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I. Introduction
Atomic Schrödinger operator

HN,Z :=
N∑

n=1

(
−∆n −

Z

|xn|

)
+

∑
1≤m<n≤N

1

|xm − xn|

self-adjointly realized in

HN :=
N∧

n=1

L2(R3)⊗ Cq.

Of interest is the lowest the spectral point of HN,Z , in
particular

E (N ,Z ) := inf σ(HN,Z ).

(Drop N , if equal to Z . Pick q = 1 for notational
convenience.)



In physics an asymptotic expansion for large Z was “derived” by
Thomas (1927) and Fermi (1927); Scott (1952); Schwinger (1981)

E (Z ) = ETF(1)Z 7/3 +
q

8
Z 2 − γSZ 5/3 + o(Z 5/3).

(Lieb and Simon (1977), Hughes (1986), Siedentop and Weikard
(1986–1989), Fefferman and Seco (1989–1995))



Thomas-Fermi functional (Lenz 1932):

ETF(ρ)

:=

∫
R3

(
3
5

(
6π2

q

)3
2
ρ(x)

5
3 − Z

|x |
ρ(x)

)
dx +

1

2

∫
R6

dxdy
ρ(x)ρ(y)

|x − y |︸ ︷︷ ︸
=:D[ρ]

(1)

Thomas-Fermi energy

ETF(Z ) := inf{ETF(ρ)|ρ ∈ L
5
3 ∩ L1(R3), ρ ≥ 0} (2)

Scaling relation
ETF(Z ) = ETF(1)Z 7/3 (3)



Thomas-Fermi functional is an example of a functional of the
(electronic) density ρ. Attractive idea: 3N dimensions reduced to 3
dimensions paid for by non-quadratic functional. Hohenberg and
Kohn (1964) triggered a rush on density functionals.
However, practically only Thomas-Fermi functional obviously
related to E (N,Z ) (Lieb-Thirring inequality, Lieb and Simon
(1977)). Reason: already the expression for the kinetic energy in ρ
is not known. Remedy: use the one-particle reduced density matrix
(3 instead of 6 dimensions).



II. One-Particle Reduced Density Matrix
Set IN of (reduced one-particle) density matrices γ:

I γ ∈ S1(L2(R3)), N ≥ tr γ = number of particles)

I 0 ≤ γ ≤ 1 (Fermi principle)

I ∆γ is trace class (finite kinetic energy)

Examples of γ: Pick normalized element ψ ∈ HN . Then

γψ(x , y) :=

(
N

1

)∫
dx2...dxNψ(x , x2, ..., xN)ψ(y , x2, ..., xN)

is the reduced one-particle density matrix of ψ.
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III. Functionals of the Reduced Density Matrix
During the last five years: rush on functionals of the density
matrix. We discuss the two basic ones: Hartree-Fock
functional and Müller functional.
Hartree-Fock functional:

EHF(γ) := tr(−∆− Z

|x |
)γ + D[ργ]− X [γ] (4)

with ργ(x) = γ(x , x) and

X [γ] :=
1

2

∫
R3

dx

∫
R3

dy
|γ(x , y)|2

|x − y |

(exchange energy).



Some results on the Hartree-Fock functional:

Existence of minimizers For N ∈ N, N < Z + 1 exists an minimizer
γ in IN with tr γ = N (Lieb and Simon (1978))

Minimizers are projections Lieb (1981): For N ∈ N

EHF(N,Z ) := inf(EHF(IN)) = inf EHF({γ ∈ IN |γ = γ2})

Upper bound For N ∈ N: E (N,Z ) ≤ EHF(N,Z ).
(H-F functional expectation of HN,Z in Slater
determinants.)

Correctness of Hartree-Fock Bach (1992), Graf & Solovej (1994):

EHF(Z ) = E (Z ) + o(Z
5
3 ).
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Müller functional:

EM(γ) := tr(−∆− Z

|x |
)γ + D[ργ ]− X [γ

1
2 ] (5)

Note the only change γ → γ
1
2 in X .

Comparison between the functionals: Assume

ρ
(2)
ψ (x , y) :=

(
N

2

)∫
R3(N−2)

|ψ(x , y , x2, ..., xN)|2dx3...dxN

the reduced 2-particle density of a state ψ ∈ HN . Note, that∫
ρ
(2)
ψ =

(
N

2

)
and

E(ψ) = tr(−∆− Z

|x |
)γψ +

∫
dx

∫
dy
ρ
(2)
ψ (x , y)

|x − y |
.



