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Abstract
In this paper, we prove a Szegö type limit theorem on `2(Zd).

We take the self-adjoint operator H = −∆ + V on `2(Zd), where

(∆u)(n) =
∑
|n−k|=1

(u(k)− u(n)) and the operator V is the multipli-

cation by a positive sequence {V (n),n ∈ Zd} with V (n) → ∞ as
|n| → ∞. We take the orthogonal projection πλ onto the subspace, in
`2(Zd), spanned by eigenfunctions of H with eigenvalues ≤ λ. Let B
be a zeroth order self-adjoint pseudo-difference operator with symbol
b ∈ S1,0,∞(Td × Zd). We then show for “nice functions” f , that

lim
λ→∞

Tr(f(πλBπλ))

Tr(πλ)
= lim

λ→∞

1

(2π)d

∑
V (n)≤λ

∫
Td f(b(x,n)) dx∑
V (n)≤λ 1

.

1 Introduction

In 1952, G. Szegö considered a linear operator Tf on L2((0, 2π)), of multi-
plication by f , associated with a positive function f ∈ C1+α[0, 2π], α > 0.
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He took the orthogonal projections {Pn} onto a linear subspace of L2[0, 2π]
spanned by the functions {eimθ : 0 ≤ m ≤ n; 0 ≤ θ < 2π} for each n. He
then proved the following relation for such a triple (f, Tf , {Pn}).

lim
n→∞

1

n+ 1
log detPnTfPn =

1

2π

∫ 2π

0

log f(θ)dθ. (1) szeg1

The orthogonal projections Pn coincide with the spectral projections πλ of
the self-adjoint operator − d2

dx2
on L2[0, 2π], with a periodic boundary condi-

tion, corresponding to the interval [0, λ) with n < λ < n + 1. The result in
equation (

szeg1
1) is the well known as Szegö limit theorem. We refer to

sze1,sze2
[12, 6] for

details and related results. More specifically, if f is a bounded real-valued
integrable function then the eigenvalues {λni }ni=1 of PnTfPn are contained in
[inf f, sup f ]. This result was generalized to continuous functions F (instead
of the logarithm in (

szeg1
1)) defined on [inf f, sup f ], in Sect. 5.3 of

sze2
[6]. The result

for such F is,

lim
n→∞

1

n

n∑
i=1

F (λni ) =
1

2π

∫ 2π

0

F (f(θ))dθ.

Notice that the left hand side here can be seen to be the limit of

Tr(F (PnTfPn))/Tr(Pn)

where Tr(A) denotes the trace of the operator A, eimθ is an eigenfunctions
of ∆ = − d2

dx2
, with a periodic boundary condition and the asymptotic of the

functional
ρλ(F ) = Tr(πλF (πλTfπλ)πλ) =

∑
k

F (µk(λ))

is precisely the sum of Dirac measures located at the eigenvalues µk(λ) of
the operator πλTfπλ. Similar results were obtained for various classes of
differential and pseudo-differential operators in

Jan
[2],

gui
[8],

hor
[9] and

zel
[15].

In
zel
[15], Zelditch considered a Schrödinger operator on Rn of the form

H = −1
2
∆ + V , where V is a smooth positive function that grows like

V0|x|k, k > 0 at infinity. He took a 0- th order self-adjoint pseudo-differential
operator A associated with a symbol a(x, ξ) relative to Beals -Fefferman
weights ϕ(x, ξ), ϕ(x, ξ) = (1 + |ξ|2 + V (x))1/2 and proved the following gen-
eralization of Szegö type theorem: For any continuous function f ,

lim
λ→∞

Trf(πλAπλ)

rank πλ
= lim

λ→∞

∫
ϕ(x,ξ)≤λ f(a(x, ξ)) dxdξ

Vol(ϕ(x, ξ) ≤ λ)
,
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assuming one of the limits exists. Such asymptotic spectral formulae express-
ing the relation between functions of pseudo-differential operators and their
symbols is an important and interesting problem in mathematical analysis.
In this paper we aim to develop similar formulae for some pseudo-difference
operators on the lattice.

To establish a Szegö type theorem, it is clear that we need to consider
ratios of distribution functions associated to different measures and their
asymptotic behavior.

The asymptotic limit of such ratios is computed using a Tauberian theo-
rem where some transform of these measures is considered and the limit taken
for such transforms. For example, Zelditch

zel
[15] used the Laplace transform

(via Karamata’s Tauberian theorem (
wid
[14], p-192) whereas Robert

rob
[10] sug-

gested the use of Stieltjes transform (via Keldysh Tauberian theorem) in
kel
[3].

