p’s secondary information.

17

Lemma 6.1 Let I ⊆ E be an ideal and e a p-event that belongs to primary(Iq)∪
ack-pendingq←p(Iq) for some process q. Then, e ∈ secondary(Ip).

Proof We begin with a simple observation, which we state without proof.
Let f be an event and I, J be ideals such that f ∈ primary(I) and f ∈ J ⊆ I.
Then, f ∈ primary(J) as well.

Now, suppose that e ∈ primary(Iq). Clearly, e ∈ Ip ∩ Iq, so, by the preceding
observation, e ∈ primary(Ip∩Iq). By Lemma 5.2, we know that each maximal
element f in Ip ∩ Iq belongs to unack(Ip)∩ latest(Iq) or latest(Ip)∩ unack(Iq).
Thus, e belongs to primary(f↓) for some f ∈ unack(Ip)∪ latest(Ip), whence e
belongs to secondary(Ip).

On the other hand, suppose that e ∈ ack-pendingq←p(Iq). It follows that e ∈
unackp→q(Iq). Once again, e belongs to unack(f↓) for some f ∈ unack(Ip) ∪
latest(Ip), so e belongs to secondary(Ip).

2

We will use the preceding result in the following form.

Corollary 6.2 Let e be a p-event such that e /∈ secondary(Ip). Then e /∈
primary(Iq) ∪ ack-pendingq←p(Iq) for any q ∈ P. In other words, if e /∈
secondary(Ip) then e is not current in I.

Our update procedure does not rely on the temporal order implicit in event
labels. So long as all processes that refer to the same label in their primary
information are actually talking about the same event, reusing labels should
cause no confusion. Therefore, if p knows that no p-event labelled ` is currently
part of the primary information of any process in the system, it can safely use
` to time-stamp the next message that it sends.

Secondary information can be updated in a straightforward manner when
we update primary information—if q inherits an event e from p’s primary
information, it also inherits the secondary information primary(e↓) associated
with e. Notice that it suffices to maintain secondary information as an indexed
set—we do not need to maintain secondary graphs as we do primary graphs.

The number of events in secondary(e↓) is at most (N+BN2)2; we have already
seen that primary(e↓) has at most N+BN2 events and corresponding to each
of these primary events, we have N +BN2 secondary events.

This at once gives us a protocol that solves the gossip problem for B-bounded
computations.

18

The gossip protocol

Let L be a finite set of labels of such that |L| > (N + BN2)2. All processes
use the set L to time-stamp messages. Each process p maintains its primary
graph primary-graphp = (Vp, Ep) where Vp consists of the (indexed) sets of
labels latestp and unackp. In addition, p also maintains the (indexed) set of
labels ack-pendingp.

A typical element of latestp is a pair of the form (`, q)—this will mean that
the maximum q-event known to p is time-stamped `. Elements of unackp and
ack-pendingp are triples. An entry (`, q, r) in unackp signifies that, as far as p
knows, the sq→r event labelled ` has not been acknowledged. In the same vein,
a typical entry (`, q, r) in ack-pendingp denotes that p knows that the message
from q to r time-stamped ` has actually been delivered at r but, as far as p
knows, r believes that q does not know that this message has been received.

Finally, the process p maintains its secondary information secondaryp as an
indexed set of labels. If ē is a tuple from latestp ∪ unackp, then an event in
latest(ē↓) will be represented as (`′, r, ē), indicating that the maximum r-event
in ē↓ is time-stamped `′. In a similar manner, an entry (`′, r, s, ē) in unack(ē↓)
signifies that there is a sr→s event time-stamped `′ that is unacknowledged
within ē↓.

Initially, for each p, latestp, unackp, ack-pendingp and secondaryp are empty.

Sending a message When p sends a message to q it does the following:

• Choose a label ` from L that does not appear as the first component of any
tuple in secondaryp.

• Remove the old event (`′, p) from latestp, if it exists. Also remove all asso-
ciated events from secondaryp—that is, tuples of the form (`′′, p′, `′, p) and
(`′′, p′, p′′, `′, p).

• Add (`, p, q) to unackp and (`, p) to latestp. Add an edge in Ep from each
tuple in latestp ∪ unackp to the new tuples (`, p, q) ∈ unackp and (`, p) ∈
latestp.

• For each pair (`′, p′) in latestp, add (`′, p′, `, p) to secondaryp. Similarly, for
each triple (`′, p′, p′′) in unackp, add (`′, p′, p′′, `, p) to secondaryp.

• Send primary-graphp and secondaryp to q.

