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Abstract

In this paper we solve a long standing open problem for Random
Schrödinger operators on L2(Rd) with i.i.d single site random poten-
tials. We allow a large class of free operators, including magnetic po-
tential, however our method of proof works only for the case when the
random potentials satisfy a complete covering condition. We require that
the supports of the random potentials cover Rd and the bump functions
that appear in the random potentials form a partition of unity. For such
models, we show that the Density of States (DOS) is m times differen-
tiable in the part of the spectrum where exponential localization is valid,
if the single site distribution has compact support and has Hölder con-
tinuous m+ 1 st derivative. The required Hölder continuity depends on
the fractional moment bounds satisfied by appropriate operator kernels.
Our proof of the Random Schrödinger operator case is an extensions of
our proof for Anderson type models on `2(G), G a countable set, with
the property that the cardinality of the set of points at distance N from
any fixed point grows at some rate in Nα, α > 0. This condition rules
out the Bethe lattice, where our method of proof works but the degree
of smoothness also depends on the localization length, a result we do not
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present here. Even for these models the random potentials need to sat-
isfy a complete covering condition. The Anderson model on the lattice
for which regularity results were known earlier also satisfies the complete
covering condition.

1 Introduction
In the study of the Anderson Model and Random Schrödinger operators, mod-
ulus of continuity of the Integrated Density of States (IDS) is well understood,
(see Kirsch-Metzger [35] for a comprehensive review). In dimension bigger than
one, there are very few results on further smoothness of the IDS, even when the
single site distribution is assumed to have more smoothness, except for the case
of the Anderson model itself at high disorder, (see for example Campanino-
Klein [9], Bovier-Campanino-Klein-Perez [8], Klein-Speis [39], Simon-Taylor
[50]).

In this paper we will show, in Theorems 3.4 and 4.4, that the IDS is almost
as smooth as the single site distribution for a large class of continuous and
discrete random operators. These are

Hω = H0 +
∑
n∈Zd

ωnun, (1.1)

on L2(Rd) and
hω = h0 +

∑
n∈G

ωnPn, (1.2)

on the separable Hilbert space H and a countable set G. The operator h0 is
a bounded self-adjoint operator and the {Pn} are finite rank projection. We
specify the conditions on H0, h0, un, Pn and ωn in the following sections.

The IDS, denoted N (E), is the distribution function of a non-random mea-
sure obtained as the weak limit of a sequence of random atomic measures.
The proof of the existence of such limits for various models of random oper-
ators has a long history. These results are well documented in the books of
Carmona-Lacroix [10], Figotin-Pastur [46], Cycon et al. [18], Kirsch [33] and
the reviews of Kirsch-Metzger [35], Veselić [56] and in a review for stochastic
Jacobi matrices by Simon [48]. In terms of the projection valued spectral mea-
sures EHω , Ehω associated with the self-adjoint operators Hω, hω, the function
N (E) has an explicit expression, for the cases when hω, Hω are ergodic. For
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the model (1.1) it is given as
1∫

u0(x)dx
E
[
tr
(
u0EHω((−∞, E])

)]
and for the model (1.2) it turns out to be

1

tr(P0)
E
[
tr

(
P0Ehω((−∞, E])

)]
.

We note that by using the same symbol N for two different models, we are
abusing notation but this abuse will not cause any confusion as the contexts
are clearly separated to different sections. The first of these expressions for the
IDS is often called the Pastur-Shubin trace formula.

In the case of the model (1.1) in dimensions d ≥ 2, there are no results in
the literature on the smoothness of N (E), our results are the first to show even
continuity of the density of states (DOS), which is the derivative of N almost
every E. The results of Bovier et al. in [8] are quite strong for the Anderson
model at large disorder and it is not clear that their proof using supersymmetry
extends to other discrete random operators.

In the one dimensional Anderson model, Simon-Taylor [50] showed that
N (E) is C∞ when the single site distribution (SSD) is compactly supported and
is Hölder continuous. Subsequently, Campanino-Klein [9] proved that N (E)
has the same degree of smoothness as the SSD. In the one dimensional strip,
smoothness results were shown by Speis [53, 52], Klein-Speis [39, 38], Klein-
LaCroix-Speis [37], Glaffig [30]. For some non-stationary random potentials
on the lattice, Krishna [41] proved smoothness for an averaged total spectral
measure.

There are several results showing N (E) is analytic for the Anderson model
on `2(Zd). Constantinescu-Fröhlich-Spencer [16] showed analyticity of N (E)
when SSD is analytic. The result of Carmona [10, Corollary VI.3.2] improved
the condition on SSD to requiring fast exponential decay to get analyticity.
In the case of the Anderson model over `2(Zd) at large disorder the results of
Bovier et al. [8] give smoothness of N (E) when the Fourier transform h(t) of
the SSD is C∞ and the derivatives decay like 1/tα for some α > 1 at infinity.
They also give variants of these, in particular if the SSD is Cn+d then N (E) is
Cn under mild conditions on its decay at∞. They also obtain some analyticity
results. Acosta-Klein [1] show that N (E) is analytic on the Bethe lattice for
SSD close to the Cauchy distribution. While all these results are valid in
the entire spectrum, Kaminaga et. al. [32] showed local analyticity of N (E)
when the SSD has an analytic component in an interval allowing for singular
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parts elsewhere, in particular for the uniform distribution. Analyticity results
obtained by March-Sznitman [44] were similar to those of Campanino-Klein
[9].

In all the above models, only when E varies in the pure point spectrum
that regularity of N (E) beyond Lipshitz continuity is shown. This condition
that E has to be in the pure point spectrum may not have been explicitly
stated, but it turns out to be a consequence of the assumptions on disorder or
assumptions on the dimension in which the models were considered. For the
Cauchy distribution in the Anderson model on `2(Zd), Carmona-Lacroix [10]
have a theorem showing analyticity in the entire spectrum. However, absence
of pure point spectrum is only a conjecture in these models as of now. At the
time of revision of this paper one of us Kirsch-Krishna [36] could show that in
the Anderson model on the Bethe lattice analyticity of the density of states
with Cauchy distribution is valid at all disorders as part of a more general
result. This result in particular exhibits regularity of the density of states
through the mobility edge in the Bethe lattice case.

In the case of random band matrices, with the random variables following
a Gaussian distribution, Disertori-Lager [25], Disertori [23, 22], Disertori et.
al. [24] have smoothness results for an appropriately defined density of states.
Recently Chulaevsky [11] proved infinite smoothness for non-local random in-
teractions.

For the one dimensional ergodic random operators IDS was shown to be
log Hölder continuous by Craig-Simon [17]. Wegner proved Lipshitz continuity
of the IDS for the Anderson model independent of disorder in the pioneering
paper [57]. Subsequently there are numerous results giving the modulus of
continuity of N (E), for independent random potential, showing its Lipschitz
continuity. Combes et al. in [14] showed that for Random Scrödinger operators
with independent random potentials, the modulus of continuity of N (E) is the
same as that of the SSD. For non i.i.d potentials in higher dimensions there
are some results on modulus of continuity for example that of Schlag [47]
showing and by Bourgain-Klein [7] who show log Hölder continuity for the
distribution functions of outer measures for a large class of random and non-
random Schrödinger operators. We refer to these papers for more recent results
on the continuity of N (E) not given in the books cited earlier.

The idea of proof of our Theorems is the following. Suppose we have a self-
adjoint matrix Aω of sizeN with i.i.d real valued random variables {ω1, . . . , ωN}
on the diagonal with each ωj following the distribution ρ(x)dx. Then the
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average of the matrix elements of the resolvent of Aω are given by

f(z) =

∫
(Aω − zI)−1(i, i)

N∏
k=1

ρ(ωk)dωk,

for any z ∈ C+. We take z = E+iε, ε > 0, then we see that from the definitions,
the function (Aω − zI)−1(i, i) can be written as a function of ~ω − E~1 and ε,
namely,

F (~ω − E~1, ε) = (Aω − zI)−1(i, i), Φ(~ω) =
∏N

i=1 ρ(ωi)

~ω = (ω1, ω2, . . . , ωN), ~1 = (1, 1, . . . , 1).

Then it is clear that with ∗ denoting convolution of functions on RN and setting
F̃ε(x) = F (−x, ε),

E
(
(Aω − zI)−1(i, i)

)
= (F̃ε ∗ Φ)(E~1).

Since convolutions are smoothing, we get the required smoothness as a func-
tion of E if one of the components F̃ε or Φ is smooth on RN . Since we are
assuming that each ρ has a degree of smoothness, which passes on to Φ, we get
a smoothness result for operators with finitely many random variables having
the above form.

Let us remark here that it is in this step, which is crucial for further anal-
ysis, that we need a complete covering condition, even for finite dimensional
compressions of our random operators be they continuous or discrete.

If we were to replace Aω by an operator with infinitely many random vari-
ables ωi, we would encounter the problem of concluding smoothing properties
of "convolutions of" functions of infinitely many variables. This is an important
difficulty that needs to be solved.

One of the interesting aspects of the operator Hω (or hω) we are dealing
with is that there is a sequence of operators (denoted by Aωk ), containing finitely
many random variables ωi, which converges to Hω (or hω) in strong resolvent
sense. Hence we can write the limit as a telescoping sum, namely,

(Aω − z)−1(i, i) = (Aω1 − z)−1(i, i) +
∞∑
k=1

[
(Aωk+1 − z)−1(i, i)− (Aωk − z)−1(i, i)

]
.

