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Motivation

The challenge...

J. Avron and R. Seiler:

‘‘Formulate the theory of the Integer Quantum Hall effect,
which explains the quantization of the Hall conductance,
so that it applies also for interacting electrons in the
thermodynamic limit.’’

Rigorous theory still in need of development...
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Introduction

The Hall Effect: Setup

Figure: From J. Avron, et al. article in Physics Today, August 2003.
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Introduction

The Quantum Hall Effect: Resistance Plot

Figure: Clear plateaus imply quantization of Hall conductance.
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Introduction

The Quantum Hall Effect: The torus geometry

Figure: Magnetic field B deflects Hall current, generated by varying flux ΦV , moving around voltage loop,

while ΦJ monitors changes in J moving around current loop. (Image courtesy of D. Thouless)
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Introduction

The Hall conductance formula

From Kubo’s formula to Hall conductance

Let SH(ΦJ ,ΦV ) be the Hall conductance as the two fluxes change.

Assume |Ψ0(ΦJ ,ΦV )〉 ground state of Hamiltonian H = H(ΦJ ,ΦV )

Current operators: Jx = ∂H/∂ΦJ , Jy = ∂H/∂ΦV

Kubo’s formula for SH(ΦJ ,ΦV ):

i~ 〈Ψ0(ΦJ ,ΦV )|
(

Jy
P

(H − E0)2
Jx − Jx

P
(H − E0)2

Jy

)
|Ψ0(ΦJ ,ΦV )〉

Perturbation theory:
∣∣∣ ∂Ψ0

∂ΦV

〉
= − P

H−E0

∂H
∂ΦV
|Ψ0〉 (parallel transport assumed)

Hall conductance:

SH(ΦJ ,ΦV ) = i~
(〈

∂Ψ0

∂ΦV
,
∂Ψ0

∂ΦJ

〉
−
〈
∂Ψ0

∂ΦJ
,
∂Ψ0

∂ΦV

〉)
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Introduction

The Berry phase argument

Winding numbers...

Assume parallel transport in ΦJ and ΦV during evolution of the transported
ground state Ψ0(ΦJ ,ΦV ) around a square of size h/e (in flux space.) Then,
we have the following relation between the geometric phase e iη(ΦJ ,ΦV ) and
the Hall conductance from Kubo’s formula:

∇× (∇η(ΦJ ,ΦV )) · n̂(~J, ~V ) = SH(ΦJ ,ΦV )/~

For “flux-averaged” conductance SH and Σ = [0, h/e]× [0, h/e], the above
relation implies:

SH =
~

(h/e)2

∫
Σ

∇× (∇η) · dn̂ =
e2

2πh

∮
∇η(~Φ) · d~Φ = k

e2

h
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Introduction

Relaxing assumptions

Removing the averaging...

The previous argument is a “rigorous” version of Laughlin’s argument, but it relies
on a set of assumptions:

1 Strict spectral gap for all ΦJ and ΦV .

2 Averaged Hall conductance is close to actual Hall conductance at
ΦJ = ΦV = 0.

3 It assumes the torus geometry.

We relax assumption 1 to strict gap only at ΦJ = ΦV = 0 and we remove
assumption 2. We keep assumption 3.

Note: Powerful techniques from non-commutative geometry have been
employed to remove assumption 3, yet these techniques apply to non-interacting
electron models.
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The setup and tools of the trade

Our Model

We consider the discrete, tight-binding model of interacting electrons on a
lattice.

Electrons have orbitals centered at sites in T = L× L, a finite subset of Z2.

At each site s ∈ T , we introduce the charge operator qs with eigenvalues 0, 1
and 2, representing the number of electrons occupying the site.

The Hamiltonian H0 has a unique ground state |Ψ0〉 and a spectral gap
γ > 0 to the first excited state.

The total charge Q =
∑

s∈T qs is conserved, so [Q,H0] = 0.

We introduce magnetic fluxes through twists θx , θy at the boundary, following
Niu-Thouless and Avron-Seiler. The twist operators are given by:

RX (θx ,A) = e iθxQX Ae−iθxQX = RX (θx + 2π,A), QX =
∑

1≤x(s)≤L/2

qs

RY (θy ,A) = e iθyQY Ae−iθyQY = RY (θy + 2π,A), QY =
∑

1≤y(s)≤L/2

qs .
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The setup and tools of the trade

The Hamiltonian interactions

Let Φ(X ) = Φ†(X ), be an interaction associated with a set of sites X ⊂ T .

The Hamiltonian is given by H0 =
∑

X⊂T Φ(X ).

Interactions Φ(X ) are uniformly bounded (sups∈T

∑
X3s ‖Φ(X )‖ ≤ J) and

have finite range R (diam(X ) > R =⇒ ‖Φ(X )‖ = 0 ;exponential decay is
also fine.)