The application of Keldysh’s theorem requires one of the measures µ or ν to
be absolutely continuous. We do not have this feature in our problem, so we
use the Tauberian theorem of Grishin-Poedintseva theorem

gp
3.4 (see

gri
[7]) and

a theorem of Laptev-Safarov (see
LapSaff2
[5]), for estimating the errors, to prove our

main theorem (Theorem
szego
1.1).

There is extensive work on the Szegö’s theorem associated with orthogo-
nal polynomials in L2(T, dµ) with µ some probability measure on T, we refer
to the monumental work of Barry Simon

sim
[13] for the details.

We, however, concentrate on higher dimensions where not much is known
and to our knowledge our results are new in the lattice case. We consider
operators of the form

H = −∆ + V (2) eqn0

on `2(Zd), where ∆ is the self-adjoint operator

(∆u)(n) =
∑
|n−k|=1

(u(k)− u(n))

which is unitarily equivalent to multiplication by the function

2
d∑
j=1

cos(θj)− 2d, θj ∈ [0, 2π), j = 1, . . . , d

and V is multiplication by a positive sequence

V (n) =

{
1, n = 0

|n|β, κ ∈ (0, 1) n 6= 0,
(3) eqn1

3



Then we note that −∆ and V are positive operators and so H is a positive
operator on `2(Zd) and the choice of V makes (H − i)−1 compact showing
that H has discrete spectrum. The eigenfunctions of H form a complete
orthogonal basis for `2(Z). We denote the spectral projection of H by EH()
and set πλ = EH((0, λ]).

For a bounded self-adjoint operator B we set K = [−‖B‖, ‖B‖] ⊂ R,
so that the spectra of operators B and πλBπλ lie in K for all λ and set

L2(Td) = L2
(
Td, dx

(2π)d

)
. Then our main theorems are the following.

szego Theorem 1.1. Let H and V be as in equation (
eqn0
2,

eqn1
3). Let b be a bounded real

valued measurable function on Td, let Mb be the operator of multiplication by
b on L2(Td) and B its unitary equivalent on `2(Zd) under the Fourier Series.

Then for all f ∈ C(K), we have

lim
λ→∞

Tr (f(πλBπλ))

Tr(πλ)
=

1

(2π)d

∫
Td
f(b(x)) dx. (4)

We recollect some facts on toroidal symbols from Ruzhanski-Turunen
mic
[11]

below. A linear operatorA on L2(Td) associated with symbols σ(x,n), (x,n) ∈
Td×Zd, (the reader should note that the lattice variable ξ appearing in

mic
[11]

should be replaced by m,n etc in our notation) is defined by

(Aφ)(x) =
∑
n∈Zd

1

(2π)d

∫
Td
ei(x−y)·nσ(x,n)φ(y) dy (5) symbol

where φ ∈ C∞(Td) and the symbol σ ∈ C∞(Td × Zd), (a ∈ C∞(Td × Zd)
means a(·,n) ∈ C∞(Td) for all n ∈ Zd). Then A extends to a bounded
linear operator and hence (via the unitary isomorphism implemented by the
Fourier series, call it U∗, between L2(Td) and `2(Zd)) also a bounded operator
on `2(Zd).

We will say that b(n,x) is the symbol of a bounded linear operator B on
`2(Zd) if it is the symbol of a bounded linear operator on L2(Td) unitarily
equivalent to B. It is then clear that every symbol σ ∈ C∞(Td × Zd) gives
rise to a bounded operator B on `2(Zd).

We take the partial difference operator ∆nj given by (∆njφ)(m) = φ(m+
ej)−φ(m), ej being the unit vector in the jth direction in Zd. Denoting N0 =
N∪{0} and the multi index α = (α1, . . . , αd), we define the difference operator

∆α
n = ∆α1

n1
∆α2
n2
· · ·∆αd

nd
for αj ∈ N0, j = 1, . . . , d. Let 〈n〉 = (1 + |n|2) 1

2 . The
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class of rapidly decreasing sequences is given by

S(Zd) = {φ(n) : |φ(n)| ≤ Cφ,M〈n〉−M , ∀ M ∈ N}.

Let m ∈ R, 0 ≤ ρ, δ ≤ 1. The toroidal symbol class Smρ,δ(Td × Zd) is defined

as all σ ∈ C∞(Td × Zd) such that

|∆α
nD

β
xσ(x,n)| ≤ Cσαβm〈n〉m−ρ|α|+δ|β|, ∀(x,n) ∈ Td × Zd and α, β ∈ Nd

0,

where Dβ
x = Dβ1

x1
Dβ2
x2
· · ·Dβd

xd
, D

βj
xj = ∂βj

∂xβj
. The class S0

1,0 is denoted simply by
S1,0. Let us define a subclass of symbols where all the derivatives in x also
have uniform bounds.