Since the operators appearing in the summands all contain finitely many ωi
their averages over the random variables can be written as convolutions of
functions of finitely many variables ωi. Then, most of the work in the proof is
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to show that quantities of the form∣∣∣∣∣∣
∫ [

(Aωk+1 − z)−1(i, i)− (Aωk − z)−1(i, i)
](Nk+1∑

j=1

∂

∂ωj

)l Nk+1∏
n=1

ρ(ωn)dωn

∣∣∣∣∣∣
with Nk growing at most as a fixed polynomial in k, are summable in k. This
is the part where we use the fact that we are working in the localized regime,
where it is possible to show that they are exponentially small in k.

For the discrete case the procedure is relatively straight forward and there
are no major technical difficulties to overcome, but in the continuous case, the
infinite rank perturbations pose a problem, since the trace of the Borel-Stieltjes
transform of the average spectral measures do not converge. We overcome
this problem by renormalizing this transform appropriately. For our estimates
to work, we have to use fractional moment bounds and also uniform bounds
on the integrals of resolvents. Both of these are achieved because we have
dissipative operators (up to a constant) whose resolvents can be written in
terms of integrals of contraction semigroups.

As stated above, our proof is in the localized regime. The Anderson model
was formulated by Anderson [5] who argued that there is no diffusion in these
models for high disorder or at low energies. The corresponding spectral state-
ment is that there is only pure point spectrum or only localization for these
cases. In the one dimensional systems, where the results are disorder inde-
pendent, localization was shown rigorously by Goldsheid et al. [31] for random
Schrödinger operators and by Kunz-Souillard [43] for the Anderson model. For
higher dimensional Anderson model the localization was proved simultaneously
by Fröhlich et al. [26], Simon-Wolff [51], Delyon et al. [20] based on exponential
decay shown by Fröhlich-Spencer [27] who introduced a tool called multiscale
analysis in the discrete case. A simpler proof based on exponential decay of
fractional moments was later given by Aizenman-Molchanov [4]. There are
numerous improvements and extensions of localization results beyond these
papers.

In the case of continuous models, Combes-Hislop [14, 12], Klopp [40],
Germinet-Klein [28], Combes-Hislop-Tip [15], Bourgain-Kenig [6] and Germinet-
De Bievre [29] provided proof of localization for different types of models. The
fractional moment method was first extended to the continuous case in Aizen-
man et al. in [3] and later improved by Boutet de Monvel et al. [19].

We refer to Stollmann [54] for the numerous advances that followed on
localization.
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The rest of the article is divided into three parts. Section 2 has all the
preliminary results, which will be used significantly for both the discrete and
the continuous case. Section 3 will deal with the discrete case, where we use a
method of proof which will be reused for the continuous case. The main result
of Section 3 is Theorem 3.4 which in the case of Anderson tight binding model
would prove the regularity of density of states. Finally in Section 4 we will deal
with the random Schrödinger operators and the main result there is Theorem
4.4.

2 Some Preliminary Results
In this section we present some general results that are at the heart of the
proofs of our theorems. These are Theorem 2.1 and Theorem 2.2. The latter
theorem, stated for functions, gives a bound of the form∣∣∣∣∫ ( 1

x− w
− 1

x− z

)
f(x)dx

∣∣∣∣ ≤ Cf,s|z − w|s

for certain family of f . For operators, we need more work and need more
uniformity for f .

The first theorem is quite general and is about random perturbations of self-
adjoint operators and their smoothing properties of complex valued functions
of the operators.

Theorem 2.1. Consider a self-adjoint operator A on a separable Hilbert space
H and let {Tn}Nn=1, N <∞ be bounded positive operators such that

∑N
n=1 Tn =

I, where I denotes the identity operator on H . Suppose {ωn, n = 1, . . . , N}
are independent real valued random variables distributed according to ρn(x)dx
and consider the random operators Aω = A +

∑N
n=1 ωnTn. If f is a complex

valued function on the set of linear operators on H , such that f(Aω − EI) is
a bounded measurable function of (ω1, . . . , ωn, E), then h(E) = E

[
f(Aω−EI)

]
satisfies h ∈ Cm(R), if ρn ∈ Cm(R) and ρ(k)

n ∈ L1(R), n = 1, 2, · · · , N and
0 ≤ k ≤ m.

Proof: Using the conditions on {Tn} we see that Aω −EI = A+
∑N

n=1(ωn −
E)Tn. Thus f(Aω − EI) is a bounded measurable function of the variables
(ω1−E,ω2−E, . . . , ωn−E), which is a point ~ω−E~1 in RN , where ~1 = (1, . . . , 1),
we write F (~ω − E~1) = f(Aω − EI). Then the expectation can be written as

E[f(Aω − EI)] =

∫
RN
F (~ω − E~1)Φ(~ω)d~ω =

∫
RN
F (−(E~1− ~ω))Φ(~ω)d~ω,
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where we set Φ(~ω) =
∏N

n=1 ρn(ωn). Writing now g(~x) = F (−~x) we see that
E[f(Aω − EI)] = (g ∗ Φ)(E~1),

where ∗ denotes convolution in RN . The result now follows easily from the
properties of convolution of functions on RN .

For later use we note that if ∇ denotes the gradient operator on differen-
tiable functions on RN and D denotes DΦ = ∇Φ · ~1 =

∑N
j=1

∂
∂xi

Φ, then an
integration by parts yields

d`

dE`
h(E) =

d`

dE`
(g ∗ Φ)(E~1) = (g ∗ (D`Φ))(E~1). (2.1)

Remark 2.1. This theorem clarifies why the complete covering condition is
needed in main our results for the discrete and the continuous models. The
covering property is needed even for obtaining smoothness of finitely many ran-
dom perturbations of a self-adjoint operator, while such a property is not needed
for modulus of continuity results. We are unsure at the moment if this condition
can be relaxed.

Let A,B be self-adjoint operators and let F1, F2 be bounded non-negative
operators on a separable Hilbert space H . For X ∈ {A,B}, z ∈ C+, set,

R(X, x, y, z) = (X + xF1 + yF2 − z)−1

and
R(X, x, z) = (X + xF − z)−1, F = F1 + F2

for the following Theorem. For the rest of the paper by a smooth indicator
function on an interval (a, b) we mean a smooth function which is one in
[c, d] ⊂ (a, b) which vanishes on R \ (a, b) with a − c + b − d as small as one
wishes.

Theorem 2.2. Suppose A,B, F1, F2, F, z and H be as above. Suppose ρ1, ρ2

are compactly supported functions on R+ such that their derivatives are τ -
Hölder continuous and their supports are contained in (0,R). Let χR denote a
smooth indicator function of the set (0, 2R+1) and let φR(x) = χR(x+ 5

2
R+1).

Then for any 0 < s < τ and some constant Ξ (depending upon ρ1, ρ2, s, τ but
independent of z, A, F1, F2),

1. ∥∥∥∥∫ F
1
2

(
R(A, x1, x2, z)−R(B, x1, x2, z)

)
F

1
2ρ1(x1)ρ2(x2)dx1dx2

∥∥∥∥
8



≤ Ξ

∫ ∥∥∥∥F 1
2

(
R(A, x1, x2, z)−R(B, x1, x2, z)

)
F

1
2

∥∥∥∥s,
× φR(x1)φR(x2)dx1dx2. (2.2)

2. Specializing to the case when F1 = F2, x1 = x2 = x/2 we have∥∥∥∥∫ F
1
2

(
R(A, x, z)−R(B, x, z)

)
F

1
2ρ1(x)dx

∥∥∥∥ (2.3)

≤ Ξ

∫ ∥∥∥∥F 1
2

(
R(A, x, z)−R(B, x, z)

)
F

1
2

∥∥∥∥s φR (x) dx.

Remark 2.3. The integrals appearing in (2.2) and (2.3) are viewed as oper-
ators in the sense of direct integrals (see [59, Theorem XIII.85]). This is the
case because X + x1F1 + x2F2 is decomposable on

L2
(
R2,
∏
i

ρ(xi)dxi,H
)
.

Hence all the integrals of this operator valued function, that appear in the proof,
are well-defined in the sense of direct integral representation.

Proof. We define
At = A+ t F, Bt = B + t F, ∀ − 2R− 1 < t < −2R.

