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Abstract

In this paper we consider the Interband Light Absorption Coeffi-
cient (ILAC), in a symmetric form, in the case of random operators
on the d-dimensional lattice. We show that the symmetrized version
of ILAC is either continuous or has a component which has the same
modulus of continuity as the density of states.

1 Introduction

In the theory of disordered systems, one of the quantities that is widely
studied is the integrated density of states, whose continuity properties and
its behaviour near band edges (Lifshitz tails) were of great interest. Another
quantity that is of interest is the interband light absorption coefficient ILAC,
which is an important quantitative characteristic of semiconductors.

When photons with sufficient energy are incident on a pure semiconduc-
tor crystal absorption of photons takes place with simultaneous creation of
electron-hole pairs, which means excitation of electrons from valance band
to the conduction band. This process is intrinsic interband absorption. The
threshold electron energy required is related to the basic band gap. The
absorption coefficient increases above the threshold.
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To get the absorption coefficient one considers the transition of an electron
between states in the same or a different band. The rate of absorption is then
calculated using perturbation theory and the Fermi golden rule.

The theory of interband light absorption can be found in a book such as
[3].

On the other hand the presence of impurities cause electronic states to be
produced in the forbidden band and this reduction of the band gap and the
associated effect on the inter band light absorption coefficient is discussed in
[10].

In experimental studies the absorption coefficient is a means to study the
band gaps at different temperatures for a given material.

In mathematical terms this means that when there is a periodic potential
(=pure crystal) there are bands and gaps and when one adds random po-
tential to such a periodic back ground, spectrum extends to into the original
gaps.

The literature on the density of states is vast so we refer the reader
to the books [6], [7], [21] and the review [11]. The continuity properties
of the density of states and its Lifshitz tails behaviour in various models is
widely understood. The physics literature is abound with works on the ILAC
starting from [10] and for example [1]. On the other hand rigorous work in
this area seem to be minimal, see for example [14], [15], [17], [16].

We consider a borel probability space (Ω,B,P) with Zd acting on Ω such
that P is invariant and ergodic with respect to this action. Let V : Ω → RZ

d

(so that each V (n) is measurable). We consider a self-adjoint operator H0 =
∆ (given in equation (5) ) on ℓ2(Zd) and consider the family of operators,

H±
ω = H0 ± V ω, (V ωu)(n) = V ω(n)u(n), u ∈ ℓ2(Zd), (1)

such that V ω are covariant in the sense made precise in Hypothesis (2.1)
below.

We denote by δn the elements of the standard basis of ℓ2(Zd) in the rest
of the paper.

We define the density of states measures n± associated with H±
ω by

n± = E
(

〈δ0, EH±
ω
(·)δ0〉

)

. (2)

Suppose H±
ω,Λ are the restrictions of H±

ω to ℓ2(Λ), where Λ ⊂ Zd is a finite
set (usually taken to be a lattice cube centred at the origin) and λ±, uλ± are
eigenvalues and eigen functions of H±

Λ,ω.
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Then the Interband Light Absorption Coefficient AΛ for such finite vol-
ume models can be defined by taking the measure ρΛ,ω as given below.

ρ
Λ,ω

=
1

|Λ|
∑

λ±∈σ(H±

ω,Λ)

|〈uλ+, vλ−〉|2δλ+,λ−, (3)

AΛ(λ) = ρ
Λ,ω

({(λ+, λ−) : λ+ + λ− ≤ λ}), (4)

The operators H±
ω may be unbounded however, the finite volume opera-

tors HΛ,ω are symmetric finite dimensional matrices when Λ is a finite set,
so their eigenvalues are finite in number and the eigen functions {uλ± : λ± ∈
σ(H±

ω,Λ)} are orthonormal respectively (for each sign ±). These properties
show that indeed the measure ρΛ,ω is a probability measure on R2, since

∑

λ−∈σ(H−

ω,Λ)

|〈uλ+, vλ−〉|2δλ+,λ−(R2) = ‖uλ+‖2 = 1.

and the second sum (over λ+ ) is normalized by the size of the set |Λ| which
is precisely the number of eigenvalues of H+

Λ,ω.
There are several earlier works for example Bellissard-van Elst - Schulze-

Baldes [4], Bouchlet-Germinet-Klein-Schenker [5] defining the density of states
given in equation (2) as average trace per unit volume, namely

n±(·) = lim
Λ↑Zd

n±,Λ(·), n±,Λ(·) =
1

|Λ|Tr(χΛEH±
ω
(·)).