Sm1,0,∞(Td × Zd) = {σ ∈ Sm1,0(Td × Zd) : Cσαβm are independent of β}.

For example the symbol cos(x · x + γn) with γn → 0 as |n| → ∞ is in
S1,0,∞(Td × Zd). We denote S0

1,0,∞ by S1,0,∞.
The Theorem 4.4 of

mic
[11] gives an expression for the symbol of the adjoint

B∗ of such a B, namely,

σ∗(x,n) =
∑
α≥0

1

α!
∆α

n∆(α)
x σ(x,n), (6) adjoint

and asserts that σB∗ ∈ Smρ,δ(Td×Zd) whenever σ ∈ Smρ,δ(Td×Zd). Therefore,

it is clear from Theorem 4.4 of
mic
[11] that given a symbol σ ∈ Smρ,δ(Td × Zd),

we can form the symbol σ∗ also in Smρ,δ(Td × Zd) and consider a self-adjoint
operator associated with the symbol σ + σ∗. It is also clear from equation
(
adjoint
6) that σ∗ ∈ S1,0,∞(Td × Zd) whenever σ is. Therefore we are justified

in assuming that there are symbols in this class giving rise to self-adjoint
operators.

Now we are in a position to state our next theorem.

szego2 Theorem 1.2. Let H and V be as in equation (
eqn0
2,

eqn1
3). Consider a bounded

self-adjoint operator B on `2(Zd) associated with a symbol b ∈ S1,0,∞(Td×Zd).
Then for all f ∈ C(K), we have

lim
λ→∞

Tr (f(πλBπλ))

Tr(πλ)
= lim

λ→∞

1
(2π)d

∫
Td
∑

V (n)≤λ f(b(x,n)) dx∑
V (n)≤λ 1

. (7)
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2 The Proofs:

Let #S denote the cardinality of the set S. Consider H,V as in equations
(
eqn0
2,

eqn1
3). Since the operators (H + λ)−1 and (V + λ)−1 are compact operators

for λ > 0, choose a suitable m ∈ N such that (V + λ)−m and (H + λ)−m are
both trace class operators on `2(Zd).

lem1 Lemma 2.1. Consider the self-adjoint operators V and H as given in equa-
tions (

eqn0
2,
eqn1
3). Then for a suitable m ∈ N for which (V + λ)−m and (H + λ)−m

are trace class operators on `2(Zd) we have,

Tr((H + λ)−m)

Tr((V + λ)−m)
− 1 → 0

as λ→∞.

Proof: Since the operators −∆ and (V + λ)−1 are bounded and positive we
write

(H + λ) = (V + λ)
1
2 ((V + λ)−

1
2 (−∆)(V + λ)−

1
2 + 1)(V + λ)

1
2 .

Therefore

(H + λ)−m = (V + λ)−m + (V + λ)−
m
2

(
(1 +Kλ)

−m − 1)
)

(V + λ)−
m
2 , (8) expand

where Kλ = (V + λ)−
1
2 (−∆)(V + λ)−

1
2 . Henceforth we denote by I, the

identity operator. Since Kλ is a positive operator the expression in (
expand
8) makes

sense and we also have ‖(I + Kλ)
−1‖ ≤ 1 for any λ > 0. Taking trace on

both sides of the above equation and using the inequality |Tr(XCX)| ≤
‖C‖Tr(X2), when X is a positive trace class operator and C is a bounded
operator on `2(Zd), we get

Tr((H + λ)−m)− Tr((V + λ)−m)

= Tr
(
(V + λ)−

m
2

(
(I +Kλ)

−m − 1)
)

(V + λ)−
m
2

)
≤ Tr((V + λ)−m)‖

(
(1 +Kλ)

−m − 1)
)
‖

≤ m‖Kλ‖Tr((V + λ)−m)

≤ m‖∆‖‖(V + λ)−1‖Tr((V + λ)−m).

Therefore,

Tr((H + λ)−m)

Tr((V + λ)−m)
− 1 ≤ 4dm‖(V + λ)−1‖ → 0 as λ→∞.
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Denote the distribution functions of the measures Tr(EH(·)) and Tr(EV (·))
respectively by φH and φV . Then we have

φH(λ) = Tr(πλ), φV (λ) = #{n : V (n) ∈ (0, λ]}.