Then, we have the equality,

A+ x1F1 + x2F2 = At +

(
x1 − x2

2

)
(F1 − F2) +

(
x1 + x2

2
− t
)
F. (2.4)

Using the resolvent equation, we have, with F− = F1 − F2,

R(A, x1, x2, z) =

(
At +

(
x1 − x2

2

)
F− − z

)−1

−
(
x1 + x2

2
− t
)
R(A, x1, x2, z)F

(
At +

(
x1 − x2

2

)
F− − z

)−1

(2.5)

which can be re-written (using the notation Ãt = At +
(
x1−x2

2

)
F−) as

√
FR(A, x1, x2, z)

√
F =

1
x1+x2

2
− t

I

− 1(
x1+x2

2
− t
)2

(
1

x1+x2

2
− t

I +
√
F
(
Ãt − z

)−1√
F

)−1

. (2.6)

(I is the identity operator on the range of
√
F ) Similar relations hold for B,

where Bt, B̃t are defined by replacing A with B in the equations (2.4 - 2.6).
We set

R̃t
A,z =

√
F (Ãt − z)−1

√
F , R̃t

B,z =
√
F (B̃t − z)−1

√
F .
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Then using equation (2.6) we get the relation,∫ √
F (R(A, x1, x2, z)−R(B, x1, x2, z))

√
F ρ1(x1)ρ2(x2)dx1dx2

=

∫ [(
1

x1+x2

2
− t

I + R̃t
A,z

)−1

−
(

1
x1+x2

2
− t

I + R̃t
B,z

)−1
]

1(
x2+x2

2
− t
)2ρ1(x1)ρ2(x2)dx1dx2

= 2

∫ [(
γI + R̃t

A,z

)−1

−
(
γI + R̃t

B,z

)−1
]

ρ1

(
t+

1

γ
+ η

)
ρ2

(
t+

1

γ
− η
)
dγdη (2.7)

where γ =
(
x1+x2

2
− t
)−1 and η = x1−x2

2
. For X self-adjoint, R̃t

X,z is an opera-
tor valued Herglotz function and its imaginary part is a positive operator for
=(z) > 0. Hence the operators

(
γI + R̃t

X,z

)
generate a strongly continuous

one parameter semi-group, and we can apply the Lemma A.3 for the γ integral,
and then do the η integral to get∫ [(

γI + R̃t
A,z

)−1

−
(
γI + R̃t

B,z

)−1
]

ρ1

(
t+

1

γ
+ η

)
ρ2

(
t+

1

γ
− η
)
dγdη

= −
∫ [∫ ∞

0

(
eiw(γI+R̃tA,z) − eiw(γI+R̃tB,z)

)
dw

]
ρ1

(
t+

1

γ
+ η

)
ρ2

(
t+

1

γ
− η
)
dγdη

= −
∫ ∫ ∞

0

(
eiwR̃

t
A,z − eiwR̃tB,z

)
eiγwρ1

(
t+

1

γ
+ η

)
ρ2

(
t+

1

γ
− η
)
dγ dwdη,

(2.8)
which can be bounded as∥∥∥∥∫ ∫ ∞

0

[
eiwR̃

t
A,z − eiwR̃tB,z

]
eiγwρ1

(
t+

1

γ
+ η

)
ρ2

(
t+

1

γ
− η
)
dγ dwdη

∥∥∥∥
≤
∫ ∥∥∥(eiwR̃tA,z − eiwR̃tB,z)∥∥∥
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∣∣∣∣∫ eiγwρ1

(
t+

1

γ
+ η

)
ρ2

(
t+

1

γ
− η
)
dγ

∣∣∣∣ dwdη. (2.9)

The assumption we made on the supports of ρ1, ρ2 implies that −R
2
< η < R

2
,

and the choice −2R− 1 < t < −2R implies −5
2
R − 1 < t ± η < −3R

2
. This

implies that{
γ : ψt,η(γ) 6= 0,−5

2
R− 1 < t± η < −3R

2

}
⊂
(

2

2 + 7R
,

2

3R

)
,

where ψt,η(γ) = ρ1

(
t+ 1

γ
+ η
)
ρ2

(
t+ 1

γ
− η
)
. Thus for fixed t, η, the function

ψt,η(γ) is of compact support and has a τ -Hölder continuous derivative as a
function of γ, for the τ stated as in the Theorem. Also, the derivative of ψt,η
is uniformly τ -Hölder continuous and the constant in the corresponding bound
is uniform in t, η, which follows from the support properties of ψt,η and the
bounds on t, η. Therefore, if we denote the Fourier transform of ψt,η(−γ) by
ψ̂t,η, then standard Fourier analysis gives the bound,∣∣∣∣∫ eiγwρ1

(
t+

1

γ
+ η

)
ρ2

(
t+

1

γ
− η
)
dγ

∣∣∣∣
≤ C

|w|1+τ

(∥∥∥|w|1+τ ψ̂t,η(w)
∥∥∥
∞

)
≤ C̃

|w|1+τ
for |w| � 1

for some C̃ depends on ρ1, ρ2 but not on t, η.
Again using the bounds on t, η and γ, we see that for small |w|, the w

integral is bounded uniformly in t, η, by the L∞ norm of ρ1 and ρ2 and hence
C̃ is (t, η)-independent for all w.

On other hand using the Lemma A.2, we have∥∥∥eiwR̃tA,z − eiwR̃tB,z∥∥∥ ≤ 21−s|w|s
∥∥∥R̃t

A,z − R̃t
B,z

∥∥∥s
for 0 < s < 1. By choosing s < τ/2 and using above bounds in (2.9) we have∥∥∥∥∫ ∫ ∞

0

(
eiwR̃

t
A,z − eiwR̃tB,z

)
eiγwρ1

(
t+

1

γ
+ η

)
ρ2

(
t+

1

γ
− η
)
dγ dwdη

∥∥∥∥ (2.10)

≤ Ĉ

(
1 +

∫ ∞
1

1

w1+τ−sdw

)∫ ∥∥∥R̃t
A,z − R̃t

B,z

∥∥∥s dη, (2.11)

The integral we started with is independent of t so we can integrate it with
respect to the Lebesgue measure on an interval of length one. Therefore, com-
bining the inequalities (2.7, 2.8, 2.9, 2.10) and integrating t over an interval of
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length 1, yields∥∥∥∥∫ √F (R(A, x1, x2, z)−R(B, x1, x2, z)
√
F ρ1(x1)ρ2(x2)dx1dx2

∥∥∥∥
=

∫ −2R

−2R−1

∥∥∥∥∫ √F (R(A, x1, x2, z)−R(B, x1, x2, z)
√
F ρ1(x1)ρ2(x2)dx1dx2

∥∥∥∥ dt
≤ C

∫ −2R

−2R−1

∫ R
2

−R
2

∥∥∥R̃t
A,z − R̃t

B,z

∥∥∥s dηdt
≤ C

∫ ∫ ∥∥∥∥√F (A+ x̂1F1 + x̂2F2 − z)−1
√
F

−
√
F (B + x̂1F1 + x̂2F2 − z)−1

√
F

∥∥∥∥sφR(x̂1)φR(x̂2) dx̂1dx̂2.

For the last inequality we used the definition of R̃t
X,z changed variables x̂1 =

t + η, x̂2 = t − η along with a slight increase in the range of integration to
accommodate the bump φR to have their supports in (−5

2
R− 1,−R

2
).

3 The Discrete case
Let G denote a un-directed connected graph with a graph-metric d. Let {xn}n
denote an enumeration of G satisfying d(ΛN , xN+1) = 1 for any N ∈ N, where

ΛN = {xn : n ≤ N}, Λ∞ = G, (3.1)
and

lim inf
N→∞

d(x0,G \ ΛN)

g(N)
= rG > 0, (3.2)

for some increasing function g on R+. Typically, we will have g(N) = N1/d for
G = Zd and g(N) = logK(N) for the Bethe lattice with connectivity K > 2.
Henceforth for indexing G we will say n ∈ G to mean xn ∈ G.

Let H be a complex separable Hilbert space equipped with a countable
family {Pn}n∈G of finite rank orthogonal projections such that

∑
n∈G Pn = Id,

with the maximum rank of Pn being finite, thus
H =

⊕
n∈G

Ran(Pn).

Let h0 denote a bounded self-adjoint operator on H and consider the random

12



operator, we stated in equation (1.2),
hω = h0 +

∑
n∈Λ∞

ωnPn, (3.3)

where the random variables ωn satisfies Hypothesis 3.1 below. Given a finite
subset Λ ⊂ G, we will denote PΛ =

∑
n∈Λ Pn, HΛ = PΛH and

hωΛ = PΛh
ωPΛ (3.4)

denotes the restriction of hω to HΛ.
We abused notation to denote P for two different objects, Pn denoting

projections onto sites xn ∈ G and PΛ to denote the sum of Pn when xn varies
in Λ, but we are sure the reader will not be confused and the meaning would
be clear from the context.

We have the following assumptions on the quantities involved in the model.

Hypothesis 3.1. We assume that the random variables ωn are independent
and distributed according to a density ρn which are compactly supported in
(0, 1)and satisfy ρn ∈ Cm((0, 1)) for some m ∈ N and

D = sup
n

max
`≤m
‖ρ(`)

n ‖∞ <∞. (3.5)

We note that as long as ρn ∈ Cm((a, b)) for some −∞ < a < b < ∞, a
scaling and translation will move its support to (0, 1). So our support condition
is no loss of generality.

Hypothesis 3.2. A compact interval J ⊂⊂ R is said to be in region of local-
ization for hω with exponent 0 < s < 1 and rate of decay ξs > 0, if there exist
C > 0 such that

sup
<(z)∈J,=(z)>0

E
ω

[∥∥Pn(hω − z)−1Pk
∥∥s] ≤ Ce−ξsd(n,k) (3.6)

for any n, k ∈ G. For the operators hωΛK exponential localization is defined with
Λ, hωΛK , ξs,ΛK replacing G, hω, ξs respectively in the above bound.

We assume that for our models, for all ΛK, with K ≥ N the inequality
(3.6) holds for some ξs > 0 and ξs,ΛK ≥ ξs, for all ΛK with K ≥ N . We also
assume that the constants C, ξs do not change if we replace the distribution ρn
with one of its derivatives at finitely many sites n.