The above limit exits a.e. ω, in the weak sense for measures, by using
Birkoff’s ergodic theorem and the expression in equation (7) is arrived at
using covariance of the spectral measures.

However more classical definitions of density of states involves taking
the operators H±

ω,Λ = χλH
±
ω χΛ on ℓ2(Λ), considering the average spectral

measure, counting multiplicity,

n±(·) = lim
Λ↑Zd

n±
ω,Λ(·), n±

ω,Λ(·) =
1

|Λ|
∑

λ∈σ(H±

ω,Λ)

δλ

and taking their limits. In the limit both these definitions agree with that
given in equation (2).

It is well known that for the models such as the one considered in equation
(1), n± = n±.
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The trace per unit volume definition also allows one to define the limits
a.e.

lim
Λ↑Zd

1

|Λ|Tr(χΛAωBωχΛ)

for a pair of covariant operators, satisfying an integrability condition, which
results in the limit being equal to E(〈δ0, AωBωδ0〉) and one also gets,

E(〈δ0, AωBωδ0〉) = E(〈δ0, BωAωδ0〉).
In the case of continuous models (i.e. models on L2(Rd)) Kirsch-Pastur

obtained in Theorem 2.1(i) [14], limits of the finite dimensional ILACS, using
sub additivity properties of such finite dimensional quantities and they did
not have to use the ”trace per unit volume” definition.

However in the present case the existence of such a limit is unclear for the
quantities defined in equation (3), when Λ ↑ Zd. It would be nice to show
such a result, to do which one might need to show that for nice functions f ,

lim
Λ↑Zd

1

|Λ|Tr(f(χΛHωχΛ)) = lim
Λ↑Zd

1

|Λ|Tr(χΛf(Hω)χΛ).

in other words obtain Szego type asymptotics. We do not attempt this here
since this is not the main aim of the paper.

Therefore we take directly the definition given in equation (7) of the
correlation measure in the infinite lattice case and define the ILAC as a
marginal in direct analogy with the finite volume case, these definitions are
consistent with the ones obtained in the continuous case.

The main theorems of this paper are Theorems 3.6 and 3.7. Theorem
3.6 obtains estimates on the correlation measure of balls of radius a given in
terms of the uniform modulus of continuity of the density of states.

So taking the correlation measure ρ as in equation (7) and denoting the
density of states as n, if ρ((a, b)× R) ≤ |b− a|α, uniformly for all (a, b),then
our theorem is that ρ({x ∈ R2 : |x − b| ≤ r}) ≤ crα/2. So the regularity
along a line through the origin says something for the whole measure, but
not enough to conclude the regularity of marginals along other lines. (This
is a general fact valid for any finite borel measure on Rn, regularity along
one line through the origin implies some regularity for the whole measure. )

As an example even if the density of states are absolutely continuous, it
will only imply that the measure ρ is 1

2
-Hölder continuous on R2 and this

still leaves room for the measure to be supported on some lines, which means
some marginals of the measure could have atomic components.
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This is the main obstruction to obtaining regularity of the ILAC, which
happens to be the distribution function of a marginal of the measure ρ along
a diagonal direction. However, given that ρ has some modulus of continuity,
it follows that, if along some direction it has a component that is not con-
tinuous at all, such a component should have continuity along an orthogonal
direction.

This is the feature we exploit for Theorem 3.7.
In Theorem 3.7 we address the above question, observing that in the case

when the operators H±
ω have some further symmetry the marginals defined

along the two orthogonal directions {λ ∈ R2 : λ1 = λ2} and {x : x1 =
−x2} actually agree. Therefore we take a symmetric definition of the ILAC
and work with it. In view of the comments made above, such a symmetric
definition enables us to conclude some regularity of some components, though
at first such a theorem seems surprising.