Then Lemma
lem1
2.1 immediately gives us the Weyl formula for the functions

Tr(πλ) as the following corollary. In the following [r] denotes the largest
integer smaller than or equal to r.

cor1 Corollary 2.2. Consider V and H self-adjoint operators as given in equa-
tions (

eqn0
2,
eqn1
3). We have the following asymptotic :

1. φV is multiplicatively continuous.

2. Tr(πλ) = #{n : V (n) ∈ (0, λ]} as λ→∞.

3. Tr(πλ) = 2d[λ]
d
κ + o(λ

d
κ ) as λ→∞.

4. supµ≤λ (Tr(πµ+r)−Tr(πµ)) ≤ Tr(πλ)
(
d
κ
r−1
λ−1 +O

(
1

[λ−1]

))
, as λ→∞.

Proof: (1) The function φV is given by

φV (λ) = #{n : V (n) ≤ λ} = #{n : |n|κ ≤ λ}
= #{n : |n| ≤ [λ]1/κ} = (2[λ]

1
κ + 1)d.

(9) eqn6

Clearly limλ→∞ limτ→1 φV (τλ)/φV (λ) = 1. On the other hand, using the
notation (r) for the fractional part of r, we see from equation (

eqn6
9) that

φV (τλ)

φV (λ)
=

(2[τλ]
1
κ + 1)d

(2[λ]
1
κ + 1)d

=
(2(τλ− (τλ))

1
κ + 1)d

(2(λ− (λ))
1
κ + 1)d

= τ d/κ

(
2
(

1− (τλ)
τλ

)1/κ
+ 1
|τλ|1/κ

)d
(

2
(

1− (λ)
λ

)1/κ
+ 1

λ1/κ

)d .

(10)

Taking the limit over λ first and then over τ we see that

lim
τ→1

lim
λ→∞

φV (τλ)

φV (λ)
= 1.
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Lemma
lem1
2.1 implies that∫ ∞
0

λm

(λ+ u)m
dφH(u)/

∫ ∞
0

λm

(λ+ u)m
dφV (u)→ 1, as λ→∞.

Applying Theorem
gp
3.4 of Grishin-Poedintseva we get

φH(λ)/φV (λ)→ 1, as λ→∞. (11) eqn-ratio

This proves (2). Part (3) follows directly from (2) and equation (
eqn6
9). Using

the asymptotic (3), bounding the terms in the ratio Tr(πµ+r)

Tr(πλ)
we get

2d sup
µ≤λ

([µ]
d
κ − [µ− r]

d
κ ) ≤ 2d[λ]

d
κ

(
1−

(
1− r − 1

λ− 1

) d
κ

)

≈ 2d[λ]
d
κ

(
d

κ

r − 1

λ− 1
+O

(
1

[λ− 1]

))
the estimate in (4).

This corollary implies that φH is also a multiplicatively continuous func-
tion from the following Lemma.

lem3 Lemma 2.3. The function φH considered above is multiplicatively continu-
ous at infinity.

Proof: We will show that if ϕ, χ are two distribution functions satisfying

lim
r→∞

ϕ(r)

χ(r)
= 1,

then ϕ is multiplicatively continuous whenever χ is. Clearly

lim
r→∞

lim
τ→1

ϕ(τr)

ϕ(r)
= lim

r→∞

ϕ(r)

ϕ(r)
= 1.

Now consider

lim
τ→1

lim
r→∞

ϕ(τr))

ϕ(r)
= lim

τ→1
lim
r→∞

ϕ(τr)
χ(τr)

ϕ(r)
χ(r)

= lim
τ→1

1 = 1,

(12)

where in the last step we used the assumption on φ/χ and the fact that χ
is multiplicatively continuous. Since φV is multiplicatively continuous, the
above result together with equation (

eqn-ratio
11) now shows that φH is multiplica-

tively continuous.
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lem2 Lemma 2.4. Suppose B is a bounded positive operator on `2(Zd), then, for
m ∈ N for which (V + λ)−m (and hence (H + λ)−m) is trace class, we have,

Tr(B(H + λ)−m)

Tr(B(V + λ)−m)
− 1 → 0

as λ→∞.

Proof: The proof is similar to that in the above lemma, except that we
have to do a bit more of algebra in handling the error term, namely, using
equation (

expand
8) we write

Tr(B(H + λ)−m) = Tr(B(V + λ)−m)

+ Tr
(
B(V + λ)−

m
2

(
(1 +Kλ)

−m − 1)
)

(V + λ)−
m
2

)
.

