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Objectives:

1. Motivate Gaussian Channels

in Quantum Information Theory

2. Describe some recent results by

Solomon Ivan & Krishna Kumar
of this Institute



System S «— Hilbert space Hg, or ‘H
States are p € B(H) with p >0, trp=1

A state p assigns value to observable B through
the pairing (p, B) = tr(pB)

Observables are self-adjoint <= values are real
Unit vectors |¢) € H «— pure states p = |¢) (¢|.

Pure states are one-dimensional projections;

others are mixed states.
State space {2g is the collection of all states of S.

()is convex: p1, p2 € Q2= pp1+ (1 —p)ps € Qg,
forall 0 <p <1

Pure states, and only pure states, are the extremals
of 2.



Composite systems:

Composite system A+ S5 «— Hyg=Hq X Hg

Reduced states of subsystems are partial traces:

pA = trg(p?), pP = tra(p?V)

pAS pure state =% pA, p° pure.

This is one consequence of entanglement

Given a bipartite mixed state pAS of A+ S,
it can be written as an ensemble, or convex sum,

of pure states

o = =il W) py > 0, £p; =1

in innumerable number of ways.
Too many extremals. No Caratheodory!

W]AS )’s are not required to be orthogonal or linearly

independent.



pAS is separable iff we can find an ensemble

A A
P SZ%]?]{]‘ ®C]S, pj >0, ?pjzl

where ffl and ¢ f are respectively states of A, S.
If pAS is not separable, it is entangled.

Separable states form a convex subset Qep) - Q.

Checking separability of a given mixed state remains

an open problem for dimH 4 = dim Hg > 3.



Maps and Physical Processes or Channels:

Quantum evolution is basically unitary:

p— plt) = Ut)pU(t)!

Unitary evolution on a composite system may not

appear unitary on subsytems. It is linear, though.
ps — ps(t) =try (UAS<|O>A A0 ® PS)ULS)

10) 4 4(0| is a reference state of the ancilla A.
We ask: What is the most general linear map ¢ on

state space €2, permitted within the quantum theory:.

A map ¢ : B(H) — B(H) is positive iff &(p) > 0
for all p > 0.

Positive maps on system .S form a convex cone.

But the extremals are not known for dimHg¢ > 3.

Clearly, a physical map ®¢ should be positive. But
positivity of ®¢ does not imply that the ‘trivial” ex-
tension Id 4 ® ¢ g is positive.



A positive map Pg is completely positive if the ex-
tension Id 4 ® ® ¢ is positive, for every n where n is

the dimension of H 4, the ancilla Hilbert space.

For any collection of operators Wi € B(Hg) the

map

CI)S:PSHP@:%W/{PSW[];

is manifestly CP. The good news is: All CP maps
are of this form. Thus the extremals of the convex

cone of CP maps are of the form

ps — ph=WpsWT, W e B(Hg).

Since physical processes have to preserve trace of
p, we conclude trace-preserving CP maps (CP-T)

correspond to physical processes.



ACP=T trace-preserving CP maps

ACP=U __ ynital or identity-preserving CP maps

ACP=TU trace-preserving unital CP maps. Also

called doubly stochastic maps.

Refering to the operator-sum representation

@SZPSHPéZ%WkﬂSW;(

)

o WiWy = 1d, for ACP-T
s WW i =1d, for ACP-U
k WJWK Id & sy, WkW[Jg Id, for A\CP-TU
ACP=TU ig the intersection of AT —1 and ACT—U

The extremals of the convex sets
ACP—U and ACP—TU

AC’P—T

are not known for n > 3
Convex sum of unitary maps is doubly stochastic.

The converse, Birkhoff theorem, true only for n = 2.



Gaussian States

Oscillator, hermitian position-momentum operators

g, p, annihilation creation operators a, al:

1
a ﬂ(q+2p)a lq, pl=qp—pqg =1, [a,al]=1.

H = (aa +a'a)/2, vacuum |0): al0) = 0.

Displacement operator (in phase space):

a = (a1 + a2)/V?2
D(o) = explaa! — a%a) = exp{ —ifarp — a20)
= exp(tajan/2) exp(—iagp) exp(iong)
= exp(—iaian/2) exp(iaag) exp(—iaip)}

Coherent state: |a) = D(«)|0), one coherent state

for each complex number a.. ala) = ala).