2 The Symmetric and Asymmetric ILAC

In this section we define the Interband Light Absorption Coefficient in anal-
ogy with the case of continuum models using a correlation measure. We
argue that in some cases when the spectra of the operators in question have
some symmetry properties, the ILAC can be taken to be the distribution
function of the average of the marginals of the correlation measure along two
diagonal lines. the

We denote by Ui, i ∈ Zd the unitary operators (Uiu)(n) = u(n− i), u ∈
ℓ2(Zd).

Hypothesis 2.1. 1. (Covariance) The potential V ω satisfies U∗
i V

ωUi =
V Tiω, where Tiω(n) = ω(n+ i).

2. There is a bijection R of Ω to itself such that V Rω = −V ω and P is
invariant under R.

3. The operators H±
ω are self-adjoint with a common dense domain for a

set of full measure in ω.

4. The density of states measures n± are continuous.

Examples 2.2. Here are two extreme examples of operators satisfying the
above conditions. Of course there are many more of various varaities.
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1. The Anderson Model:

V ω(n) = ω(n), (∆u)(n) =
∑

|i|=1

u(n+ i), u ∈ ℓ2(Zd) (5)

and Rω = −ω and P = ×µ with a probability measure µ on R. If µ
is continuous, then the density of states is continuous. We take µ to
satisfy µ(B) = µ(−B) for all borel subsets of R and take Rω = −ω.
Then P is invariant under R.

2. The Almost Mathieu model: Take d = 1 and take Ω = T, V ω(n) =
λ cos(αn+ω), Rω = ω+π and P the rotation invariant measure on T.
The density of states of this model is absolutely continuous, when α is
not rational and for |λ| 6= 2, see [2].

Remark 2.3. We note that, using the definition of H±
ω and V ω and the

bijection R mentioned in the Hypothesis 2.1, that

H−
ω = H+

Rω, H+
ω = H−

Rω. (6)

Therefore if P satisfies Hypothesis 2.1 (2), then for any integrable function
f of ω, we have

E (f(ω)) = E (f(Rω)) .

The immediate consequence of our hypothesis is the equality of spectra
of H±

ω .

Theorem 2.4. Let H±
ω be as in Hypothesis 2.1. Then we have

σ(H+
ω ) = σ(H−

ω ), a.e.ω.

Proof: Under the assumptions of Hypothesis 2.1, it is well known that
the spectrum of the associated operators σ(H±

ω ) are constant sets almost
everywhere (Proposition V.2.4, Carmona-Lacroix [6]). The Hypothesis 2.1(2)
implies that H+

ω = H−
Rω and also that the support of P is invariant under R.

Therefore we have

σ(H+
ω ) = σ(H+

Rω) = σ(H−
ω ), a.e.ω,

proving the result.
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We consider H±
ω as in equation (1), their spectral measures EH±

ω
and

define the measure ρ as follows.

ρ = E
(

〈δ0, EH+
ω
(·)EH−

ω
(·)δ0〉

)

(7)

on R2. Let

I = R ∪ {(a, b] : a, b ∈ R} ∪ {(a,∞) : a ∈ R} ∪ {(−∞, a] : a ∈ R}.

This collection of sets forms a boolean semi-algebra on R. We then consider
the boolean semi algebra I × I and there define the set function ρ by

ρ(∪ki=1Ii × Ji) =

k
∑

i=1

E
(

〈δ0, EH+
ω
(Ii)EH−

ω
(Ji)δ0〉

)

, Ii, Ji ∈ I,

where the {Ii × Ji i = 1, . . . , k} are mutually disjoint rectangles. Then this
ρ, takes values in [0, 1] and satisfies ρ(R×R) = 1. The positivity of ρ follows
from Proposition 2.5 (2), below and since intersection of rectangles of the
form considered are again rectangles of the same form, ρ is also seen to be
well defined. Hence it extends to a unique probability measure on the boolean
algebra generated by I × I, see Exercises 1.4.4 - 1.4.6 and Proposition 1.4.7
of [19]. The unique extension of this to a probability measure on the borel
σ-algebra on R2 is again standard, see Proposition 2.5.1 [19].)

