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Objectives:

1. Motivate Gaussian Channels

in Quantum Information Theory

2. Describe some recent results by

Solomon Ivan & Krishna Kumar

of this Institute



System S ←→ Hilbert space HS, or H

States are ρ ∈ B(H) with ρ ≥ 0, tr ρ = 1

A state ρ assigns value to observable B through

the pairing (ρ,B) = tr(ρB)

Observables are self-adjoint ⇐⇒ values are real

Unit vectors |ψ〉 ∈ H ←→ pure states ρ = |ψ〉〈ψ|.

Pure states are one-dimensional projections;

others are mixed states.

State space ΩS is the collection of all states of S.

Ω is convex: ρ1, ρ2 ∈ Ω⇒ pρ1 + (1− p)ρ2 ∈ ΩS,

for all 0 < p < 1

Pure states, and only pure states, are the extremals

of Ω.



Composite systems:

Composite system A + S ←→ HAS = HA ⊗HS

Reduced states of subsystems are partial traces:

ρA = trS(ρAS), ρB = trA(ρAS)

ρAS pure state 6⇒ ρA, ρS pure.

This is one consequence of entanglement

Given a bipartite mixed state ρAS of A + S,

it can be written as an ensemble, or convex sum,

of pure states

ρAS =
∑

j
pj|ψASj 〉〈ψASj |, pj > 0,

∑

j
pj = 1

in innumerable number of ways.

Too many extremals. No Caratheodory!

|ψASj 〉’s are not required to be orthogonal or linearly

independent.



ρAS is separable iff we can find an ensemble

ρAS =
∑

j
pj ξ

A
j ⊗ ζSj , pj > 0,

∑

j
pj = 1

where ξAj and ζSj are respectively states of A, S.

If ρAS is not separable, it is entangled.

Separable states form a convex subset Ω(sep) ⊂ Ω.

Checking separability of a given mixed state remains

an open problem for dimHA = dimHS ≥ 3.



Maps and Physical Processes or Channels:

Quantum evolution is basically unitary:

ρ→ ρ(t) = U(t)ρU(t)†

Unitary evolution on a composite system may not

appear unitary on subsytems. It is linear, though.

ρS → ρS(t) = trA





UAS(|0〉A A〈0| ⊗ ρS)U
†
AS







|0〉A A〈0| is a reference state of the ancilla A.

We ask: What is the most general linear map Φ on

state space Ω, permitted within the quantum theory.

A map Φ : B(H) → B(H) is positive iff Φ(ρ) ≥ 0

for all ρ ≥ 0.

Positive maps on system S form a convex cone.

But the extremals are not known for dimHS ≥ 3.

Clearly, a physical map ΦS should be positive. But

positivity of ΦS does not imply that the ‘trivial’ ex-

tension IdA ⊗ ΦS is positive.



A positive map ΦS is completely positive if the ex-

tension IdA⊗ ΦS is positive, for every n where n is

the dimension of HA, the ancilla Hilbert space.

For any collection of operators Wk ∈ B(HS) the

map

ΦS : ρS → ρ ′S =
∑

k
Wk ρSW

†
K

is manifestly CP. The good news is: All CP maps

are of this form. Thus the extremals of the convex

cone of CP maps are of the form

ρS → ρ ′S = W ρSW
†, W ∈ B(HS).

Since physical processes have to preserve trace of

ρ, we conclude trace-preserving CP maps (CP-T)

correspond to physical processes.



ΛCP−T — trace-preserving CP maps

ΛCP−U — unital or identity-preserving CP maps

ΛCP−TU — trace-preserving unital CP maps. Also

called doubly stochastic maps.

Refering to the operator-sum representation

ΦS : ρS → ρ ′S =
∑

k
Wk ρSW

†
K

,
∑

k W
†
kWK = Id, for ΛCP−T

∑

k WkW
†
K = Id, for ΛCP−U

∑

k W
†
kWK = Id & ∑

k WkW
†
K = Id, for ΛCP−TU

ΛCP−TU is the intersection of ΛCP−T and ΛCP−U

The extremals of the convex sets ΛCP−T ,

ΛCP−U , and ΛCP−TU are not known for n ≥ 3

Convex sum of unitary maps is doubly stochastic.

The converse, Birkhoff theorem, true only for n = 2.



Gaussian States

Oscillator, hermitian position-momentum operators

q, p, annihilation creation operators a, a†:

a =
1√
2
(q+ ip), [q, p] = qp−pq = i, [a, a†] = 1.

H = (aa† + a†a)/2, vacuum |0〉: a|0〉 = 0.

Displacement operator (in phase space):

α = (α1 + α2)/
√

2

D(α) = exp(αa† − α∗a) = exp{−i(α1p− α2q)}

= exp(iα1α2/2) exp(−iα1p) exp(iα2q)}
= exp(−iα1α2/2) exp(iα2q) exp(−iα1p)}

Coherent state: |α〉 = D(α)|0〉, one coherent state

for each complex number α. a|α〉 = α|α〉.

Squeeze operator: S(ξ) = exp(ξa2 − ξ∗a† 2)



Coherent states are Gaussian states.