Remark 3.3. For large disorder models one can get explicit values for ξs
from the papers of Aizenman-Molchanov [4] or Aizenman [2]. For example
the Anderson model on `2(Zd) with disorder parameter λ >> 1, typically ξs =
−s ln Cs,ρ2d

λ
, for some constant Cs,ρ <∞ that depends on the single-site density
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ρ and is independent of Λ. So ξs,Λ = ξs > 0 for large enough λ. Similarly
for the Bethe lattice with connectivity K + 1 > 1, ξs,Λ = ξs = −s ln Cs,ρ(K+1)

λ
.

Going through Lemma 2.1 of their paper, and tracing through the constants, we
see that our assumption about changing the distribution at finitely many sites
is valid.

Henceforth let EA(·) denote the projection valued spectral measure of a
self-adjoint operator A. Our main goal in this section is to show that

N (E) = E
ω

[tr(P0Ehω(−∞, E))]

is m times differentiable in the region of localization, if ρ has a bit more than
m derivatives, which means that the density of states DOS is m − 1 times
differentiable. Our theorem is the following, where we tacitly assume that the
spectrum σ(hω) is a constant set a.s., a fact proved by Pastur [45] for a large
class of random self-adjoint operators. While it may not be widely known, it is
also possible to show the constancy of spectrum for operators that do not have
ergodicity but when there is independent randomness involved see for example
Kirsch et.al. [34]. In such non-ergodic cases when there is no limiting eigenvalue
distribution, our results are still valid for the spectral measures considered.

Theorem 3.4. Consider the random self-adjoint operators hω given in equation
(3.3) on the Hilbert space H and a graph G satisfying the condition (3.2) with
g(N) = Nα, for some α > 0. We assume that ωn is distributed with density ρn
satisfying the Hypothesis 3.1 and, with m as in the Hypothesis, ρ(m)

n is τ -Hölder
continuous for some 0 < τ < 1. Assume that J is an interval in the region of
localization for which the Hypothesis 3.2 holds for some 0 < s < τ . Then the
function

N (E) = E
ω

[tr(P0Ehω(−∞, E))] ∈ Cm−1(J) (3.7)

and N (m)(E) exists a.e. E ∈ J .

Remark 3.5. 1. We stated the Theorem in this generality so that it applies
to multiple models, such as the Anderson models on Zd, other lattice or
graphs, having the property that the number of points at a distance N
from any fixed point grow polynomially in N . The models for which this
Theorem is valid also include higher rank Anderson models, long range
hopping with some restrictions, models with off-diagonal disorder to state
a few. In all of these models, by including sufficiently high diagonal dis-
order, through a coupling constant λ on the diagonal part, we will have
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exponential localization for the corresponding operators via the Aizenman-
Molchanov method. So this Theorem gives the Regularity of DOS in all
such models. For the Bethe lattice and other countable sets for which
g(N) is like ln(N), our results hold but the order of smoothness m that
can be obtained is restricted by the localization length by a condition such
as ξs > m lnK. So in this work we do not consider such type of setting.

2. This Theorem also gives smoothness of DOS in the region of localization
for the intermediate disorder cases considered for example by Aizenman
[2] who exhibited exponential localization for such models in part of the
spectrum.

3. In the case hω is not the Anderson model, all these results are new and
it is not clear that the method of proof using super symmetry, as done for
the Anderson model at high disorder, will even work for these models.

4. We note that in the proof we will take at most m−1 derivatives of resolvent
kernels in the upper half-plane and show their boundedness, but we have a
condition that the function ρ has a τ -Hölder continuous derivative. The
extra 1+ τ ‘derivatives’ are needed for applying the Theorem 2.2 to obtain
the inequality (3.19) from the equality (3.18).

Proof. Since the orthogonal projection P0 is finite rank, we can write P0 =∑r
i=1 |φi〉〈φi| using a set {φi} of finitely many orthonormal vectors. Then we

have,

N (E) =
r∑
i=1

E
ω

(〈φi, Ehω((−∞, E))φi〉) .

The densities of the measures 〈φi, Ehω(·)φi〉 are bounded by Lemma A.4 for each
i = 1, . . . , r. Hence N is differentiable almost everywhere and its derivative,
almost everywhere, is given by the boundary values,

1

π
E
ω

(
tr
(
P0=(hω − E − i0)−1

))
is bounded. The Theorem follows from Lemma A.1 once we show

sup
<(z)∈J,=(z)>0

d`

dz`
E
ω

[
tr(P0(hω − z)−1)

]
<∞, (3.8)

for all ` ≤ m − 1, since such a bound implies that m − 1 derivatives of η
are continuous and its mth derivative exists almost everywhere, since hω are
bounded operators. The projection P0 is finite rank which implies that the
bounded operator valued analytic functions P0(hω − z)−1, P0(hωΛ − z)−1 are
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trace class for z ∈ C+. Therefore the linearity of the trace and the dominated
convergence theorem together imply that

E
ω

[
tr(P0(hω − z)−1 − P0(hωΛ − z)−1)

] Λ→G−−−→ 0, (3.9)

compact uniformly in C+. For the rest of the proof we set hωK = hωΛK for ease
of writing.

The convergence given in equation (3.9) implies that the telescoping sum,
E
ω

[
tr(P0(hωM − z)−1)

]
=

M∑
K=N

(
E
ω

[
tr(P0(hωK+1 − z)−1)

]
− E

ω

[
tr(P0(hωK − z)−1)

])
+ E

ω

[
tr(P0(hωN − z)−1)

]
also converges compact uniformly, in C+ to

E
ω

[
tr(P0(hω − z)−1)

]
,

which implies that their derivatives of all orders also converge compact uni-
formly in C+.

Therefore the inequality (3.8) follows if we prove the following uniform
bound, for all 0 ≤ ` ≤ m− 1 and N large,

∞∑
K=N

sup
<(z)∈J

∣∣∣∣ d`dz`
(
E
ω

[
tr(P0(hωK+1 − z)−1)− E

ω

[
tr(P0(hωK − z)−1)

])]∣∣∣∣ <∞.
(3.10)

To this end we only need to estimate∣∣∣∣ dldzl Eω [tr(P0(hωK+1 − z)−1P0)− tr(P0(hωK − z)−1P0)
] ∣∣∣∣ (3.11)

for <(z) ∈ J where we used the trace property to get an extra P0 on the right
and set Gω

M(z) = P0(hωM − z)−1P0, M ∈ N for further calculations.
The function

fε(~ω − E~1) = tr(Gω
K(E + iε))

is a complex valued bounded measurable function on RK+1 for each fixed ε > 0.
Therefore we compute the derivatives in E of its expectation

hε(E) = E
ω

(
fε(~ω − E~1)

)
= E

(
tr(Gω

K(E + iε)−1)
)

using Theorem 2.1. This calculation gives in the notation of that Theorem,
d`

dE` Eω
(
tr(Gω

K(E + iε))
)

=

∫
tr(Gω

K(E + iε))D`ΦK(~ω)d~ω, (3.12)
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where we set ΦK(~ω) =
∏
n∈ΛK

ρn(ωn), d~ω =
∏
n∈ΛK

dωn.

It is not hard to see that for each 0 ≤ ` ≤ m− 1,∫
tr(Gω

K(E + iε))D`ΦK(~ω)d~ω,=

∫
tr(Gω

K(E + iε))D`ΦK+1(~ω)d~ω, (3.13)

since the integrand tr(Gω
K(E + iε)) is independent of ωn, n ∈ ΛK+1 \ ΛK and

ρn satisfies
∫
ρ

(j)
n (x)dx = δj0. We set
R(ω,K,E, ε) = tr

(
Gω
K+1(E + iε)−Gω

K(E + iε)
)

(3.14)
to simplify writing. We may write the argument ω of R(ω,K,E, ε) below in
terms of the vector notation ~ω for uniformity as it is a function of the variables
{ωn, n ∈ ΛK+1}.

Then combining the equations (3.12, 3.13) inside the absolute value of the
expression in equation (3.11) to be estimated we have to consider the quantity,
for K ≥ N ,

TK,`(E, ε) =
d`

dE` Eω
[
tr
(
Gω
K+1(E + iε)−Gω

K(E + iε)
)]

=

∫
RK+1

R(~ω,K,E, ε)(D`ΦK+1)(~ω)d~ω. (3.15)

To prove the theorem we need to show that
∞∑

K=N

sup
E∈J,ε>0

|TK,`(E, ε)| <∞. (3.16)

Multinomial expansion of D` =

( ∑
n∈ΛK+1

∂

∂ωn

)`
gives the relation

TK,`(E, ε)

=
∑

k0+···+kK=`
kn≥0

(
`

k0,...,kK

) ∫
RK+1

R(~ω,K,E, ε)

(K+1∏
n=0

∂kn

∂knωn
ρn(ωn)dωn

)
. (3.17)

We use Fubini to interchange the trace and an integral over ω0 to get
TK,`(E, ε)

=
∑

k0+···+kK=`
kn≥0

(
`

k0,...,kK

) ∫
RK

tr

(∫ (
Gω
K+1(E + iε)−Gω

K(E + iε)
)
ρ

(k0)
0 (ω0)dω0

)

×
( ∏
n∈ΛK+1,n6=0

ρ(kn)
n (ωn)dωn

)
. (3.18)
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We take the absolute value of T and estimate the ω0 integrals using the Theo-
rem 2.2, displaying explicitly the dependence on the ρ or its derivatives in the
constant Ξ appearing in that theorem, to get, for 0 < s < 1/2 (the choice for
s will become clear in Lemma 3.1),