(13)

we set Wλ = (V + λ)−
m
2 B(V + λ)−

m
2 which is a positive trace class, so we

rewrite the error term as

Tr
(
B(V + λ)−

m
2

(
(1 +Kλ)

−m − 1)
)

(V + λ)−
m
2

)
≤ Tr

(
Wλ(1 +Kλ)

−m − 1)
)

= Tr
(
W

1
2
λ

(
(1 +Kλ)

−m − 1)W
1
2
λ

))
≤ m‖∆‖‖(V + λ)−1‖Tr(B(V + λ)−m).

The rest of the proof is as in the Lemma
lem1
2.1 using the above estimate.

prop1 Proposition 2.5. Consider V,H as in equations (
eqn0
2,

eqn1
3). Then for any bounded

positive operator B and m ∈ N be such that (V + λ)−m is trace class. Then
we have

(i) The following equality is valid in the sense that if one of the limits
exists then the other also does and the limits are the same.

lim
λ→∞

Tr(B(H + λ)−m)

Tr((H + λ)−m)
= lim

λ→∞

Tr(B(V + λ)−m)

Tr((V + λ)−m)
.

(ii) If in addition B comes from an operator of multiplication by a function
b on L2(Td), then the limits in (i) exist and equal

1

(2π)d

∫
Td
b(x)dx.
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Proof: (i) For each λ > 0 we have the equality(
Tr(B(H+λ)−m)
Tr(B(V+λ)−m)

)
(
Tr((H+λ)−m)
Tr((V+λ)−m)

) =

(
Tr(B(H+λ)−m)
Tr((H+λ)−m)

)
(
Tr(B(V+λ)−m)
Tr((V+λ)−m)

) . (14) **

Since the left hand side has limit 1 by Lemma
lem2
2.4 and Lemma

lem1
2.1, the

right hand side limit in (
**
14) exists and equals to 1. Therefore if either the

numerator or the denominator in the fraction in the right hand side has a
limit in (

**
14), then the other also has a limit and they both agree which

implies the proposition.
(ii) Let B be an operator of multiplication by a function b on L2(Td). For

n,k ∈ Zd define δn(k) = 1 if n = k and 0 otherwise. The sequence {δn}n∈Zd
forms an orthonormal basis for `2(Zd). So

Tr(B(V + λ)−m) =
∑
n∈Zd
〈δn, Bδn〉(V (n) + λ)−m

=
1

(2π)d

∫
Td
b(x)dx

∑
n∈Zd

(V (n) + λ)−m

=
1

(2π)d

∫
Td
b(x)dx · Tr((V + λ)−m).

(15)

Therefore we have for each λ > 0,

Tr(B(V + λ)−m)

Tr((V + λ)−m)
=

1

(2π)d

∫
Td
b(x)dx.

Thus the limit of the left hand side exists as λ goes to infinity.
The proof of Theorem

szego
1.1 turns out to be simple using the above Propo-

sition but for proving Theorem
szego2
1.2 we use the Tauberian theorem of Grishin-

Poedintseva (see Appendix, Theorem
gp
3.4). We start with the necessary pre-

liminaries.

Lemma 2.6. (a) Let B, V be the operators as in Theorem
szego2
1.2 with κ ∈

(0, 1) given after equation
eqn1
3. Then the operator [H,B] is bounded on

`2(Zd).

(b) Under the assumption of Theorem
szego2
1.2, we have∣∣∣∣Tr (f(πλBπλ))

Tr(πλ)
− Tr (πλf(B)πλ)

Tr(πλ)

∣∣∣∣→ 0 as λ→∞. (16) tr
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Proof: It suffices to show that [V,B] is bounded, since [H,B] = [−∆, B] +
[V,B] and [−∆, B] is bounded since both −∆ and B are bounded.

Let N > d + 1. Observe that ei(m−n)·x = (1−Lx)N

(1+|m−n|2)N e
i(m−n)·x, where Lx

denotes the Laplacian on L2(Td). Using the definition U∗ and the action of
B in terms of its symbol given in equation (

symbol
5) and [V,B] = V B − BV , we

have for u ∈ `2(Zd),

(U∗[V,B]Uu)(n)

=
∑

m∈Z
(|n|κ−|m|κ|)
(1+|m−n|2)N

(−1)N
(2π)d

∫
Td e

i(m−n)·x(1− Lx)Nb(m,x) u(m) dx, |n| 6= 0

where we transferred the Laplacian term to act on b by N integrations by
parts. We use the inequality, which is trivial when m or n is zero or m = n.
So taking w.l.g |n| > |m|,

||n|κ − |m|κ| ≤ |m|κ( |n|
|m|
− 1)κ ≤ |m|( |n|

|m|
− 1) ≤ |n−m|

in the second line below.