Thus, two ansätze:

HF: ρ
(2)
HF(x , y) := 1

2(γψ(x , x)γψ(y , y)− |γ(x , y)|2).

Müller: ρ
(2)
M (x , y) := 1

2(γψ(x , x)γψ(y , y)− |γ
1
2
ψ (x , y)|2).

Thus∫
ρ
(2)
HF =

1

2
(N2 −

∫
γ2(x , x)dx)

≥ 1

2
(N2 −

∫
γ
1
22(x , x)dx)︸ ︷︷ ︸

=
∫
ρ
(2)
M

=

(
N

2

)
=

∫
ρ
(2)
ψ . (6)

Inequality strict unless γ is a projection, i.e., HF has in general
too many pairs whereas Müller has the correct number.



Facts about the Müller functional (Frank, Lieb, Seiringer, and
Siedentop (2007)) (FLSS)

HF > Müller EM(N,Z ) ≤ EHF(N,Z ) (HF-minimizers are
projections and EHF(γ) = EM(γ), if γ2 = γ.)

Convexity EM is convex. (Wigner-Yanase inequality)

Existence of minimizer For N ≤ Z there is a minimizer

Lower bound EM(2,Z ) ≤ E (2,Z )

Range γmin Müller minimizer. Then
dim(γmin(L2(R3))) =∞.
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Credo about the Müller functional (What you should believe!)

Minimizer’s positivity γmin > 0. Consequences: unique minimizer.
Otherwise, exists set of positive measure with empty

intersection with the supports of all eigenfunctions not in

kernel of γmin. See FLSS

Lower bound EM(N,Z ) ≤ E (N,Z ).
True for N = 2; numerically evident.

Correctness EM(N,Z ) ≈ E (N,Z ).
Numerically the Müller energy is at least as close to the

Schrödinger energy as the HF energy.

FLSS have tried the first two. What about the third statement?
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Theorem
There is a constant c such that for all Z ≥ 1

EM(Z ) ≤ EHF(Z ) ≤ EM(Z ) + cZ
5
3
− 1

140 .

Corollary

EM(Z ) = E (Z ) + o(Z
5
3 ) = ETF(Z ) +

1

8
Z 2 − cSZ

5
3 + o(Z

5
3 ). (7)

The theorem’s proof is inspired by Bach (1992) and Graf & Solovej
(1994): The energy difference is dominated by the truncated
density matrix γmin(1− γmin). That this difference is small will
follow from the fact that γmin is almost completely condensed into
a state close to a projection.



IV. Outline of the proof
IV.1 Simple bound on the Müller energy
Reduced Hartree-Fock functional and its infimum:

ErHF(γ) := tr[(−∆− Z/| · |)γ] + D[ργ] (8)

ErHF(N ,Z ) := inf ErHF(IN). (9)

Lemma
Assume γ a minimizer of the Müller functional on IN (short: a
Müller minimizer). Then

EM(Z ) ≤ EHF(Z ) ≤ ErHF(Z ) ≤ ErHF(γ) ≤ EM(Z ) + C Z
5
3 .

(10)



Proof: Idea: Modify Lieb’s 1981 argument to control the Dirac
term ρ4/3: Pick ε ∈ (0, 1). Let γ be a Müller minimizer. Then

ErHF(Z ,Z ) ≥ EHF(Z ,Z ) ≥ EM(Z ,Z )

= tr[(−∆− Z/| · |)γ] + D[ργ ]− X [γ
1
2 ]

= tr[(−(1− ε)∆− Z/| · |)γ] + D[ργ ] + ε tr(−∆γ)− X [γ
1
2 ]

≥ 1

1− ε
ErHF(Z )

+ inf
{∫

R6

dx

∫
R6

ε|∇yγ
1
2 (x , y)|2 − |γ

1
2 (x , y)|2

2|x − y |
dy︸ ︷︷ ︸

≥− 1
16ε

∫
R6 |γ

1
2 (x ,y)|2dy

∣∣γ ∈ IN}

≥ ErHF(Z )− εC Z
7
3 − ε−1N/16 = ErHF(Z )− C Z

5
3 (11)



(By scaling of the reduced Hartree-Fock functional, by

ErHF(Z ) = ETF(Z ) = ETF(1)Z
7
3 + o(Z

7
3 ) (Lieb (1981)), N = Z ,

picking ε := Z−
2
3 .)