TK,`(E, ε) ≤∑
k0+···+kK=`

kn≥0

(
`

k0,...,kK

)
Ξ(ρ

(k0)
0 )tr(P0)

×
∫
RK

(∫
‖
(
Gω
K+1(E + iε)−Gω

K(E + iε)
)
‖sφR(ω0)dω0

)
×
( ∏
n∈ΛK+1,n 6=0

|ρ(kn)
n (ωn)|dωn

)
. (3.19)

We set

ρ̃n =
ρ

(kn)
n

‖ρ(kn)
n ‖1

, n 6= 0, ρ̃0 =
φR

‖φR‖1

(3.20)

and set, using the inequality (3.5), C0 = max{D, ‖φR‖1}, where D is such that
‖ρ(kn)

n ‖1 ≤ D ∀ n 6= 0. We note here that at most ` of ρ̃n differ from ρn itself
and that ‖ρn‖1 = 1. We then get the bound
|TK,`(E, ε)|

≤ C`
0 sup
j≤`

Ξ(ρ(j))tr(P0)
∑

k0+···+kK=`
kn≥0

(
`

k0,...,kK

)
×
∫
RK+1

‖
(
Gω
K+1(E + iε)−Gω

K(E + iε)
)
‖s

∏
n∈ΛK+1

ρ̃n(ωn)dωn (3.21)

We denote the probability measure
dPK(~ω) =

∏
n∈ΛK

ρ̃n(ωn)dωn,

and expectation as EK . We also set,
C1,m = sup

0≤`≤m
{C`

0}, C2,m = sup
n∈G,j≤m

{Ξ(ρ(j)
n )}.

Then the inequality (3.21) becomes
|TK,`(E, ε)| ≤ C1,mC2,mtr(P0)

∑
k0+···+kK=`

(
`

k0,...,kK

)
× EK+1

[
‖
(
Gω
K+1(E + iε)−Gω

K(E + iε)
)
‖s
]
. (3.22)
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We use the estimate for the expectation EK+1(·) from Lemma 3.1 to get the
following bound, for some constant C6 independent of K,

sup
E∈J,ε>0

|TK,`(E, ε)| ≤ C6C5

∑
k0+···+kK=`

(
`

k0,...,kK

)
(1 + 2K)e−ξ2sK

α

≤ C6C5(K + 1)`(1 + 2K)e−ξ2s|K|
α

. (3.23)
From this bound the summability stated in the inequality (3.16) follows since
we assumed that ξ2s > 0, completing the proof of the Theorem.

We needed the exponential bound on the resolvent estimate, which is the
focus of the following lemma.

Lemma 3.1. We take the interval J stated in Theorem 3.4, then we have the
bound

sup
<(z)∈J,=(z)>0

EK+1

[∥∥(Gω
K+1(z)−Gω

K(z)
)∥∥s]

≤ C5(m,Rank(P0),D, h0, R, s)(2K + 1)e−ξ2sK
α

.

Proof: We start with the resolvent identity

Gω
K(z)−Gω

K+1(z) = P0

(
(hωK − z)−1 − (hωK+1 − z)−1

)
P0

= P0(hωK − z)−1[hωK+1 − hωK ](hωK+1 − z)−1P0

= P0(hωK+1 − z)−1PΛKh0PK+1(hωK+1 − z)−1P0. (3.24)
In the above equation, the terms corresponding to the random part ωK+1PK+1

and the part PK+1h0PΛK (appearing in the difference [hωK+1 − hωK ]) are zero,
since they are multiplied by P0(hωK − z)−1 on the left and P0(hωK − z)−1PK+1

being the operator P0(PΛKh
ωPΛK −z)−1PK+1 is obviously zero since P0PK+1 =

0 if K > 1. It is to be noted that this fact is independent of how h0 looks!
We estimate the last line in the equation (3.24), by first by expanding PΛK =∑

n∈ΛK
Pn and estimate the norms of the operators (using ‖B

∑N
i=1 Ai‖s ≤

‖B‖s
∑N

i=1 ‖Ai‖s for any finite collection {B,Ai, i = 1, . . . , N} of bounded
operators and 0 < s < 1) to get
‖
(
Gω
K+1(z)−Gω

K(z)
)
‖s ≤ ‖h0‖s‖PK+1(hωK+1 − z)−1P0‖s‖P0(hωK+1 − z)−1PΛK‖s

≤ ‖h0‖s‖PK+1(hωK+1 − z)−1P0‖s

×
∑
n∈ΛK

‖P0(hωK+1 − z)−1Pn‖s. (3.25)

We take expectation of both the sides of the above equation, then interchange
the sum and the expectation on the right hand side and use Cauchy-Schwartz
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inequality to get the bound
EK+1

(
‖
(
Gω
K+1(z)−Gω

K(z)
)
‖s
)

≤ ‖h0‖s
∑
n∈ΛK

(
EK+1

(
‖PK+1(hωK+1 − z)−1P0‖2s

)) 1
2

(
EK+1

(
‖P0(hωK+1 − z)−1Pn‖2s

)) 1
2 . (3.26)

We now estimate the above terms by getting an exponential decay bound for
the term with operators kernels of the form PK+1[·]P0 while the remaining
factors are uniformly bounded with the bound independent of K, by using the
Hypothesis 3.2.

Applying the bound on the fractional moments given in the Hypothesis 3.2,
inequality 3.6 we get

EK+1

(
‖Pn(hωK − z)−1P0‖2s

)
≤ C, n ∈ ΛK ,

EK+1

(
‖P0(hωK+1 − z)−1Pn‖2s

)
≤ C, n ∈ ΛK

EK+1

(
‖P0(hωK+1 − z)−1PK+1‖2s

)
≤ Ce−ξsK

α

,

EK+1

(
‖PK+1(hωK+1 − z)−1P0‖2s

)
≤ Ce−ξsK

α

.

Using these bounds in the inequality (3.26), we get the bound (after noting
that the sum has 2K terms, so we get (1 + 2K) as the only K dependence
other than the exponential decay factor),

≤ C5(m,Rank(P0),D, h0, R, s)(1 + 2K)e−ξ2sK
α

,

which is the required estimate to complete the proof of the Lemma.

4 The Continuous case
In this section we show that the density of states of some Random Schrödinger
operators are almost as smooth as the single site distribution. On the Hilbert
space L2(Rd) we consider the operator

H0 =
d∑
i=1

(
−i ∂
∂xi

+ Ai(x)

)2

,

with the vector potential ~A(x) = (A1(x), · · · , Ad(x)) assumed to have sufficient
regularity so that H0 is essentially self-adjoint on C∞0 (Rd).

The random operators considered here are given by
Hω = H0 + λ

∑
n∈Zd

ωnun, (4.1)
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where {ωn}n∈Zd are independent real random variables satisfying Hypothesis
3.1, un are operators of multiplication by the functions u(x − n), for n ∈ Zd
and λ > 0 a coupling constant.

We have the following hypotheses on the operators considered above to en-
sure Hω continue to be essentially self-adjoint on C∞0 (Rd) for all ω. By now it
is well known in the literature (see for example the book of Carmona-Lacroix
[10]) that the spectral and other functions of these operators we consider be-
low will have the measurability properties, as functions of ω, required for the
computations we perform on them and we will not comment further on mea-
surability.

Hypothesis 4.1. 1. The random variables {ωn}n satisfy the Hypothesis 3.1.

2. The function 0 ≤ u ≤ 1 is a non-negative smooth function on Rd such
that for some 0 < ε2 <

1
2
, 0 < ε1 < 1, it satisfies

u(x) =

{
0, x /∈ (−1

2
− ε1, 1

2
+ ε1)d

1, x ∈ (−1
2

+ ε2,
1
2
− ε2)d∑

n∈Zd
u(x− n) = 1 x ∈ Rd.

We need some notation before we state our results. Given a subset Λ ⊂ Zd,
we set

[Λ] =

{
x ∈ Rd :

∑
n∈Λ

u(x− n) = 1

}
(4.2)

and denote the restrictions of H0, H
ω to [Λ] respectively by H0,Λ, H

ω
Λ . As an

abuse of notation, whenever we talk about restricting the operator on Λ, we will
mean restriction onto [Λ]. We need this distinction because

∑
n∈Λ u(x−n) = 1

only on [Λ] and we need the complete covering condition. While the boundary
conditions are not that important, we will work with Dirichlet boundary con-
ditions in this section. We will also denote un,Λ to be the restriction of un to
[Λ] when the need arises. We denote by EA(·) the projection valued spectral
measure of a self-adjoint operator A and from the context it will be clear that
this symbol will not be confused with points in the spectrum denoted by E.
We denote the Integrated Density of States (IDS) by

NΛ(E) = E
ω

[
tr(u0EHω

Λ
(−∞, E])

]
for E ∈ R, (4.3)

and the subscript Λ on the IDS is dropped in the case of the operator Hω.
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We start with our Hypothesis on the localization. where we set Pn to be
the orthogonal projection onto L2(supp(un)).