Proposition 2.5. Consider the operators H±
ω , with ω ∈ supp(P) and let ρ

be as in equation (7). Then for any borel subsets B,C of R,

1. ρ(B × C) = E
(

〈δ0, EH−
ω
(C)EH+

ω
(B)δ0〉

)

2. ρ(B × C) = E
(

〈δ0, EH−
ω
(C)EH+

ω
(B)EH−

ω
(C)δ0〉

)

3. ρ(B × C) = E
(

〈δ0, EH+
ω
(B)EH−

ω
(C)EH+

ω
(B)δ0〉

)

4. The following inequalities are valid

ρ(B × C) ≤ n+(B), ρ(B × C) ≤ n−(C).

Proof: When we consider operators H±
ω satisfying the Hypothesis 2.1, they

form a covariant family of operators in the sense of Hypothesis 1 of [13]
(taking G = L = Zd there). Then the proof of this proposition is the same
as that given in Proposition 1 of [13], so we omit it.
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To define the ILAC we need to look at the marginal of the measure ρ along
the diagonal directions {(λ1, λ2) : λ1 = ±λ2}. We rotate the coordinate axes
of R2 so that these directions form the coordinate axes and to enable this we
define the rotation T and look at the measure ρ from this new perspective.

The marginals of ρ◦T along the coordinate axes are precisely the marginals
of ρ along the diagonal directions.

Let T be a transformation from R2 to itself given by the matrix

1√
2

(

1 1
1 −1

)

.

Then T is an orthogonal matrix with T = T and we have

T

(

λ1

λ2

)

=

(

λ1+λ2√
2

λ1−λ2√
2

)

.

Using these we define:

Definition 2.6. We consider the measure ρ defined in equation (7) and set
the asymmetric ILAC as:

Aas(λ) = ν((−∞, λ]), where ν(B) = ρ ◦ T (B × R) (8)

and the symmetric ILAC as :

As(λ) = σ((−∞, λ]), where σ(B) =
1

2
(ρ ◦ T (B × R) + ρ ◦ T (R × B)) . (9)

In the above definitions and in our model we have dropped all the physical
constants and also have dropped the band gap Eg that customarily appears
in the definition since they play no role in the regularity properties as seen
in the proofs of our theorems.

The reason we consider a symmetrized version of ILAC is that, in the case
of disordered models where the spectrum is symmetric about 0, if λ is in the
spectrum then −λ is also in the spectrum. Therefore given a E we can have
λ++λ− = E and also λ+−(λ̃−) = E (of course λ̃− would be −λ−). Therefore
in the definition of the finite distribution functions in equation (4) we could
also have taken the sum over λ+ − λ− ≤ E. The distribution functions,
however differ for these two different definitions. Therefore it might be more
meaningful to take a symmetric definition.
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3 Regularity Properties

In this section we show a regularity of a symmetrized ILAC. The idea behind
the proofs is the following. The ILAC is the distribution function of the
marginal of a two dimensional measure taken along the principal diagonal,
while the marginals along the coordinate axes are the density of states. This
measure ρ itself acquires a part of the regularity of the density of states.
However even if ρ is smooth, it is possible for marginals along some directions
have atomic components.

This is possible only if the measure itself has its support (not the topo-
logical support) Σ1 ∪ Σ2, with Σ1 being a subset of a straight line which is
disjoint from Σ2. If this happens then restricted to the straight line con-
taining Σ1, the measure must be as regular as the density of states. This is
precisely our conclusion.

Lemma 3.1. Consider H±
ω satisfying Hypothesis 2.1. Then, n+ = n− and

in this case ρ is symmetric, i.e. ρ(A× B) = ρ(B ×A).

Proof: The hypothesis 2.1(2) says that for any integrable function f , E(f(ω)) =
E(f(Rω)). Therefore taking f(ω) = 〈δ0, EH+

ω
(B)δ0〉, for a fixed borel set B,

we see that it is integrable and satisfies f(Rω) = 〈δ0, EH−
ω
(B)δ0〉. Therefore

n+(B) = E(f(ω)) = E(f(Rω)) = n−(B). This being valid for any borel set
B the measures n+ and n− agree.