Example

Let a†j and aj be the creation and annihilation operators for a particle at site j .
The following Hamiltonian in 2-D has interactions satisfying the above
assumptions for J = 4 max{J1, 2J2} and R = 2:

H0 = J1

∑
|i−j|=1

e iφa†i aj + J2

∑
|i−j|=2

a†i aia
†
j aj .
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The setup and tools of the trade

The Hamiltonian in flux-space

(0,0) x=L

y=L

Figure: Lines illustrating how the twists are defined on the torus. The twists φx , φy affect
interactions close to the vertical and horizontal dashed lines, respectively, while the twists
θx , θy affect interactions close to the vertical and horizontal solid lines.
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The theorem and the proof

Quantization of the Hall conductance

The Hall conductance σH for a system of interacting particles described by the
Hamiltonian H0 on T = L× L, a finite subset of the two dimensional lattice, with
periodic boundary conditions, finite range R, finite strength J interactions and a
non-vanishing spectral gap γ > 0 as L increases, satisfies the quantization
condition:

Theorem
For all sufficiently large L: ∣∣∣∣σH − n · e2

h

∣∣∣∣ ≤ CRL3 e
− L

ξ ln2 L , (1)

for some n ∈ N, CR a polynomial in R and ξ a correlation length depending only
on R, J

γ . The quantity e2/h denotes the square of the electron charge divided by
Planck’s constant.
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The theorem and the proof

Outline of proof - I

Step by step...

Introduce quasi-adiabatically loop-evolved states:

|Ψ	(r)〉 = V	(0, 0, r) |Ψ0(0, 0)〉 , (2)

where the unitary V	(0, 0, r) describes the quasi-adiabatic evolution of the
initial ground state |Ψ0(0, 0)〉 around a square of size r , starting at the origin
in flux-space and moving counter-clockwise.

The unitary V	(0, 0, r) is given by the following product of unitaries:

V	(0, 0, r) = U†Y (0, 0, r) U†X (0, r , r) UY (r , 0, r) UX (0, 0, r), (3)

where UY (θx , θy , r) drives the evolution in flux-space from (θx , θy ) to
(θx , θy + r) and UX (0, 0, r) takes us from (θx , θy ) to (θx + r , θy ).

The generators of the quasi-adiabatic evolution
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The theorem and the proof

Outline of proof - II

¡The three amigos!

Start with a simple inequality involving the Hall conductance σH :∣∣∣∣σH
2πh

e2
− 2πn

∣∣∣∣ ≤ √2
∣∣∣1− e i (σH

2πh
e2 −2πn)

∣∣∣ ,
which holds whenever the r.h.s. is ≤ 1.

Upper-bound the term in the r.h.s. by the sum of the norms of following
quantities:

1 Lucky: 1− 〈Ψ0,Ψ	(2π)〉
2 Dusty: 〈Ψ0,Ψ	(r)〉(

2π
r )2

− e
i σH

2πh
e2

3 Nasty: 〈Ψ0,Ψ	(2π)〉 − 〈Ψ0,Ψ	(r)〉(
2π
r )2

.

We will bound each term by an exponentially decaying quantity in the
linear size L. The last term is the hardest to bound, hence the name.
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The theorem and the proof

Outline of proof - III

Lucky

Using locality (Lieb-Robinson) bounds on evolutions generated by singly-twisted
Hamiltonians around the loop Λ : (0, 0)→ (2π, 0)→ (2π, 2π)→ (0, 2π)→ (0, 0),
energy estimates at the end of each leg imply the following phase estimate:

Corollary

For a constant CR > 0, the following bound holds:

|〈Ψ0,Ψ	(2π)〉 − 1| ≤ CR

(
J

γ

)2

L4e−
L

8R . (4)

Note that at the end of each leg of the evolution, the Hamiltonians are equal to
H0, due to the periodicity of the flux (Aharonov-Bohm effect). Moreover, the
energy estimates follow from the introduction of the (far away) twists φx = −θx
and φy = −θy , which open up the gap to γ > 0!
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The theorem and the proof

Outline of proof - IV

Dusty

The phase accumulated during perfect adiabatic evolution by parallel transport
around a counter-clockwise loop of size r at the origin (in flux space) is given by:

Berry phase: φ(r) = 2

∫ r

0

dθx

∫ r

0

dθy Im
{〈
∂θy Ψ0(θx , θy ), ∂θx Ψ0(θx , θy )

〉}
Corollary

For r ≤ Cγ,R,J/L, the following phase estimates hold:

〈Ψ0,Ψ	(r)〉 = e iφ(r) =⇒ 〈Ψ0,Ψ	(r)〉(
2π
r )2

= e iφ(r)( 2π
r )2

. (5)
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The theorem and the proof

Outline of proof - IV

Dusty meets Hall...