Receiving a message On receiving a message from p, q does the following:

• Extract the label ` of the new message.
• Add the triple (`, p, q) to ack-pendingq.

19

• If (`, p, q) does not already belong to unackq then update primary-graphq,
ack-pendingq and secondaryq by comparing primary-graphp, ack-pendingp

and secondaryp in the message with primary-graphq, ack-pendingq and secondaryq

currently maintained by q.

On sending a message, p chooses a label ` that is not currently in use in
the system and uses ` to time-stamp the message. It then replaces the latest
p label in latestp by ` and also adds ` to the list of unacknowledged sp→q

events. Finally, it places the new event at the “top” of its primary graph and
sets the secondary information with respect to the new event to be its overall
primary information. It then sends its current data structures primary-graphp,
ack-pendingp and secondaryp to q.

When q receives the message labelled `, it first adds this message to its set
ack-pendingq of messages that have been received but whose receipt is as yet
unknown to p. (Extracting the label of the message can be done by looking,
for instance, for the E∗p-maximal event in primary-graphp). It then checks
whether the message is new. If so, it updates its primary graph and secondary
information following the results in Lemmas 5.2 and 5.3 and Propositions 5.4
and 5.5.

Message complexity

Lemma 6.3 Let N be the number of processes in the system. For each process

p, the information in primary-graphp and secondaryp can be written down

using at most O(B2N4(logB + logN)) bits.

Proof We know that |L| is O(B2N4). So each label in L can be written down
using O(logB+logN) bits. Similarly, each process name can be written down
using O(logN) bits. So each tuple in the sets latestp, unackp, ack-pendingp

and secondaryp requires only O(logB + logN) bits to write down.

Since there areO(BN2) entries in primaryp, the edge relation Ep of primary-graphp

can be represented in terms of an adjacency matrix, using O(B2N4) bits.
Hence, all of primary-graphp can be written down in O(B2N4) bits.

The real bottleneck turns out to be secondaryp. For each of the O(BN2)
elements in ē ∈ primaryp, we have to maintain primary(ē↓), which requires
O(BN2(logB + logN)) bits. Overall secondaryp requires O(B2N4(logB +
logN)) bits to write down.

2

20

Putting together all the results we have proved so far, we can state the fol-
lowing theorem

Theorem 6.4 The protocol we have described solves the gossip problem for B-

bounded computations with only a bounded amount of additional information

being added to each message of the underlying computation.

7 Applications in distributed algorithms

The time-stamping protocol we have described can be used to implement
natural solutions to several standard problems in distributed computing.

Our first example considers the problem of recording consistent global states.
The global state of a message-passing system consists of the local state of each
process, together with the state of each channel (that is, information about
messages that are as yet undelivered). The problem of recording consistent
global states is the following: each process in the system should record infor-
mation locally about the computation such that this local information can be
collated to arrive at a “legal” global state that could potentially have been
reached during the computation.

In [2], Chandy and Lamport describe an algorithm to generate such a dis-

tributed snapshot of the system. In their algorithm, when a process decides
that a snapshot of the system state is required, it records its local state and
sends a special marker message to each process in the system. Across the sys-
tem, other processes may also spontaneously record their state. Once a process
records its state, it begins recording the sequence of messages received on each
incoming channel. It can be shown that the local states and local channel in-
formation recorded at each process at the end of the protocol constitutes a
legal global state.

The Chandy-Lamport algorithm requires an additional protocol, with its own
messages, to be run alongside the main computation. In contrast, Yadulla [19]
describes a scheme for recording global states that runs in the background
of each computation and uses the time-stamping protocol described in this
paper. In Yadulla’s proposal, each process p uses the information contained
in the sets latest(I), unack(I) and ack-pending(I) to reconstruct the global
state of Ip. Given this information about Ip for each p ∈ P, it is easy to
reconstruct the global state of the system at I. It is also worth noting that the
Chandy-Lamport algorithm assumes that messages are delivered in fifo order,
while Yadulla’s solution can also be applied to systems where messages may
get reordered in transit. More details are available in [19].

21

Another example of the use of time-stamping in distributed algorithms is in
implementing causal ordering. Suppose that individual channels in a message-
passing system behave in a fifo fashion. This does not prevent information
from arriving out of order globally. For instance, p may send a message m1 to
q, followed by a message m2 to r. After this, r may send a message m3 to q.
Causal order is violated if the message m3 from r is received by q before the
message m1 from p.