‖[V,B]Uu‖2

=

∑
n∈Zd

∣∣∣∣∣∑
m∈Zd

u(m)
|n|κ − |m|κ

(1 + |m− n|2)N
(−1)N

(2π)d

∫
Td

(1− Lx)Nb(m,x)ei(m−n)·x

∣∣∣∣∣
2
 1

2

≤ CN

∑
n∈Zd

∣∣∣∣∣∑
m∈Zd

u(m)
(|n−m|)

(1 + |m− n|2)N

∣∣∣∣∣
2
 1

2

, (17)

≤ CN

∑
n∈Zd

∣∣∣∣∣∑
m∈Zd

1

(1 + |m− n|2)N−1
u(m)

∣∣∣∣∣
2
 1

2

= ‖K ∗ u‖2,

where CN := sup
m∈Zd

sup
(n,x)∈Zd×Td

∣∣∣∣(−1)N

(2π)d

∫
Td
ei(m−n)·x(1− Lx)Nb(m,x) dx

∣∣∣∣ and

K is the function

K(m) =
1

(1 + |m|2)N−1

11



For N − 1 > d/2, the Kernel K is in `1(Zd), so we get by and application of
Minkowski’s inequality gives the bound

‖[V,B]Uu‖2 ≤ C‖K‖1‖u‖2.

This proves part (a).
Since B is bounded self-adjoint, its spectrum is real and compact, so

functions f(B) can be approximated in the sup norm by smooth functions
so, w.l.g we assume that f ∈ C2(σ(B)). Then by Theorem 1.6 of Laptev-
Safarov

LapSaff
[4], we get setting A = H,B = B,χ = 0, ψ = f, πλ = Pλ in their

Theorem,

|Tr (πλf(B)πλ)− πλf(πλBπλ)πλ) |

≤ 1
2
‖f (2)‖∞Nr(λ)

(
‖(πλ − πλ−r)B‖2 + π2

6r2
‖πλ−r[A,B]‖2

)
Dividing both the sides by Tr(πλ) and setting r = λα, α ∈ (0, 1) and the
using the boundedness of B, [H,B], we see that

|Tr (πλf(B)πλ − πλf(πλBπλ)πλ) ≤ C
Nλα(λ)

Tr(πλ)
,

where Nr(λ) = supµ≤λ(Tr(πµ − πµ−r)). The part (b) now follows from part
(4) of Corollary (

cor1
2.2) and (

err
??) as λ→∞.

rem Lemma 2.7. If Mb is the operator of multiplication defined as in Theorem
szego
1.1, then Tr f(πλBπλ) = Tr πλf(B)πλ.

Proof. Note that ‖(I−πλ)Bπλ‖2HS = Tr (πλB(I−πλ)Bπλ) = Tr (πλB
2πλ)−

Tr (πλBπλ)
2. The operators (πλBπλ)

2 and πλB
2πλ are operators on `2(Zd)

with kernels K1(m,n) =
∑

r∈Z
(∫

Td b(x)ei(m−r)·xdx
) (∫

Td b(y)ei(r−n)·ydy
)

and

K2(m,n) =
∫
Td b

2(x)ei(m−n)·xdx respectively. Therefore Tr (πλB
2πλ) =∑

|n|≤M(λ)

K1(n,n) =
∑

|n|≤M(λ)

∫
Td
b2(x)dx =

∑
|n|≤M(λ)

K2(n,n) = Tr (πλBπλ)
2,

since πλ is given by

πλφ(n) =

{
0, |n| > M(λ)

φ(n), |n| ≤M(λ),

for φ ∈ `2(Zd).
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Proof of Theorem
szego
1.1:

Let πV,λ denote the spectral projection EV ((0, λ]), then

Tr(πV,λf(B)πV,λ) =
∑

V (n)≤λ

〈δn, f(B)δn〉, and Tr(πV,λ) =
∑

V (n)≤λ

1. (18) eqn100

Under the Fourier series the basis vectors |δn〉 go over to the basis ein·x in
L2(Td) and B is an operator of multiplication by a bounded positive function
b(x) there, we have 〈δn, f(B)δn〉 = 1

(2π)d

∫
Td f(b(x))dx. Further, using (

eqn100
18)

for each λ we have

Tr(πV,λf(B)πV,λ)

Tr(πV,λ)
=

1

(2π)d

∫
Td
f(b(x))dx.

Without loss of generality add a suitable constant to make the function f
positive. Then f(B) is a positive operator and f(b(x)) is a positive function
on Td.

