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Quantum Heisenberg dynamics of
multi-component systems
The structure of the systems under consideration is as follows:

I (finite) collection of quantum systems: spins, qudits,

(an)harmonic oscillators, atoms, quantum dots, ...

labeled by x ∈ Λ.

I Each system has a Hilbert space Hx . The Hilbert space

describing the total system is the tensor product

HΛ =
⊗
x∈Λ

Hx .

I Each system has a dynamics described by a self-adjoint

Hamiltonian Hx (densely) defined on Hx .
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I The algebra of observables of the composite system is

AΛ =
⊗
x∈Λ

B(Hx) = B(HΛ).

If X ⊂ Λ, we have AX ⊂ AΛ, by identifying A ∈ AX with

A⊗ 1lΛ\X ∈ AΛ.

E.g., for a two-component system, the observable A⊗ 1l

measures the quantity represented by A for the first

component of the system.

Λ will be equipped with a metric. E.g., For Λ ⊂ Zν , we

will use the graph distance on the Zν .
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Propagation: what and where?
The Hilbert space for a particle in a domain Λ ⊂ Rν is L2(Λ).

ψ(t) is then called the wave function, and one can study its

propagation in space. This is not what we are interested in

here.

Instead, we are interested in bounding the speed with which

information (or disturbances) spread through a collection of

interacting quantum systems distributed in space. The metric

on Λ measures the distance between the different components

of the system.
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Interactions
We will consider bounded interactions modeled by map Φ from

the set of subsets of Λ to AΛ such that Φ(X ) ∈ AX , and

Φ(X ) = Φ(X )∗, for all X ⊂ Λ. The full Hamiltonian is

H =
∑
x∈Λ

Hx +
∑
X⊂Λ

Φ(X ).

E.g., Λ ⊂ Zν , Hx = C2; the spin-1/2 Heisenberg Hamiltonian:

H =
∑
x∈Λ

Bσ3
x +

∑
|x−y |=1

Jxy (σ1
xσ

1
y + σ2

xσ
2
y + σ3

xσ
3
y )

The Heisenberg dynamics, {τt}t∈R, defined by

τt(A) = e itHAe−itH , A ∈ AΛ.
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For a lattice system of oscillators we consider the standard

(unbounded) harmonic interaction and anharmonic

perturbations of the following form:

Λ ⊂ Zν , HΛ =
⊗

x∈Λ L2(R), px = −i d
dqx

, and

HΛ =
∑
x∈Λ

p2
x + ω2q2

x + V (qx)

+
∑
|x−y |=1

λ(qx − qy )2 + Φ(qx − qy )

with V and Φ satisfying suitable assumptions.
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Examples of systems that are modeled by such Hamiltonians:

I lattice of magnetic moments associated with the atoms in

a magnetic material

I a lattice of coupled oscillators

I a collection of quantum dots interacting through

tunneling junctions

I discretizations of field theories (lattice QFT)

I an array of qubits in which quantum information is stored

or on which a quantum algorithm is performed.
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Goal for this lecture
In this lecture I will explain how propagation bounds are an

useful tool to investigate complex quantum states of systems

with many components, e.g., the ones that describe condensed

matter at low temperatures.

Such states are also potentially relevant for quantum

computation.

Lieb-Robinson bounds provide an a priori upper bound for the

rate with which correlations (entanglement, complexity) can

spread through the system.
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Topics to be discussed

1. Lieb-Robinson bounds for the growth rate of the

support of time-evolved observables (speed of

propagation).

2. The Exponential Clustering Theorem: gapped ground

states have a finite correlation length.

3. Existence of the dynamics for ∞ systems.

4. Stability of gapped ground states, Local perturbations

perturb locally.

5. Approximate product structure of gapped ground

states. Area Law for the local entropy of a gapped

ground state.
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Other applications

I Lieb-Schultz-Mattis Theorem in d dimensions (Hastings,

N-Sims)

I Quantized Hall Effect (Hastings-Michalakis)

I Stability of Topologically Ordered Phases

(Bravyi-Hastings-Michalakis)

I Complexity of computational problems in quantum

many-body theory (Aharonov-Gottesman-Irani-Kempe,...).

I Practical calculation of ground states, equilibrium states,

form factors etc. Ideas for new, better algorithms to do

such calculations (Verstraete, Osborne, ...).
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The support of observables and small
commutators
Recall that we can identify A ∈ AX with A ∈ AY , for all Y

that contain X (A = A⊗ 1lY \X ).

I The smallest set X such that A ∈ AX , is called the

support of A, denoted by supp A. I.e., A ∈ AX iff

supp A ⊂ X .