IV.2 Degree of evaporation of the Müller ground state
P semi-classical projection onto the bound states of the
Thomas-Fermi potential φTF := Z/| · | − ρTF ∗ | · |−1 the
Thomas-Fermi potential. In detail: set

g(x) :=

{
(2πR)−

1
2 |x |−1 sin(π|x |/R) |x | ≤ R

0 |x | > R

with R = Z−3/5. Coherent states

fp,q(x) := e ip·xg(x − q) (12)

with p, q ∈ R3.

P := (2π)−3
∫
p2−φ(q)<0

dpdq|fp,q〉〈fp,q|. (13)



Lemma
Evaporation of Müller ground state out of P Assume γ a Müller
minimizer. Then

δ(γ,P) := tr((1− P)γ) = O(Z
69
70 ). (14)

Proof: For all γ ∈ IZ

tr(γ(−∆− φ︸ ︷︷ ︸
=:HTF

)) ≥ tr

∫
R6

dpdq(p2 − φ(q))|fp,q〉〈fp,q| − C Z
7
3−

1
30

(15)
(Lieb (1981), Thirring (1981)). Thus

ErHF(γ) ≥ tr(γHTF)−D[ρ] ≥
∫
R6

dpdq(p2−φ(q))−−D[ρ]−C Z
7
3−

1
30 ,

(16)
since D[ρ− ργrHF ] ≥ 0. Moreover,∫

−a<p2−φ(x)<0
dpdq(p2 − φ(q) + a) = O(a

7
4 ) (17)

(Bach (1993, Graf and Solovej (1994)).



Set
EM,a(γ) := EM(γ)− a tr(1− P)γ.

Then

a tr(1−P)γ = EM(Z )−EM,a(γ) ≤︸︷︷︸
(??)

ErHF(Z )−[ErHF(γ)−a tr((1−P)γ)]+C Z
5
3

≤ ErHF(Z ) + aZ − tr((HTF + aP)γ) + D[ρ] + C Z
5
3

≤
∫
R6

dpdq(p2−φ(x)+a)−−D[ρ]−
∫
R6

dpdq(p2−φ(x)+aχM(x))−+D[ρ]+C Z
69
30

=

∫
−a<p2−φ(x)<0

dpdq(p2−φ(x)+a)+O(Z
69
30 ) ≤ C (a

7
4 +Z

69
30 ),

(18)

i.e., with a = Z
138
105 we get

δ(γ,P) = O(Z
69
70 ), (19)

which is the desired estimate on the degree of evaporation.



Corollary

Again, γ a Müller minimizer. Then

tr(γ(1− γ)) ≤ C Z
69
70 . (20)

Proof.
Since 0 ≤ γ ≤ 1 and tr γ = trP = Z , we have

tr(γ(1− γ)) = tr(Pγ(1− γ)) + tr((1− P)γ(1− γ))

≤ tr(P(1− γ)) + tr((1− P)γ) = Z − tr(Pγ) + tr((1− P)γ)

=2 tr((1− P)γ) = 2δ(γ,P) = O(Z
69
70 ).



IV.3 Bound on the Müller energy through truncated density
matrix

Lemma
Again, γ a Müller minimizer. Then

0 ≤ EHF(Z )− EM(Z ) ≤ C Z
7
6 (tr γ(1− γ))

1
2 .



Proof.
By the variational principle

0 ≤ EHF(Z )− EM(Z ) ≤ 1

2

∫
dx

∫
dy
|γ

1
2 (x , y)|2 − |γ(x , y)|2

|x − y |
(21)

=
1

2

∫
dx

∫
dy

(γ
1
2 (x , y) + γ(x , y))(γ

1
2 (x , y)− γ(x , y))

|x − y |
(22)

≤ 1

2

√√√√∫
R6

dx

∫
R6

dy
|γ

1
2 (x , y) + γ(x , y)|2
|x − y |2

√
tr |γ

1
2 (1− γ

1
2 )|2

(23)

≤ 2
√

tr(−∆γ)
√

tr[γ(1− γ)] ≤ C Z
7
6
√
tr[γ(1− γ)]. (24)



Proof of Theorem 1.
The upper bound is trivial. The lower bound is follows from the
above lemmata.