Hypothesis 4.2. A compact interval J ⊂ R is said to be in the region of
localization for Hω with rate of decay ξs and exponent 0 < s < 1, if there exists
C, ξs > 0 such that

sup
<(z)∈J,=(z)>0

E
ω

[∥∥Pn(Hω − z)−1Pk
∥∥s] ≤ Ce−ξs‖n−k‖ (4.4)

for any n, k ∈ Zd. For the operators Hω
Λ exponential localization is similarly

defined with Λ, Hω
Λ , ξs,Λ replacing Zd, Hω, ξs respectively in the bound for the

same J .
We assume that for all Λ large enough ξs,Λ ≥ ξs for J in the region of

localization and the constants C, ξs do not change if we change the density ρn
with one of its derivatives at finitely many n.

Remark 4.3. We note that the above Hypothesis holds with ξs > 0, for the
models of the type we consider under a large disorder condition, introduced via a
coupling constant. The condition ξs > 0 is sufficient for our Theorem and there
is no need to specify how large it should be. Similarly the multiscale analysis
which is the starting point of the fractional moment bounds, uses apriori bounds
that depend on the Wegner estimate which depends on only the constant D. So
changing the distribution ρn with one of its derivatives at finitely many points
n does not affect the constants C, ξs.

Our main Theorem given next, is the analogue of the Theorem 3.4. We
already know from Lemma A.5, that u0EHω(−∞, E) is trace class for any
E ∈ R, hence we will be working with

N (E) = E
ω

[tr(u0EHω(−∞, E))] for E ∈ R. (4.5)

The function N is well defined by Lemma A.5 and is known to be continuous
(see [14, Theorem 1.1] for example) whenever ρ is continuous.

By the Pastur-Shubin trace formula for the IDS, the function N is at most
a constant multiple of IDS, since

∫
u0(x)dx may not be equal to 1, but this

discrepancy does not affect the smoothness properties, so we will refer to N as
the IDS below.

Our main Theorem given below implies that the density of states DOS is
m− 1 times differentiable in J when ρ satisfies the conditions of the Theorem.

Theorem 4.4. On the Hilbert space L2(Rd) consider the self-adjoint operators
Hω given by (4.1), satisfying the Hypothesis 4.1. Let J be an interval in the
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region of localization satisfying the Hypothesis 4.2 with ξs > 0 for some 0 <
s < 1/6. Suppose the density ρ ∈ Cm

c ((0,∞)), and ρ(m) is τ -Hölder continuous
for some s < τ/2. Then N ∈ C(m−1)(J) and N (m) exists almost everywhere in
J .

Remark 4.5. A Theorem of Aizenman et al. [3, Theorem 5.2] shows that
there are operators Hω of the type we consider for which the Hypothesis 4.2 is
valid for large coupling λ, where it was required that 0 < s < 1/3. We take
0 < s < 1/6 as we need to controls 2s-th moment of averages of norms of
resolvent kernels in our proof.

Proof. We consider the boxes ΛL = {−L, · · · , L}d, and set Hω
L = Hω

ΛL
, NL =

N ω
ΛL

.
The strong resolvent convergence of Hω

ΛL
to Hω, which is easy to verify,

implies thatNΛL converges toN point wise sinceN is known to be a continuous
function for the operators we consider. Since tr(u0EHω

L
((−∞, E])) is a bounded

measurable complex valued function, NL ∈ Cm(J), by Theorem 2.1. Therefore
it is enough to show that N (·) −NΛN (·) (which is a difference of distribution
functions of the σ-finite measures tr(u0EHω(·)) and tr(u0EHω

N
(·)) appropriately

normalized) is in Cm(J) for some N . We will need to use the Borel-Stieltjes
transforms of these measures for the rest of the proof, but these transforms are
not defined because u0(Hω

N − z)−1 fails to be in trace class. Therefore we have
to approximate u0 using finite rank operators first.

To this end let Qk be a sequence of finite rank orthogonal projections, in
the range of u0 such that they converge to the identity on this range. We then
define,

NL,Qk(E) = E
ω

(
tr(Qku0EHω

L
(−∞, E])

)
. (4.6)

Since the projections Qk strongly converge to the identity on the range of u0,
the projections Qku0EHω

L
((−∞, E)) also converge strongly to u0EHω

L
((−∞, E))

point wise in E. This convergence implies thatNL,Qk(E) converge point wise to
NL(E) for any fixed L. Henceforth we drop the subscript on Qk but remember
that the rank of Q is finite.

Since Q is finite rank, the measures tr(Qu0EHω
L
(·)) are finite measures.

Therefore we can define the Borel-Stieltjes transform of the finite signed mea-
sure

E
ω

[
tr(Qu0EHω

L+1
(·))− tr(Qu0EHω

L
(·))
]
,
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namely
E
ω

[
tr(Qu0(Hω

L+1 − z)−1 − tr(Qu0(Hω
L − z)−1)

]
=

∫
1

x− z
dE
ω

[
tr(Qu0EHω

L+1
(x))− tr(Qu0EHω

L
(x))

]
, (4.7)

where the signed measure has finite total variation for each Q and each L.
Then the derivatives of NL+1,Q(E)−NL,Q(E) are given by

lim
ε↓0

1

π
E
ω

[
tr(Qu0=(Hω

L+1 − E − iε)−1)− tr(Qu0=(Hω
L − E − iε)−1)

]
= lim

ε↓0

1

π
E
ω

[
tr

[
Qu0

(
=(Hω

L+1 − E − iε)−1 −=(Hω
L − E − iε)−1

)]]
. (4.8)

Then, using the idea of a telescoping sum, as done in the previous section, we
need to prove that
∞∑

L=N

sup
<(z)∈J

∣∣∣∣ d`dz`
(
E
ω

[
tr(Qu0(Hω

L+1 − z)−1)− E
ω

[
tr(u0(Hω

L − z)−1)
])]∣∣∣∣ <∞.

(4.9)
We set (taking κ(L) as the volume of ΛL \ {0}),

Gω
L(z) = Qu0(Hω

L − z)−1u0, S(~ω,Q, L, z) = Gω
L+1(z)−Gω

L(z),

ΦL+1(~ω) =
∏

n∈ΛL+1

ρ(ωn), κ(L) = |ΛL| − 1. (4.10)

Then, following the sequence of steps leading from equation (3.11) to equation
(3.16), we need only to consider

T (L, `,Q, z) =
d`

dE` Eω
[
tr(Gω

L+1(E + iε)−Gω
L(E + iε))

]
=

∫
Rκ(L+1)+1

tr(S(~ω,Q, L,E, ε))(D`ΦL+1)(~ω)d~ω, (4.11)

to estimate and show that
∞∑

L=N

sup
<(z)∈J,=(z)>0,

`≤m,
Q

|T (L, `,Q, z)| <∞, (4.12)

to prove the theorem. Using the steps followed from getting equation (3.18)
from the equality (3.17), which is an identical calculation here, to get
T (L, `,Q, z)
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=
∑

∑ΛL+1
n=1 kn=`
kn≥0

(
`

k0,...,kκ(L+1)+1

) ∫
Rκ(L+1)

tr

(∫ (
Gω
L+1(z)−Gω

L(z)
)
ρ

(k0)
0 (ω0)dω0

)

·
( ∏
n∈ΛL+1\{0}

ρ(kn)
n (ωn)dωn

)
. (4.13)

To proceed further, we need to get a uniform bound in the projection Q.
We will show that the expression

G(L, z, ω) = u0(Hω
L+1 − z)−1 − u0(Hω

L − z)−1, (4.14)
automatically comes with a trace class operator. This fact helps us drop the
Q occurring in the expression(

Gω
L+1(z)−Gω

L(z)
)

= QG(L, z, ω)u0, (4.15)
making estimates on the trace.

We need a collection of d+1 smooth functions 0 ≤ Θj ≤ 1, j = 0, . . . , d+1,
where d is the dimension we are working with. Setting

αj = 2j+2, j ∈ {0, 1, 2, . . . , 2d+ 2}, (4.16)
we choose the functions Θj from C∞(Rd) satisfying

Θj(x) =

{
1, |x| ≤ α2j,

0, |x| > α2j+1,
j = 0, . . . d (4.17)

and note that all the derivatives of Θj are bounded for all j, because they are
all continuous and supported in a compact set. These functions satisfy the
property

Θj+1φ = φ, if supp(φ) ⊂ supp(Θj), j = 0, . . . , d, (4.18)
in particular

Θj+1Θj = Θj, for all j = 0, . . . , d. (4.19)
We then take a free resolvent operator R0

L,a = (H0,ΛL + a)−1, with a >> 1.
Since, H0 is bounded below, R0

L,a is a bounded positive operator for any L. It
is a fact that, for any smooth bump function φ,

[φ,H0]R0
L,a, R

0
L,auj ∈ Ip, p > d. (4.20)

See Combes et.al. [14, Lemma A.1] and Simon [49, Chapter 4] for further
details. Using the definition of G given in equation (4.15), the relation (4.19)
and the resolvent equation we get

