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There is increasing evidence that there is matter 
out there that is not ordinary Baryons and 

Leptons.  

Estimates based on observations show that this 
‘matter’ constitutes about 27% of all known 

matter-energy in the Universe.



The images are from NASA



In addition to these there is the expansion of the 
Universe which which was well known,  governed 

by the Hubble law by which the velocity  of 
motion of a galaxy is proportional to the distance 

of the galaxy (on cosmological scales ) 

This makes one wonder why these particles, if they 
exist,  do not interact with others except through 

Gravity and what their Quantum Theory could be. 

Several of these facts lead to the conclusion that there  
are particles that do not interact with ordinary matter 

as we know it but influence it through Gravity 



We therefore start with a postulate: 

The configuration space of dark particles 
is a set which is the support of a measure 
singular with respect to the Lebesgue 
measure.

The reason for this postulate is to ensure that the 
 Hilbert spaces associated with the two classes of 
particles are automatically orthogonal with respect to  
each other, so there is no possibility of interaction  
between  them.  Gravity is of course beyond this.



 We consider a Hilbert space with respect to a 
measure     which is singular with respect to the 
Lebesgue measure.  

µ

 We have to formulate the Hamiltonian of a free 
particle with the  state space given by such a 
Hilbert space.   The problem then is to define a 
notion of ‘derivative’ , since for all the functions 
here which have non-zero derivatives belong to 
the equivalence class 0 in this space.



So let us look at how it is done for the Lebesgue 
measure.

Thus, the derivative of ‘f’ is a Radon-Nykodym 
derivative, where ‘m’ is the Lebesgue measure.   
This definition was used for finite measures by 
others to define derivative for functions in 
Hilbert spaces of singular measures.

d

dx

f(x) = lim
h!0

f(x+ h)� f(x)

h

= lim
h!0

f

0(x)dx((x, x+ h))

m((x, x+ h))



We note that every function   in                 is 
also in               so gives rise to a finite complex 
measure         whose  Radon-Nikodym 
derivative  with respect to       is        .
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fdµ
f

L1(X,µ)
L2(X,µ)

µ

When         is            the Randon-Nikodym 
derivative is also computed using the distribution 
function of     , namely                                 which we 
call 

X R

f
R
x

�1 f(s) dµ(s)
�f (x)



We therefore define the kinetic energy operator 
to be the unique self-adjoint operator associated 
to the quadratic form given by 

We call this operator the (AK) operator.  For 
finite measures there is no ambiguity in 
defining the distribution function so this 
operator is defined on distribution functions of 
elements of  the space                 .

E(�f ,�g) =
R
f(x)g(x) dµ(x) = h�f ,�µ�gi.

L2(R, µ)



In the case when the measure is not finite but    
finite, we  define distribution functions based on 
partitioning the space as a disjoint union of 
compact intervals.  Thus if          is a partition

P = {(an, bn] : tn(an, bn] = R}

P

�

Then we define the distribution function 
associated with a measure and this partition 
by  

�⌫,P(x) =

(
⌫((an, x]), if x 2 (an, bn]

0 otherwise.



The idea is to use the Radon-Nikodym 
derivative in the place of usual derivative in the 
case of singular measures.  However we need 
to take derivatives of functions and the only 
reasonable function associated to a measure is 
its distribution function.

We can then talk about derivatives of these 
functions with respect to singular measures. 
Thus 
f 2 L1

+(R, µ), then fdµ is a measure.

We define 

d�fµ,P
dµ (x) = f(x), a.e.x.



 Henceforth we will write 

�fµ,P as simply �f,P .

Then as before we define a positive definite 
quadratic form on                   L2(R, µ)

E(�f,P ,�g,P) = hf, gi

This quadratic form is shown to be sesquilinear  
and closed.  Therefore has a unique self-adjoint 
operator associated with it.  We call it �µ,P



At this stage we note that a measure is 
recovered from the distribution function 
uniquely.  It turns out that the measure     is 
recovered  from            uniquely independent of  
the partition      .    However the operator         
depends on the partition.  

�⌫,P

⌫

P �⌫,P

We will comment on this  towards the end 
of the talk.



Henceforth we will consider only atomic measures 
and since their support is countable, we will take 
the support to be integers and to make the problem 
interesting, we will assume that the measure is non 
zero at all integers.