The symmetry of ρ follows from the following equalities, using the invari-
ance of P under R.

ρ(B × C) = E
(

〈δ0, EH+
ω
(B)EH−

ω
(C)δ0〉

)

= E
(

〈δ0, EH−

Rω
(B)EH+

Rω
(C)δ0〉

)

= E
(

〈δ0, EH−
ω
(B)EH+

ω
(C)δ0〉

)

= ρ(C × B).

(10)

In the following we shall denote the marginals of ρ ◦ T by,

ν1 =
1

2
ρ ◦ T (B × R), ν2 =

1

2
ρ ◦ T (R × B). (11)

Then, clearly

Aas(λ) = 2ν1((−∞, λ]) and As(λ) = (ν1 + ν2)((−∞, λ]). (12)
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Remark 3.2. The measure ρ is quite nice and we can say more about it. We
shall denote by Ba(x) a ball of radius a with centre x ∈ R2. We denote by κ
the marginal ρ(· × R) and note that κ = n+. In the case when ρ(B × R) =
ρ(R × B) for all borel B, then we have κ(B) = n+(B) = n−(B), from the
definitions of n±, ρ and κ.

Definition 3.3. Given a probability measure µ and a bounded continuous
function h on [r,∞), positive on (r,∞) and vanishing at r, we say that µ
has modulus of continuity h at a point x if

lim sup
a>0

µ(x− a, x+ a)

h(a + r)
<∞.

We say that µ is uniformly h-continuous if the above condition is valid inde-
pendent of x.

Examples 3.4. 1. Let r = 0, h(x) = xα, 0 ≤ x ≤ 1, h(x) = 1, x > 1 for
some 0 < α ≤ 1. Then h-continuity of µ for this h is called α-Hölder
continuity.

2. If r = 1 and h(x) = |(ln(x))−α|, 0 ≤ x ≤ 1/2 and some positive bounded
continuous function on (1/2,∞) then h-continuity for this h is called
α-log Hölder continuity.

3. Let r = 0. Let h(a) = τ ((y − a, y + a)) , y ∈ R, for a probability τ ,
then h-continuity with this h means the modulus of continuity of µ at
x is the same as that of τ at y.

Remark 3.5. In the theorems below we will only present the case when r = 0,
the theorems easily follow even when we take r 6= 0 by taking h(·+r) to replace
h.

Theorem 3.6. Consider H±
ω satisfying Hypothesis 2.1. Suppose the density

of states n = n+ = n− is uniformly h-continuous for some h as in Definition
3.3 with r = 0. Then, if Ba(x) is a ball of radius a centred at x,

lim sup
a→0

ρ(Ba(x))

h(a)
< C, for all x.

Proof: We consider the function ψ(x) = 1
1+‖x‖2 , x ∈ R2, where ‖x‖2 =

x2
1 + x2

2, x = (x1, x2). Then ψ is integrable with respect to the probability
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measure ρ on R2. This ψ satisfies ψ(x) ≥ 1
2
, whenever ‖x‖ ≤ 1. So taking

δ = 1 in Theorem 4.1, it is enough to show that

lim sup
a→0

1

h(a)

∫

ψa(y − x)dρ(y) <∞.

To see this we note that

ψa(y − x) ≤ 1

(1 + (y1−x1)2

a2
)
,

so that

1

h(a)

∫

ψa(y − x) dρ(y) ≤ 1
h(a)

∫

1

(1+
(y1−x1)2

a2 )
dκ(y1)

= 1
h(a)

∫

φa(y1 − x1) dn(y1), (13)

where we have integrated over the variable y2 on the right hand side and
used the definition of the measure κ, remark 3.2 and have taken φ(y) =
1/(1 + y2), φa(y) = φ(y/a), y ∈ R.

Then using Theorem 4.3, we see that the limsup of the right had side is
finite for all x1 once n is uniformly h-continuous. Therefore the limsup of
the left hand side is finite for all x.