The unitary operators S(ξ), exp(−i tH), and D(α)

take Gaussian states to Gaussians. All Gaussian

pure states are obtained by the action of these —

the semidirect product of the symplectic and Weyl

groups — on the vacuum state.

D(α)D(β) = exp[−(αβ∗ − βα∗)/2]D(α + β)

.

tr(D†(α)D(β) ) = πδ(α)

.

Given a state, density operator ρ, compute

the characteristic function χW (α) = tr( ρD(α) ).

Construct the Wigner phase space distribution

through Fourier transformation:

W (α) = π−1 ∫

d 2β exp(αβ∗ − α∗β)χW (β)

= (2π)−1 ∫

dβ1dβ2 exp[i(α2β1 − α1β2)]χW (β)

Completeness of the displacement operators, and in-

vertibility of F.T. operation imply that ρ, χW (α)

and W (α) all have identical information.



A state ρ is Gaussian iff its χW (α) [ equivalently, its

W (α) ] is gaussian.

Thermal states and their unitary transforms UρU†

under the symplectic and Weyl groups are Gaussian

states.

Gaussian states are almost the only states readily

available to experimenters. And hence their impor-

tance.



Gaussian Channels

A CP-T map Φ is a Gaussian channel iff the output

Φ(ρ) is Gaussian for every Gaussian input ρ.

Action of a Gaussian channel takes the form:

χ(α)→ χ′(α) = χ(Xα) exp(−1

2
αTY α),

where X, Y are to obey some constraints.

Addition of classical noise is an easy to construct

Gaussian channel:

χ(α)→ χ(α) exp(−1

2
a |α|2), a ≥ 0

So any given Gaussian channel can be followed by

such a channel almost ‘free’.

Similarly given a Gaussian channel, it can be pre-

ceded and followed by independent unitary Gaussian

channels corresponding to elements of the semidirect

product of the symplectic and Weyl groups.



Classification of Gaussian Channels:

So, Gaussian Channels

χ(α)→ χ′(α) = χ(Xα) exp(−1

2
αTY α),

have to be classified modulo these ‘inexpensive’

maps. And we have the following four families of

minimal noise channels, determined by detX alone.

Y is then a multiple of the identity in every case.

A2 : X = diag [1, 0], Y = 1;

C1 : X = diag [κ, κ], Y = 1− κ2, 0 ≤ κ ≤ 1

Attenuator or beam-splitter;

C2 : X = diag [κ, κ], Y = κ2 − 1, 1 ≤ κ ≤ ∞
Amplifier

D : X = diag [κ, −κ], Y = 1 + κ2, κ > 0

transpose or phase conjugator.



For each case Solomon and Krishna Kumar have de-

veloped the operator-sum representation

ρ→ ∑

k
WkρWk

Phase Conjugator:

Define a = κ√
1+κ2, b = 1√

1+κ2. Then

Wk = b
k
∑

n=0
bn(−a)k−n

√

kCn|k−n〉〈n|, k = 0, 1, 2, · · ·

∑

k
W
†
kWk = 11, but

∑

k
WkW

†
k = κ−211

Not unital, but ‘almost’ unital.

Genuine unital for κ = 1.

Attenuator:

Wk =
∞
∑

m=0

√

√

√

√m+kCk(
√

1− κ2)kκm|m〉〈m+k|, k = 0, 1, 2

∑

k
W
†
kWk = 11, but

∑

k
WkW

†
k = κ−211

Not unital, but ‘almost’ unital.

Genuine unital for κ = 1, but this corresponds to

the trivial unit map.



Amplifier:

Define a =
√
κ2−1
κ , b = 1

κ. Then

Wk = b
∞
∑

m=0

√

√

√

√m+kCk a
kbm|m+k〉〈m|, k = 0, 1, 2, · · ·

.
∑

k
W
†
kWk = 11, but

∑

k
WkW

†
k = κ−211

Not unital, but ‘almost’ unital.

Genuine unital for κ = 1, but this corresponds to

the trivial unit map.

The Singular case X = diag [1, 0]

This is an interesting case. The Kraus operators

can be written as a continuous family of rank one

operators:

Wx = |x/
√

2〉coh pos〈x|
.

Conjecture: All these minimal noise Gaussian chan-

nels are extremals of ΛCP−T.



Other Phase Space Distributions: P & Q

χP (α) = χW (α) exp(+|α|2/2)

χQ(α) = χW (α) exp(−|α|2/2)

Q(α) = π−1〈α|ρ|α〉
Positive and ≤ 1/π throughout the phase space.

ρ =
∫

d2αP (α)|α〉〈α|
State classical if P (α) is pointwise nonnegative.

ρ→ ρ′ =
∫

d2αQ(α)|α〉〈α|
ρ→ ρ′ =

∫

d2αQ(α∗)|α〉〈α|
ρ→ ρ′ =

∫

dq〈q|ρ|q〉|q〉〈q|coh

All these three are Gaussian channels

They all break nonclassicality.

Do they break entanglement?

Yes, and these are the only minimum noise EB

channels.