Let φ(r) be the phase defined previously. Then, for r > 0 we have:

∣∣φ(r)/r 2 − 2 Im
{〈
∂θy Ψ0(0, θy )θy =0, ∂θx Ψ0(θx , 0)θx =0

〉}∣∣ ≤ C

(
qmaxR2 J

γ

)2

· r , (6)

Recall that the Hall conductance is defined by Kubo’s formula:

σH = 2 Im
{〈
∂θy Ψ0(0, θy )θy =0, ∂θx Ψ0(θx , 0)θx =0

〉}
·
(

2π
e2

h

)
(7)

You do the math... OK, I ’ll do the math:∣∣∣ 〈Ψ0,Ψ	(r)〉(
2π
r )2

− e i σH
2πh
e2

∣∣∣ ≤ C ′
(

qmaxR2 J

γ

)2

· r , (8)

for r ≤ Cγ,R,JL−1. In fact, we will take r to decay (almost) exponentially in L.
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The theorem and the proof

Outline of proof - V

Nasty

Using locality estimates (second order Lieb-Robinson bounds) for the adiabatic
evolution operators UX and UY , we get a Translation Lemma which bounds our
last amigo...

Corollary

For a numeric constant C > 0, the following bound holds:∣∣∣∣〈Ψ0,Ψ	(2π)〉 − 〈Ψ0,Ψ	(r)〉(
2π
r )2
∣∣∣∣ ≤ CR,qmax L3

(e
− 2L

ξ ln2 L

r

)
.

At this point, we choose (optimally):

r =
2π

beL/ξ ln2 Lc
. (9)
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The theorem and the proof

Reverse engineering Stokes - I

Figure: The evolution of |Ψ0〉 into |Ψ	(2π)〉 can be decomposed into a series of evolutions through the

intermediate states |Ψ	(θx , θy , r)〉.

Decomposition accomplished...
Using the above decomposition process, we may write 〈Ψ0,Ψ	(2π)〉 as a product of overlaps

〈Ψ0,Ψ	(θx , θy , r)〉, with (θx , θy ) points on the induced flux-space lattice, up to exponentially small error.
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The theorem and the proof

Reverse engineering Stokes - II

Figure: The state |Ψ0〉 evolves quasi-adiabatically along the cyclic path shown to the state |Ψ	(θx , θy , r)〉.

Evolution overlap...
Let |Ψ	(θx , θy , r)〉 be the state that is quasi-adiabatically evolved from the blue dot to the red dot, around

the loop and back. Taylor expanding the evolution around the small green loop, it can be shown that

〈Ψ0,Ψ	(θx , θy , r)〉 is given, up to small corrections, by 〈Ψ0,Ψ	(r)〉
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Future work

Fractional Hall Effect and Mobility Gaps

Lieb-Robinson Bounds and Topological Order

Fractional Hall Effect... How do we model this in our context? Degenerate
ground state?
Update: Apparently, yes! The extension to the fractional case is pretty
straightforward once we have the framework explaining the integer case. An
extra assumption of topological order in the low energy sector is necessary to
make sure that all low energy states have the same fractional conductance.

Spectral gap corresponds to Landau level filling + quantum harmonic
oscillator energy barrier ~ω. In Fractional QHE gap opens due to long-range
interactions. However, disorder produces low energy localized excitations.
Can we relax strict gap assumption and assume only a gap between localized
and de-localized states? What exactly is the definition of localization for a
many-body state?
Update: Recent work by Hastings has answered this in the affirmative! He
defines a notion of localization that can be plugged into the current proof to
relax the spectral gap assumption into a mobility gap assumption.
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Future work

An ”open” question...

Opening the torus

How important is the torus geometry for this argument? Boundary edge
effects in real experiments (FQHE). How do we model those? Add reservoirs
at the twists on the boundary and open the geometry? Recall that total
charge Q was conserved, so that twists could be concentrated near
”boundary” lines anywhere on the torus.

Did we answer Avron and Seiler’s challenge?
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Future work

Thank you!

Spyridon Michalakis (T-4/CNLS LANL) The Quantum Hall Conductance: A rigorous proof of quantization August 17th, 2010 22 / 26



The Princeton webpage...

Return
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The Quasi-Adiabatic evolution - I

Rise of the super-operator...

Introducing the generators of the quasi-adiabatic evolution:

Sγ(H,A) =

∫ ∞
−∞

sγ(t)

(∫ t

0

e iuHAe−iuHdu

)
dt, (10)

sγ(t) = cγ

∞∏
n=1

sinc2(ant),
∑
n≥1

an = γ/3, ‖sγ‖1 = ŝγ(0) = 1. (11)

Choosing an = a1 · (n ln2 n)−1, yields near-exponential decay for sγ(t).

The following operator generates the quasi-adiabatic evolution UX :

DX (θx , θy ) = Sγ (H(θx , θy ), ∂θx H(θx , θy )) .

WHY this definition? DX generates exact adiabatic evolution when
H(θx , θy ) has gap ≥ 2

3γ. For larger flux angles, locality estimates take over!

Return
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