This theorem shows that ρ has no atoms, that is for any point x ∈
R2, ρ({x}) = 0. The marginals of ρ along the axes, namely ρ(A × R) and
ρ(R×A) both equal the density of states, as seen by using equation (10) and
the fact that EH±

ω
(R) = I, and hence are continuous if the density of states

has no atoms.
However it is possible that some marginal taken along other directions in

R2 may have atoms. Consider for example a measure on R2 supported on
the y-axis {(x1, x2) ∈ R2 : x1 = 0}, then the marginal of this measure along
the x-axis is atomic with an atom at the point 0.

Theorem 3.7. Consider H±
ω satisfying Hypothesis 2.1 and suppose the den-

sity of states n is uniformly h-continuous for some h as in Definition 3.3.
If ν1 or ν2 defined in equation (11) has an atom, then the function As(λ)

defined in equation (12) has a uniformly h-continuous component.

Proof: Suppose ρ◦T (A×B) 6= 0 for a pair of borel subsets A,B of R. Then
ρ ◦ T (A× ·) and ρ ◦ T (· ×B) are both non-trivial finite positive measures on
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borel subsets of R. We also note that if ρ ◦ T (A× R) 6= 0, for a given borel
set A, then there must be a borel set B ( R, such that ρ ◦ T (A × B) 6= 0.
(Otherwise if ρ ◦ T (A× C) = 0 for all borel C ( R, then taking any C 6= ∅,
we see that ρ ◦ T (A × R) = ρ ◦ T (A × C) + ρ ◦ T (A × Cc) = 0). A similar
statement is valid when ρ(R ×B) 6= 0.)

Therefore if the marginal ρ ◦T (A×R) has an atom at a point x, then we
can decompose the other marginal measure ρ ◦ T (R ×B) as

ρ ◦ T (R ×B) = ρ ◦ T ((R \ {x}) × B) + ρ ◦ T ({x} × B).

Let Sρ denotes a finite subset of the set of atoms of ρ ◦ T (A × R), then we
can write

ρ ◦ T (R ×B) = ρ ◦ T (R \ Sρ ×B) + ρ ◦ T (Sρ × B)

= ρ1(B) + ρ2(B). (14)

Similarly if Sσ is some finite subset of the set of atoms of ρ ◦ T (R × B),
then we can write

ρ ◦ T (A× R) = ρ ◦ T (A× R \ Sσ) + ρ ◦ T (A× Sσ)

= σ1(A) + σ2(A). (15)

We have for each A,B, the following relations, which is easy to see from
the above argument.

ρ2(B) =
∑

x∈Sρ
ρ ◦ T ({x} ×B),

σ2(A) =
∑

x∈Sσ
ρ ◦ T (A× {x}). (16)

Using the definition of As from equation (12), decomposition in equations
(15, 16), we can write

As(λ) = 1
2
(ρ1 + σ1) ((−∞, λ]) + 1

2
(ρ2 + σ2) ((−∞, λ])

= As,1(λ) + As,2(λ), (17)

where As,1, As,2 are non-zero functions, as seen by the preceding arguments.
Now the result follows from Lemma 3.8 below.

Lemma 3.8. Assume the conditions of theorem 3.7. Consider the func-
tion As,2 defined in equation (17). If the density of states n is uniformly
h-continuous for some h (as in Definition 3.3), then As,2 is uniformly h-
continuous for the same h.

12



Proof: We will prove that ρ2 is uniformly h-continuous, the proof for σ2

is similar. From these two statements the uniform h-continuity of As,2(λ) is
clear. Let the cardinality of Sρ be N and let E1, . . . , EN be the elements of
Sρ. Then

1

h(a)

∫

φa(y − x) dρ2(y) =

N
∑

j=1

1

h(a)

∫

φa(y − x)dρ ◦ T (Ej, y)

=
N
∑

j=1

1

h(a)

∫

T ({Ej}×R)

φa(w − (x+ Ej))dρ(
w√
2
,
w − 2Ej√

2
)

(18)

Since T ({Ej} × R) ⊂ R × R, the right hand side is bounded by

∑N
j=1

1
h(a)

∫

R×R
φa(w − (x+ Ej)) dρ(

w√
2
, z√

2
)

=
∑N

j=1
1

h(a)

∫

R
φa(

√
2w − (x+ Ej)) dn(w),

where we used the fact that ρ(· ×R) = n(·). The uniform h-continuity of the
density of states n shows that the right hand side is bounded uniformly in x,
proving the lemma.