Squeeze operator: S(£) = exp(éa’ — exal 2)



Coherent states are GGaussian states.

The unitary operators S(£), exp(—ttH), and D(«)
take Gaussian states to Gaussians. All Gaussian
pure states are obtained by the action of these —
the semidirect product of the symplectic and Weyl

groups — on the vacuum state.

D(a)D(B) = exp|—(af* — Ba*)/2]D(a + j)
tr( DT()D(B)) = md(a)

Given a state, density operator p, compute
the characteristic function yy () = tr( pD(a) ).

Construct the Wigner phase space distribution

through Fourier transformation:

W(a)=n""]d*Bexplaf” — a*B)xw (6)
= (21)~ / dpdBr expli(asfy — a1 B2)] xiw ()
Completeness of the displacement operators, and in-

vertibility of F.T. operation imply that p, xp(«)

and W («) all have identical information.



A state p is Gaussian iff its xy17(a) | equivalently, its

W(a)] is gaussian.

Thermal states and their unitary transtorms U pU T
under the symplectic and Weyl groups are (Gaussian

states.

Gaussian states are almost the only states readily
available to experimenters. And hence their impor-

tance.



Gaussian Channels

A CP-T map @ is a Gaussian channel iff the output

d(p) is Gaussian for every Gaussian input p.

Action of a Gaussian channel takes the form:

x(@) = X'(a) = x(Xa) exp(— TV a),

where X, Y are to obey some constraints.

Addition of classical noise is an easy to construct

(zaussian channel:

X(@) = x(@)esp(—alaf), a >0

So any given (Gaussian channel can be followed by

such a channel almost ‘free’.

Similarly given a Gaussian channel, it can be pre-
ceded and followed by independent unitary Gaussian
channels corresponding to elements of the semidirect

product of the symplectic and Weyl groups.



Classification of Gaussian Channels:

So, Gaussian Channels

1
x(@) = x'(a) = x(Xa) eXp(—QOéTYOé%
have to be classified modulo these ‘inexpensive’
maps. And we have the following four families of

minimal noise channels, determined by det X alone.

Y is then a multiple of the identity in every case.
Ay X =diag[l, 0], Y =1;

Cy: X=daglk, k], Y=1—k% 0<k<1

Attenuator or beam-splitter;

Cy: X =diaglk, k], Y=k’—1, 1<k <

Amplifier

D: X =diagls, —k], Y =14k &>0

transpose or phase conjugator.



For each case Solomon and Krishna Kumar have de-

veloped the operator-sum representation

p— > WipW

Phase Conjugator:

_ K
Define a = oD b= \/1+7/<c Then
W%_bzlﬁ )" kG k—n)(n|, k=0,1,2, -

%Mmzmm%mwg{%
Not unital, but ‘almost’ unital.

Genuine unital for K = 1.

Attenuator:

Wi= £ \mHFCLIL — )FR" |m) (metk], k= 0,1
m=
%Mmzmm%mwg{%

Not unital, but ‘almost’ unital.

Genuine unital for k = 1, but this corresponds to

the trivial unit map.



Amplifier:

Define a = "i_l, b= é Then

Wk =0 Of Jm_‘_kck akbm‘m—|—k> <m’7 k= 07 17 27 T

m=0

> WiW, = 1, but > W W) = k21

Not unital, but ‘almost’ unital.
Genuine unital for k = 1, but this corresponds to

the trivial unit map.
The Singular case X = diag |1, 0]

This is an interesting case. The Kraus operators
can be written as a continuous family of rank one

operators:

Wy = ‘x/\/i>coh pOS<x‘

Conjecture: All these minimal noise Gaussian chan-

nels are extremals of ACY =T,



Other Phase Space Distributions: P & ()
xp(a) = xw (@) exp(+]al?/2)
xo(@) = xw (@) exp(—|al?/2)

Q) = 7~ Halpla)
Positive and < 1/7 throughout the phase space.
p = [d*aP(a)|a)(«

State classical if P(«) is pointwise nonnegative.

p— p = [d*aQ(a)|a)(al
p— 0 =] d*aQ(a")]a) (o
p— p' = [dglalpla)|a){q|con

All these three are Gaussian channels

They all break nonclassicality:.

Do they break entanglement?

Yes, and these are the only minimum noise EB

channels.