One way to solve this problem is to add a time-stamp to each message and
maintain a local buffer at each process. Whenever a message is received, its
time-stamp is checked. The time-stamp should contain enough information
to determine whether the arrival of this message has violated causal order. If
there is no violation of causal order, the main message may be read by the
recipient. Otherwise, the message is added to the local buffer to be read later.

The first time-stamping protocol to ensure causal ordering was proposed in
[18]. Establishing the correctness of the time-stamping scheme of [18] is rather
complicated and a protocol that uses a simpler time-stamping scheme was
introduced in [17]. It turns out that the bounded time-stamping protocol de-
scribed here can be used to derive a much more natural time-stamping scheme
for causal ordering [9]. Moreover, unlike the time-stamps of [18] and [17] which
can grow arbitrarily large, the time-stamping scheme of [9] guarantees the use
of only bounded time-stamps for all B-bounded computations.

Acknowledgments We thank the referees for suggesting some simplifica-
tions in the notation and proofs.

References

[1] R. Alur and M. Yannakakis: Model checking of message sequence charts.
Proc. CONCUR’99), Springer LNCS 1664 (1999) 114–129.

[2] K.M. Chandy and L. Lamport: Distributed snapshots: Determining global
states of distributed systems, ACM Trans. Comput. Sys. 3(1) (1985) 63–75.

[3] R. Cori and Y. Metivier: Approximations of a trace, asynchronous
automata and the ordering of events in a distributed system, Proc. ICALP
’88, Springer LNCS 317 (1988) 147–161.

[4] R. Cori, Y. Metivier and W. Zielonka: Asynchronous mappings and
asynchronous cellular automata, Inform. and Comput., 106 (1993) 159–202.

[5] D. Dolev and N. Shavit: Bounded concurrent time-stamps are constructible,
Proc. ACM STOC (1989) 454–466.

22

[6] C. Dwork, O. Waarts: Simple and efficient bounded concurrent time-
stamping or bounded concurrent time-stamps are comprehensible, Proc. 24th
ACM STOC (1992) 655–666.

[7] J.G. Henriksen, M. Mukund, K. Narayan

Kumar and P.S. Thiagarajan: Towards a theory of regular MSC languages,
Report RS-99-52, BRICS, Computer Science Department, Aarhus University,
Denmark (1999).

[8] A. Israeli and M. Li: Bounded time-stamps, Proc. 28th IEEE FOCS (1987)
371–382.

[9] S. Krishnamurthy and M. Mukund: Implementing Causal Ordering with
Bounded Time-stamps, Report TCS-95-7, Chennai Mathematical Institute,
Chennai, India (1995).

[10] L. Lamport: Time, clocks and the ordering of events in a distributed system,
Comm. ACM 17(8) (1978) 558–565.

[11] L. Lamport and N. Lynch: Distributed computing: Models and methods, in:
J. van Leeuwen (ed.), Handbook of Theoretical Computer Science: Volume B,
North-Holland, Amsterdam (1990) 1157–1200.

[12] M. Mukund, K. Narayan Kumar, J. Radhakrishnan and M. Sohoni:
Robust asynchronous protocols are finite-state, Proc. ICALP ’98, Springer
LNCS 1443, (1998) 188–199.

[13] M. Mukund and M. Sohoni: Keeping track of the latest gossip in a
distributed system, Distributed Computing, 10, 3, (1997) 137–148.

[14] M. Mukund and P.S. Thiagarajan: Linear Time Temporal Logics over
Mazurkiewicz Traces, Proc. MFCS ’96, Springer LNCS 1113, (1996) 32–62.

[15] A. Muscholl, D. Peled: Message sequence graphs and decision problems
on Mazurkiewicz traces. Proceedings MFCS’99, Springer LNCS 1672, (1999)
81–91.

[16] E. Rudolph, P. Graubmann and J. Grabowski: Tutorial on message
sequence charts, in Computer Networks and ISDN Systems—SDL and MSC,
Volume 28 (1996).

[17] M. Raynal, A. Schiper and S. Toueg: The causal ordering abstraction and
a simple way to implement it, Inform. Proc. Letters, 39 (1991), 343–350.

[18] A. Schiper, J. Eggli and A. Sandoz: A new algorithm to implement causal
ordering, in Proc. 3rd Int. Workshop on Distributed Algorithms, Nice, Springer
LNCS 392, (1989), 219–232.

[19] S. Yadulla: Global states of distributed systems. M. Tech thesis, Department
of Computer Science and Engg, Indian Institute of Technology Bombay (1999).

[20] W. Zielonka: Notes on finite asynchronous automata. R.A.I.R.O.—Inf.
Théor. et Appl., 21 (1987) 99–135.

23