We set

φH,f (λ) = Tr(πλf(B)πλ) = Tr(f(B)
1
2πλf(B)

1
2 ) (19)

and
φV,f (λ) = Tr(πV,λf(B)πV,λ) = Tr(f(B)

1
2πV,λf(B)

1
2 ). (20)

We apply the spectral theorem for H and V and write the traces in the above
two equations as integrals, perform an integration by parts and obtain the
equality below, where we use Proposition

prop1
2.5 for the middle equality and

Theorem
gp
3.4 for the extreme left and right equalities.

lim
r→∞

∫ ∞
0

φH,f (u)

(1 + u
r
)m+1

du∫ ∞
0

φH(u)

(1 + u
r
)m+1

du

= lim
λ→∞

φH,f (λ)

φH(λ)
= lim

λ→∞

φV,f (λ)

φV (λ)

= lim
r→∞

∫ ∞
0

φV,f (u)

(1 + u
r
)m+1

du∫ ∞
0

φV (u)

(1 + u
r
)m+1

du

. (21)

From the above equation we see that
∣∣∣Tr(πλf(B)πλ)

Tr(πλ)
− Tr(πV,λf(B)πV,λ)

Tr(πV,λ)

∣∣∣ → 0 as

λ→∞. This fact together with Lemma
rem
2.7 completes the proof of Theorem

szego
1.1.

We need the following lemma before proceeding to prove Theorem
szego2
1.2.
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lem4 Lemma 2.8. Consider a symbol a(x, n) ∈ S1,0,∞(Td × Zd) and let A be the
pseudo-difference operator on L2(Td) associated with it. Then for any ` ∈ N,
the symbol a`(x,n) of the operator A` has the asymptotic behavior

a`(x,n) ≈ (a(x,n))` + E`(x,n), (22) compo

with E`(x,n) ∈ S−11,0,∞.

From Theorem 4.3
mic
[11], we see that if a, b ∈ S0

1,0(Td × Zd) then their
composition Op(a) ◦ Op(b) is a pseudo-difference operator on L2(Td) with a
symbol σ(x, n) ∈ S0

1,0(Td × Zd), which has an expression as an asymptotic
sum, namely,

σ(x,n) ≈
∑
α≥0

1

α!
(∆α

na(x,n))D(α)
x b(x,n), (23) compose

where Op(a) is the operator with symbol a as defined in (
symbol
5). Using (

compose
23) and

` ∈ N, we prove that the symbol of `−fold composition of Op(a) with itself
is asymptotically equal to Op(a`).

Proof of Lemma
lem4
2.8:

We will prove this by induction on `. For ` = 1, E1(x,n) = 0 and (
compo
22) is

trivially true. We assume that the Lemma is valid for a`−1(x,n), so we have

a`−1(x,n) ≈ (a(x,n))`−1 + E`−1(x,n), with E`−1 ∈ S−11,0,∞.

We use the composition rule in equation (
compose
23) to get

a`(x,n) ≈
∑
α≥0

1

α!
(∆α

na(x,n))D(α)
x ak−1(x,n)

≈
∑
α≥0

1

α!
(∆α

na(x,n))D(α)
x (a(x,n))`−1 +

∑
α≥0

1

α!
(∆α

na(x, n))D(α)
x E`−1(x,n)

≈ (a(x,n))` + T1(x,n) + T2(x,n),

(24) comp2

where

T1(x,n) =
∑
|α|≥1

1

α!
(∆α

na(x,n))D(α)
x (a(x,n))`−1,

T2(x, n) =
∑
α≥0

1

α!
(∆α

na(x,n))D(α)
x E`−1(x,n).

(25)
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We set E`(x,n) = T1(x,n) + T2(x,n) and recall the relation

∆α
nσ(n) =

∑
β≤α

(−1)|α−β|
(
α
β

)
σ(n + β).

from Proposition 3.1 in
mic
[11]. Using this and the facts that a ∈ S1,0,∞, E`−1 ∈

S−11,0,∞ we estimate

|∆α
na(x,n)| ≤ C2|α|, |Dα

xE`−1(x,n)| ≤ C〈n〉−1,

so that each of the terms in the sum defining T2(x,n) ∈ S−11,0,∞ and

|T2(x,n)| ≤ C〈n〉−1.

so that T2(x,n) ∈ S−11,0,∞. To estimate T1(x,n) we define multi-indices α(j)

to be α
(j)
r = δrj, r = 1, . . . , d, and split T1 as

T1(x,n) =
d∑
j=1

∑
α≥1,αj≥1

1

α!
(∆α−α(j)

n ∆α(j)

n a(x,n))D(α)
x (a(x,n))`−1.