Acknowledgement: I thank Prof Werner Kirsch for going through this
paper and his comments. I thank the referee of an earlier version of the
paper for extensive and very helpful comments and point out the references
[4] and [5].

4 Appendix

We present here some results that we use in the main part, whose proofs are
essentially available elsewhere.

We have an abstract theorem that extends the theorem of Jensen-Krishna
in [9]. In the following let (X, ‖ · ‖) be a normed vector space over complex
numbers and ρ a probability measure on X with respect to the borel σ-
algebra. Denote by Ba(x) the ball with centre x of radius a. Let ψ be a
positive bounded continuous function on X taking value 1 at 0. Denote by
ψa(x) = ψ(x/a), a > 0.
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Theorem 4.1. Let h be a function as in Definition 3.3. Suppose

lim sup
a>0

1

h(a)

∫

ψa(y − x)dρ(y) <∞,

Then, there are constants C, δ > 0, depending upon ψ, such that

ρ(Baδ(x)) ≤ Ch(a), a > 0, x ∈ X.

Proof: Since ψ is continuous and is 1 at 0, there is a δ > 0 such that
ψ(y) ≥ 1

2
, whenever ‖x‖ < δ. So we have

1

h(a)

∫

ψa(y − x)dρ(y) ≥ 1

2h(a)
ρ(Baδ(x)).

We have used the fact that ‖x‖/a ≤ δ ⇐⇒ ‖x‖ ≤ aδ. Taking sup first on
the left hand side, which is finite since the limsup of the left hand side is
finite by assumption, and then taking sup over a, for a fixed δ on the right
hand side shows that the right hand side is finite for all x.

Given a function ψ satisfying:

Hypothesis 4.2. Let ψ be a continuous function on R with ψ(0) = 1 and
Aψ =

∫

ψ(x)dx 6= 0. Further assume that

1. ψ is bounded and positive.

2. ψ is differentiable, even and satisfies

|ψ(x)| + |xψ′(x)| ≤ 〈x〉−δ, for some δ > 1,

where 〈x〉 = (1 + x2)1/2.

3. Let h be as in the definition 3.3. Let K(y) = sup0<a<1 |h(ay)
h(a)

|, y > 0.

Then
∫

K(y)|ψ′(y)|dy <∞.

In most cases the assumption (3) on ψ above follows from (2), but we
include it for generality.

We set, given a ψ

Ch
µ,ψ(x) = lim sup

a>0

ψa ∗ µ
h(δa)

(x), Dh
µ,ψ(x) = lim sup

a>0

µ ((x− a, x+ a))

h(a)
(x),

14



Theorem 4.3. Let µ be a probability measure and let ψ satisfy the Hypothesis
4.2. Then Ch

µ,ψ is finite for any x, iff Dh
µ(x) is finite for the same x.

Proof: We note that as in equation (1.3.4) [9], we have by integration by
parts

1

h(a)
ψa ∗ µ(x) = − 1

h(a)

∫ ∞

0

ψ′(y)
h(ay)

h(a)

Φµ(x+ ay) − Φµ(x− ay)

h(ay)
dy,

where Φµ is the distribution function of µ. Then taking limsup as a → 0,
using the condition that K(y)ψ′(y) is integrable by assumption we see that
the finiteness of Dh

µ,ψ(x) implies that of Ch
µ,ψ(x).

To see the other direction, note that since ψ is a positive continuous
function on R, it attains a positive minimum on [−1, 1], say β. Then we
have the estimate

1

h(a)
ψa ∗ µ(x) ≥ 1

h(a)

∫ a

−a
ψa(y)dµ(x+ y) ≥ β

µ((x− a, x+ a))

h(a)
,

from which we conclude that finiteness of Ch
µ,ψ(x) implies that of Dh

µ,ψ(x).
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