For such a model we find explicitly  the operator 
�µ,P

We take the standard basis for                `2(Z, µ)

e

x

(y) = 1p
µ(x)

�

xy

, x 2 Z.



We want to find 

so that we can get the matrix elements  

he
x

,�
µ,Peyi = hf

x

, f
y

i.

To do this we fix different partitions and based 
on the partition we will get a different 
operator.
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x

,P for x 2 Z,



PN = {{mN,mN + 1, . . . ,mN +N � 1} : m 2 Z} ,
N 2 N,

P1 = Z� t Z+, Z+ = N [ {0} and Z� = Z \ Z+.

We will do this for a finite N and for the infinite 
case separately.   We need start with a 
recurrence relation coming from the definition of 
the distribution function.   We set 

Sm,N = {mN,mN + 1, . . . ,mN +N � 1}.

P0 = {Z}



�f,PN (x) = �f,PN (x+ 1) = 0 =) f(x+ 1) = 0.

Lemma : We have 

Proof :  It is easy to see since by definition 

�f,PN (x+ 1) = �f,PN (x) + f(x+ 1)µ(x+ 1)

�f,PN (w) =
wX

y=mN

f(y)µ(y), w 2 Sm,N



As a corollary we see that every finitely 
supported function has a derivative with respect 
to the measure      .  µ

Therefore the standard basis vectors having 
support at one point have derivatives, so one 
can explicitly write down the operators           
because its matrix elements are the inner 
product of the corresponding derivatives.  

�µ,P
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From the previous lemma and induction we get:

f

x

(y) =

(
0, if x 2 S

m,N

, y 2 S

n,N

, n 6= m,

0, if x < y, or y < x+ 1

So

f

x

(x) = 1p
µ(x)3
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x
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µ(x+1)
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µ(x)
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= e

x

(x) = f

x

(y)µ(x), and

0 = e

x

(x+ 1) = f

x

(x)µ(x) + f

x

(x+ 1)µ(x+ 1).



Theorem :  The AK operators are given by,
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↵(mN) ��(mN) 0 . . . . . . 0
��(mN) ↵(mN + 1) ��(mN + 1) 0 . . . 0

0 ��(mN + 1) ↵(mN + 2) ��(mN + 3) . . . 0
. . .

. . .
. . .

. . .
. . . 0

0 . . . . . . 0 ��(mN +N � 1) ↵(mN +N � 1)

3

777775

↵(x) = 1
µ(x)2 + 1

µ(x)µ(x+1)

�(x) = 1p
µ(x)µ(x+1)3

�µ,m,N =

where

�µ,PN =
L

m �µ,m,N



We similarly have for the infinite case  which 
we will not write down, but give the operators 
for a special case of the counting measure, in 
which case we call the operators           and        
as            and              respectively.   Then

�µ,PN �µ,P1

�N �1

Theorem :  The AK operators on             are :`2(Z)

�N =
M

m

�Sm,N
��Sm,N

�1 = ��Z���Z� � �Z+��Z+

where      is the usual Laplacian on            and 
agrees with          .

`2(Z)�
�P0



Specializing to the case when N =1, the AK 
operator is just the identity.  This is the model 
that was chosen initially to model the Dark 
Particles.  

In this model, the kinetic energy commutes 
with the potential energy if we take a pair of 
particles  subjected to pair coulomb potential, 
the nature of which is unknown but repulsive, 
then we obtain the two particle spectrum in 3 
dimensions given by 



H =
h̃

2m
(I ⌦ I + I ⌦ I)(I �

X

x

P
x,x

) +
X

x 6=yx,y2Z3

D

|x� y|Px,y

�(H) =
n

h̃
m + Dp

L
: L 6= 4a(8b+ 7), a, b 2 N

o

.



Comments:   

I think of this as an analog of spin in the quantum 
theory of ordinary matter.  The representations of the 
orthogonal group, which are the group of symmetries 
for the system, give rise to super selection sectors one 
of the quantum numbers of which is the spin.  You 
cannot transition from one spin state to another.

Similarly the N here is to be seen as a quantum 
number which gives different types of ‘dark 
particles’.

One also sees an exclusion principle operating 
here.  