G(L, z, ω)Θ0 = u0

[
(Hω

L+1 − z)−1 − (Hω
L − z)−1

]
Θ0

25



= u0

[
(Hω

L+1 − z)−1 − (Hω
L − z)−1

]
Θ1Θ0

= u0

[
(Hω

L+1 − z)−1Θ1 −Θ1R
0
L,a + Θ1R

0
L,a − (Hω

L − z)−1Θ1

]
Θ0

= u0

[(
(Hω

L+1 − z)−1Θ1 −Θ1R
0
L,a

)
−
(
(Hω

L − z)−1Θ1 −Θ1R
0
L,a

)]
Θ0

= u0

[(
(Hω

L+1 − z)−1

(
Θ1(H0,L + a)− (Hω

L+1 − z)Θ1

)
R0
L,a

)
−
(
(Hω

L − z)−1

(
(H0,L + a)Θ1 − (Hω

L − z)Θ1

)
R0
L,a

)]
Θ0

= u0

[(
(Hω

L+1 − z)−1

(
Θ1H0,L −H0,L+1Θ1 + (z + a− V ω

L+1)Θ1

)
R0
L,a

)
−
(
(Hω

L − z)−1

(
H0,LΘ1 −H0,LΘ1 + (z + a− V ω

L )Θ1

)
R0
L,a

)]
Θ0

= u0

[
(Hω

L+1 − z)−1 − (Hω
L − z)−1

]
·
[
[Θ1, H0] +

(
z + a−

∑
|n|≤α1

ωnun

)
Θ1

]
R0
L,aΘ0

= G(L, z, ω)

[
[Θ1, H0] +

(
z + a−

∑
|n|≤α1

ωnun

)
Θ1

]
R0
L,aΘ0

= G(L, z, ω)

(
A0(z, a, α1, H0) +

∑
|n|≤α1

ωnB0,n(a, α1)

)
(4.21)

where we used the definition
A0(z, a, α1, H0) =

(
[Θ1, H0] + (z + a)Θ1

)
R0
L,aΘ0

B0,n(a, α1) = −unΘ1R
0
L,aΘ0 (4.22)

and in passing from equality 6 to equality 7 of the above equation, used the
fact that the support of Θ1 is far away from the boundary of ΛL,ΛL+1, so
V ω
L , V

ω
L+1 agree on the support of Θ1 and also the commutators of Θ1 with

H0,L, H0,L+1 are the same and agree with that of H0. In the above A0, B0,n are
operators independent of ω, each of which is in Ip, by equation (4.19). Using
the definitions and properties of Θj, we see that

Θ2A0(z, a, α1, H0) = A0(z, a, α1, H0), and Θ2B0,n(a, α1) = B0,n(a, α1).

Therefore we can repeat this argument by defining for j = 0, . . . d,
Aj(z, a, α2j+1, H0) = ([Θ2j+1, H0] + (z + a)Θ2j+1)R0

L,aΘ2j
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Bj,n(a, α2j+1) = −unΘ2j+1R
0
L,aΘ2j, |n| ≤ α2j+1, (4.23)

by using the fact that
Θ2jAj−1(z, a, α2j+1, H0) = Aj−1(z, a, α2j+1, H0), and

Θ2jBj−1,n(a, α2j+1) = Bj−1,n(a, α2j+1), (4.24)
for each j = 1, 2, . . . d. We can then re-write the equation (4.21) as

G(L, z, ω) = G(L, z, ω)

d
←∏
j=0

(
Aj(z, a, α2j+1, H0) +

∑
|n|≤α2j+1

ωnBj,n(a, α2j+1)

)
,

(4.25)
where the arrow on the product indicates an ordered product with the operator
sum with a lower index j coming to the right of the one with a higher index j.

Now, counting the number of terms there are in the product, we see that
each sum

∑
|n|≤α2j+1

has a maximum of (2α2j+1)d = 2d(2j+4) terms. A simple
computation shows that there are a maximum of 2d

2(d+4) terms, if we completely
expand out the product. In other words the number of terms are dependent
on d but not on L.

We will now write the expression in equation (4.25) as

G(L, z, ω) =
∑

|n|≤α2d+2

G(L, z, ω)un

( d+1∑
r1,r2=0

ωr1n ω
r2
0 Pn,0(k, r, ω)

)
, (4.26)

where Pn,0(k, r), r = (r1, r2) is a trace class operator valued function of ω,
but independent of ω0, ωn for each k, r. Note that even though Ad and Bd

are supported in supp(Θd),
∑
|n|≤α2d+1

un is not one on the support of Θd, so
we have to take a larger sum in the above expression. We can see from the
structure of the product that the trace norms satsify a bound

sup
<(z)∈J,0<=(z)≤1

‖Pn,0(k, r)‖1 ≤ C7(d, a, J),

since an inspection of the product in equation (4.25), shows that in any prod-
uct, z and {ωñ, ñ 6= 0, n} occurs at most to a power of d + 1. The uniform
boundedness of the trace norm as a function of z, ωñ is clear since these vari-
ables are in compact sets. As for the finiteness of the trace norm itself, we note
that any product has d + 1 factors from the set {Aj, Bj, j = 0, . . . , d}, hence
by the claim in equation (4.20), such a product is trace class.

Using equations (4.10, 4.13, 4.14, 4.15) and equation (4.26) in equation
(4.13), we get, using the fact that Pn,0() are independent of ω0, ωn,
T (L, `,Q, z)
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=
∑

∑
n∈ΛL+1kn

=`

kn≥0

(
`

k0,...,kκ(L+1)+1

) ∫
Rκ(L+1)−1

∑
|n|≤α2d+2

d+1∑
r1,r2=0

tr

(
Q

[
∫
u0

(
(Hω

L+1 − z)−1 − (Hω
L − z)−1

)
unω

r2
n ω

r1
0 ρ

(kn)
n (ωn)ρ

(k0)
0 (ω0)dωndω0]

Pn,0(k, r, ω)

) ∏
m∈ΛL+1\{0,n}

ρ(km)
m (ωm)dωm. (4.27)

We now estimate the absolute value of the trace in equation (4.27) using
the Theorem 2.2(1), taking the φR that appears there, for bounding the norm
of the integral with respect to ωn, ω0, since 2s < τ .
|T (L, `,Q, z)|

≤
∑

∑
n∈ΛL+1kn

=`

kn≥0

(
`

k0,...,kκ(L+1)+1

) ∫
Rκ(L+1)−2

∑
|n|≤α2d+2

d+1∑
r1,r2=0

‖Q‖‖Pn,0(k, r, ω)‖1

[ ∫ ∥∥(u0 + un)
1
2

(
(Hω

L+1 − z)−1 − (Hω
L − z)−1

)
(un + u0)

1
2

∥∥sφR(ω0)φR(ωn)dωndω0

]
∏

m∈ΛL+1\{0,n}

|ρ(km)
m (ωm)|dωm. (4.28)

In the above inequality we also used the fact that u0(u0 +un)−
1
2 , un(u0 +un)−

1
2

are both bounded uniformly in n and replaced u0, un by (u0 + un)
1
2 on either

side of the resolvents.
We would prefer to work with probability measures in above equation, so

we normalize |ρ(km)
m (x)|dx by their L1 norm. We also do the same for φR.

We then follow the steps involved in obtaining the inequality (3.21). We set
η(m, ρ) = (supn∈Zd,kn≤m ‖ρknn ‖1 + ‖ρknn ‖∞) + ‖φR‖1 to get,
|T (L, `,Q, z)|

≤
∑

∑
n∈ΛL+1kn

=`

kn≥0

(
`

k0,...,kκ(L+1)+1

) ∑
|n|≤α2d+2

C9(a, d, J, η(ρ,m))

· EL+1

[
‖(u0 + un)

1
2

(
(Hω

L+1 − z)−1 − (Hω
L − z)−1

)
(un + u0)

1
2‖s
]
, (4.29)
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where EL+1 is the expectation with respect to the probability density
φR(ω0)dω0

‖φR‖1

φR(ωn)dωn
‖φR‖1

∏
m∈ΛL+1\{0,n}

|ρ(km)
m (ωm)|
‖ρ(km)

m ‖1

dωm.

We define a smooth radial function 0 ≤ Ψ ≤ 1 such that

Ψ(x) =

{
1, |x| ≤ L/2,

0, |x| > L/2 + 4
.

Then ΨL

√
u0 + un =

√
u0 + un, |n| ≤ α2d+2. Following the steps similar to

obtaining the inequality (4.21), using the relation (H0,L+a)R0
L,a = Id, we have

(u0 + un)
1
2

(
(Hω

L+1 − z)−1 − (Hω
L − z)−1

)
(un + u0)

1
2

= (u0 + un)
1
2

(
(Hω

L+1 − z)−1[ΨL, H0](Hω
L − z)−1

)
(un + u0)

1
2

= (u0 + un)
1
2 (Hω

L+1 − z)−1[ΨL, H0]
[
R0
L,a + (Hω

L − z)−1 −R0
L,a

]
(un + u0)

1
2

= (u0 + un)
1
2 (Hω

L+1 − z)−1[ΨL, H0]R0
L,a

(
I + (z + a− V ω

L )(Hω
L − z)−1

)
(un + u0)

1
2

= (u0 + un)
1
2 (Hω

L+1 − z)−1

[
−

d∑
i=1

∂2

∂x2
i

ΨL + 2
d∑
i=1

(
∂

∂xi
ΨL

)(
− i ∂

∂xi
+ Ai

)]
R0
L,a

(
I + (z + a− V ω

L )(Hω
L − z)−1

)
(un + u0)

1
2 . (4.30)

We take a smooth bounded radial function 0 ≤ ΥL ≤ 1 which is 1 in a neigh-
bourhood of L/2 ≤ r ≤ L/2 + 4 and zero outside a neighbourhood of radial
width 10. Then using the fact that