Then clearly ∆α(j)

n a(x,n) ∈ S−11,0,∞. If a, b ∈ S0
1,0,then ab ∈ S0

1,0, however the
same is not true for S0

1,0,∞ in view of Leibniz rule for derivatives. Therefore
using the property of a ∈ S1,0,∞, we estimate

|(∆α−α(j)

n ∆α(j)

n a(x,n))| ≤ C2|α|〈n〉−1, 1

α!
|D(α)

x (a(x,n))`−1| ≤ C`−1
d∏
j=1

θj,

where

θj =

{
1, αj ≤ `− 1,

1
(αj−`+1)!

, αj − `+ 1 > 0
, j = 1, . . . , d,

Then arguing as done for the term T2(x,n) we see that T1(x,n) ∈ S−11,0,∞ and

|T1(x,n)| ≤ C〈n〉−1,

This show that E`(x, n) ∈ S−11,0,∞, proving the Lemma.
Proof of Theorem

szego2
1.2:

15



If σBk(x, n) is the symbol associated with Bk then,

〈δn, B`δn〉 = 〈Uδn, (UBU∗)`Uδn〉 =
1

(2π)d

∫
Td
σB`(x,n) dx.

Using Lemma
lem4
2.8 we see that

〈δn, B`δn〉 =
1

(2π)d

∫
Td
b(x,n)` dx +

1

(2π)d

∫
Td
E`(x,n) dx

with supx |E`(x,n)| → 0 as |n| → ∞.
We compute the limits using an ε

3
argument and the fact that rn →

0, |n| → ∞ implies

lim
λ→∞

(∑
V (n)≤λ rn

)
∑

V (n)≤λ 1
= 0.

An application of Lebesgue dominated convergence theorem and the proper-
ties of E`(x,n) gives

lim
λ→∞

∑
n:V (n)≤λ〈δn, B`δn〉∑

V (n)≤λ 1
= lim

λ→∞

(∑
n:V (n)≤λ

1
(2π)d

∫
Td(b(x,n))` dx∑

V (n)≤λ 1
+ E(λ)

)
,

where E(λ) =

∑
n:V (n)≤λ

1
(2π)d

∫
Td E`(x,n) dx∑

V (n)≤λ 1
→ 0 as λ→∞.

Acknowledgement: We thank Prof. M. N. Namboodiri, CUSAT, Kerala
for introducing us to the Szegö type theorems and referees for numerous
comments on various versions of this paper that made us simplify and clarify
the proofs here.

3 Appendix

In this appendix we collect two theorems we use in our paper for the reader’s
convenience.

The first one is a Tauberian theorem of Grishin-Poedintseva from
gri
[7].

Definition 3.1. Let φ be a positive function on the half line [0,∞). Let

S = {α : ∃M,R with φ(tr) ≤Mtα, for all t ≥ 1, r ≥ R}
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and
G = {α : ∃M,R with φ(tr) ≥Mtα, for all t ≥ 1, r ≥ R}

Then α(φ) = inf S and β(φ) = supG are called the upper and lower
Matushevskaya index of φ respectively.

Theorem 3.2. (
gri
[7],Theorem 2)r

Let m > −1. Assume that ϕ is positive measurable function on [0,∞)
that does not vanish identically in any neighbourhood of infinity. Let Φ(r) =∫ ∞
0

ϕ(rt)

(1 + t)m+1
dt be finite. Then the functions ϕ and Φ have same growth at

infinity if and only if β(ϕ) > −1 and α(ϕ) < m.

Definition 3.3. A function ϕ is said to be multiplicatively continuous at

infinity if it satisfies limr→∞
τ→1

ϕ(τr)

ϕ(r)
= 1.

Theorem 3.4. (
gri
[7],Theorem 8) Let ϕ and ψ be positive functions on [0,∞)gp

satisfying the following conditions:

1. the functions ϕ and ψ do not vanish identically in any neighbourhood
of infinity;

2. the function ϕ is multiplicatively continuous at infinity and β(ϕ) > −1;

3. the function ψ is increasing;

4. at least one of the inequalities α(ϕ) < m and α(ψ) < m holds, where
m > −1;

5. the functions

Φ(r) =

∫ ∞
0

ϕ(ru)

(1 + u)m+1
du and Ψ(r) =

∫ ∞
0

ψ(ru)

(1 + u)m+1
du

are finite and lim
r→∞

Ψ(r)

Φ(r)
= 1 then lim

r→∞

ψ(r)

ϕ(r)
= 1.

The above theorem derives asymptotic behavior of ϕ, ψ from the asymp-
totic behavior of φ,Ψ by assuming additional conditions on ϕ and ψ.
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