ΥL

( d∑
i=1

∂2

∂x2
i

ΨL

)
=

( d∑
i=1

∂2

∂x2
i

ΨL

)
ΥL

(
∂

∂xi
ΨL

)
=

(
∂

∂xi
ΨL

)
, for all i = 1, . . . , d (4.31)

and (4.30), we can now bound the expectation in the inequality (4.29),by

EL+1

[
‖(u0 + un)

1
2

(
(Hω

L+1 − z)−1 − (Hω
L − z)−1

)
(un + u0)

1
2‖s
]

≤ EL+1

[
‖(un + u0)

1
2 (Hω

L+1 − z)−1ΥL‖s∥∥∥∥[(− d∑
i=1

∂2

∂x2
i

ΨL

)
+ 2

d∑
i=1

(
∂

∂xi
ΨL

)(
− i ∂

∂xi
+ Ai

)]
R0
L,a

∥∥∥∥s
(
1 + |z|+ a+ ‖V ω

L ‖∞)‖χΛL(Hω
L − z)−1

√
u0 + un‖s

]
. (4.32)
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Then using Cauchy-Schwartz inequality and Hypothesis 4.2 we get an expo-
nential bound for the first factor, a uniform bound for the second factor after
noting that dist(supp(ΥL, {n : |n| ≤ α2d + 1}) ≥ L/4, ‖ΛL‖ ≤ (2L)d, we get
the estimate

sup
z:<(z)∈J,=(z)≤1

E
ω

[
‖(u0 + un)

1
2

(
(Hω

L+1 − z)−1 − (Hω
L − z)−1

)
(un + u0)

1
2‖s
]

≤ C10(a, J, d)Lde−ξ2sL. (4.33)
Using this inequality in (4.29) we get the bound

sup
z:<(z)∈J,=(z)≤1,

Q
`≤m

|T (L, `,Q, z)|

≤ C11(a, d, J, η(ρ,m))(L+ 1)d(m+1e−ξ2sL, (4.34)
as the combinatorial sum ∑

∑
n∈ΛL+1

kn=`

kn≥0

(
`

k0,...,kκ(L+1)

)
is easily seen to add up to (L+1)d`, which is still polynomial in L. This bounds
shows the summability in equation (4.9) completing the proof.
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A Appendix
We collect a few Lemmas in this appendix that are used in the main part of
the paper. All these Theorems are well known and proved elsewhere in the
literature, but we state them in the form we need and also give their proofs for
the convenience of the reader.

Lemma A.1. Consider a positive function ρ ∈ L1(R, dx) and J ⊂ R an
interval. Let F (z) =

∫
1

x−z ρ(x)dx. Then, for any m ∈ N,

ess sup
x∈J

∣∣∣∣ dmdxmρ
∣∣∣∣ (x) <∞
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whenever

sup
z∈C+, <(z)∈J

∣∣∣∣ dmdxm=F
∣∣∣∣ (z) <∞.

Proof. Since ρ(x)dx is a finite positive measure, F is analytic in C+, and the
assumption on F implies that functions d`

dz`
=F are bounded harmonic functions

in the strip {z ∈ C+ : <(z) ∈ J}, 0 ≤ ` ≤ m. Therefore the boundary values

h`(E) = lim
ε→0

d`

dz`
=F (E + iε)

exist for Lebesgue almost every E ∈ J and h` are essentially bounded in J ,
0 ≤ ` ≤ m. For any E0 ∈ J for which h`(E0) is defined for all 0 ≤ ` ≤ m and
we have for 0 ≤ ` ≤ m− 1,
∂`

∂x`
(=F )(E + iε)− ∂`

∂x`
(=F )(E0 + iε) =

∫ E

E0

∂`+1

∂x`+1
(=F )(x+ iε) dx, E ∈ J.

(A.1)
Since the integrands above are Harmonic functions in the strip, their boundary
values exist, they are uniformly bounded in the strip, so by the dominated
convergence theorem the integral converges to∫ E

E0

h`+1(x) dx, E ∈ J.

On the other hand the left hand side of equation (A.1) converges to h`(E) −
h`(E0), showing that h`(E) is differentiable in J . Since, ρ(x) = 1

π
h0(x), x ∈ J ,

a simple induction argument now gives the Lemma.

Lemma A.2. On a separable Hilbert space H , let A and B be two bounded
operators generating strongly differentiable contraction semi-groups etA, etB re-
spectively, then for any 0 < s < 1,∥∥etA − etB∥∥ ≤ 21−s|t|s ‖A−B‖s .

Proof. Since etA, etB are strongly differentiable, the fundamental Theorem of
calculus gives the bound,∥∥etA − etB∥∥ =

∥∥∥∥∫ t

0

e(t−s)A(A−B)esB ds

∥∥∥∥ ≤ |t| ‖A−B‖ .
Since etA, etB are contractions we have the trivial bound∥∥etA − etB∥∥ ≤ 2,

so the Lemma follows by interpolation.
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Lemma A.3. Let g be a probability density with a τ -Hölder continuous deriva-
tive. Suppose A is a bounded operator on a separable Hilbert space H with
=A > 0 and satisfies∥∥(A+ λI)−1

∥∥ < C <∞, λ ∈ supp(g).

Then ∫
g(λ)(A+ λI)−1dλ = −

∫ ∞
0

eitA
(∫

g(λ)eitλdλ

)
dt. (A.2)

Proof. Since (A+ λI)−1 is bounded we have, in the strong sense,
(A+ λI)−1 = lim

ε↓0
(A+ ε+ λI)−1.

Since =A > 0, the bounded operator (A+ iε) is the generator of a contraction
semi-group, so using [58, Corollary 1, Section IX.4] we have∫

g(λ)(A+ iε+ λI)−1dλ =

∫
g(λ)

∫
eit(A+iε+λI)dtdλ

=

∫ ∫
g(λ)e(−ε+λ)teitAdtdλ. (A.3)

Since g has a τ -Hölder continuous derivative, its Fourier transform is a bounded
integrable function. Therefore by Fubini we can interchange the λ and t inte-
grals on the right hand side of the above equation to get the right hand side of
equation (A.2). On the other hand using the fact that ‖(A+ ε+ λI)−1‖ < 2C
for 0 < ε < 1

2C
and g is a probability density, we have

lim
ε↓0

∫
g(λ)(A+ iε+ λI)−1dλ =

∫
g(λ)

[
lim
ε↓0

(A+ iε+ λI)−1

]
dλ

=

∫
g(λ)(A+ λI)−1dλ.

This set of equalities when applied to the left hand side of the equation (A.2)
gives the Lemma after letting ε go to zero.

We give the Lemma below which is a consequence of proofs of results in
Stollmann [55] and Combes-Hislop-Klopp [13]. These papers essentially prove
the result, but we write it here since it does not occur in the form we need to
use.

Lemma A.4. Suppose A is a self-adjoint operator on a separable Hilbert space
H and suppose B is a non-negative bounded operator. Consider the operators
A(t) = A + tB, t ∈ R, φ ∈ Range(B) and νφA(t) the spectral measure of
A(t) associated with the vector φ. Suppose µ is a finite absolutely continuous
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measure with bounded density, then

sup
z∈C+

∫
=(〈φ, (A(t)− z)−1φ〉)dµ(t) <∞. (A.4)

In particular the measure
∫
νφA(t) dt has bounded density.

Proof. We set ν̃ =
∫
νφA(t) dt, then ν̃ is a positive finite measure. We recall that

the modulus of continuity of a measure ν is defined as
s(ν, ε) = sup{ν([a, a+ ε]) : a ∈ R}.

This definition immediately implies that an absolutely continuous measure µ
with bounded density ρ, satisfies s(µ, ε) ≤ ‖ρ‖∞ε. Therefore the Theorem 3.3
of Stollman [55], implies that

s(ν̃, ε) ≤ 6‖B‖‖φ‖s(µ, ε) ≤ C‖ρ‖∞ε.
This inequality implies that the density of ν̃ is bounded. Since the function

F (z) =

∫
=(〈φ, (A(t)− z)−1φ〉) dµ(t) =

∫
=(

1

x− z
) dν̃

is positive Harmonic in C+, by the maximum principle its supremum is attained
on R. The boundary values of F on R exist and equal the density of the
measure ν̃ =

∫
νφA(t) dt Lebesgue almost everywhere , by Theorem 1.4.16 of

Demuth-Krishna [21], giving the result.

Lemma A.5. Consider the operators Hω, Hω
Λ given in equation (4.1) and the

discussion following it. Then for any finite E ∈ R, the operators u0EHω
Λ
((−∞, E)),

u0EHω((−∞, E)) are trace class for all ω. The traces of these operators are
uniformly bounded in ω for fixed E.

Proof. We will give the proof for Hω, the proof for the others is similar. The
hypotheses on Hω imply that it is bounded below and the pair H0, H

ω are
relatively bounded with respect to each other, being bounded perturbations
of each other, the operators (H0 + a)dEHω((−∞, E)) are bounded for any
fixed (E, a, ω). So taking a in the resolvent set of H0 and using the fact that
u0(H0 + a)−d is trace class we see that

u0EHω(−∞, E) = u0(H0 + a)−d(H0 + a)dEHω(−∞, E),

is a product of a trace class operator and a bounded operator for each fixed
(ω, a, E) with a positive and large. Therefore u0EHω(−∞, E) is also trace
class for each E,ω. The uniform boundedness statement is obvious from the
assumptions on the random potential.
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