I Even if interactions are between nearest neighbors only,

for generic A ∈ AΛ , supp τt(A) = Λ for all t 6= 0,

I This, however, does not mean that quantum dynamics

essentially non-local.
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For X ,Y ⊂ Λ, s.t., X ∩ Y = ∅, A ∈ AX ,B ∈ AY ,

AB − BA = [A,B] = 0: observables with disjoint supports

commute. Conversely, if A ∈ AΛ satisfies

[A,B] = 0, for all B ∈ AY (1)

then Y ∩ supp A = ∅.
A more general statement is true: if the commutators in (1)

are uniformly small, than A is close to AΛ\Y .
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Lemma
Let A ∈ AΛ, ε ≥ 0, and Y ⊂ Λ be such that

‖[A,B]‖ ≤ ε‖B‖, for all B ∈ AY (2)

then there exists A′ ∈ AΛ\Y such that

‖A′ ⊗ 1l− A‖ ≤ cε

with c = 1 if dimHY <∞ and one can take c = 2 in general.

⇒ we can investigate supp τt(A) by estimating [τt(A),B] for

B ∈ AY . This is what Lieb-Robinson bounds are about.
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Lieb-Robinson bound :

∃C , v , a > 0 such that

‖ [ τt(A) , B ] ‖ ≤ C‖A‖ ‖B‖e−a(d−v |t|)

where t ∈ R, A ∈ AX ,

B ∈ AY , for finite X ,Y ⊂
V , and d = d(X ,Y ). The

first such estimates were

proved by Lieb & Robinson

(1972).

d = d(X ,Y )

v |t|

x

y

X

Y
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Lieb-Robinson bounds =⇒ local
approximation of τt(A)
Up to small corrections, the diameter of the support of τt(A)

does not grow faster than linearly in t. More precisely, by the

Lemma, one has the following result:

There exist C > 0, such that for all δ > 0, there exists Aδ
t ,

supported in a ball of radius v |t|+ δ such that

‖Aδ
t − τt(A)‖ ≤ C‖A‖e−aδ.

The usefulness of this property for a wide variety of

applications was first realized by Matthew Hastings (2004).
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Lieb-Robinson bounds
Theorem (Lieb-Robinson 1972, N-Sims 06, Hastings-Koma 06,

N-Sims-Ogata 06, Eisert-Osborne 06, N-Sims 2007)

Let a, ε > 0 and assume that the interactions Φ(X ) satisfy

‖Φ‖a := sup
x 6=y

(1 + d(x , y))ν+εead(x ,y)
∑

X3x ,y

‖Φ(X )‖ <∞

Then, there exists constants C and v (depending only on

a, ε, ‖Φ‖a, ν), such that for all local observables A ∈ AX and

B ∈ AY , one has the bound

‖[τt(A),B]‖ ≤ C‖A‖ ‖B‖ min(|X |, |Y |)e−a(d(X ,Y )−v |t|)

Note: |X | can be replaced by |∂X |, etc, with a suitable

definition of the boundary ∂X .
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1. Existence of the Thermodynamic limit
In bulk matter or in large systems, we expect to be able to

model the behavior at a given location up to some finite time

t, based on what we know about the local environment. We

don’t need to know the state of the entire system or even its

size. In particular, we would like to have a well-defined

dynamics for local observables of the infinite system.

Basic question: does

τΛ
t (A) −→ τt(A), as Λ ↑ Zν ?

Is there a well-defined dynamics for the ∞ system?
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One can use Lieb-Robinson bounds to establish the existence

of the thermodynamic limit:

Let Λn be an increasing exhausting sequence of finite subsets

of an infinite system with local Hamiltonians of the form

HΛn =
∑
X⊂Λn

Φ(X )

The essential observation is the following bound: for n > m

‖τΛn
t (A)−τΛm

t (A)‖ ≤
∑

X⊂Λn,X∩Λn\Λm 6=∅

∫ |t|
0

‖[Φ(X ), τΛm
t (A)]‖ ds.
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Define f (t) = τΛn
t (A)− τΛm

t (A). Then

f ′(t) = i [HΛn , τ
Λn
t (A)]−i [HΛn , τ

Λm
t (A)]

−i [HΛm , τ
Λm
t (A)]+i [HΛn , τ

Λm
t (A)]

= i [HΛn , f (t)] + i [(HΛn − HΛm), τΛm
t (A)]

Therefore, since f (0) = 0,

‖f (t)‖ ≤
∫ t

0

‖non-norm-conserving part of f ′(t)‖ dt

≤
∫ t

0

‖[(HΛn − HΛm), τΛm
t (A)]‖

which for Hamiltonians of the form under consideration implies

the formula on the previous slide.
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Theorem
Let a ≥ 0, and Φ such that ‖Φ‖a <∞. Then, the dynamics

{τt}t∈R corresponding to Φ exists as a strongly continuous,

one-parameter group of automorphisms on A. In particular,

lim
n→∞
‖τΛn

t (A)− τt(A)‖ = 0

for all A ∈ A =
⋃

nAΛn . The convergence is uniform for t in

compact sets and independent of the choice of exhausting

sequence {Λn}.



22

Anharmonic oscillator lattice

H =
∑
x∈Zν

p2
x + ω2q2

x + V (qx) +
∑
|x−y |=1

λ(qx − qy )2

with a sufficiently nice bounded V . Since the canonical

operators (p’s, q’s , a’s, a∗’s,...) are all unbounded, we will

instead work with the Weyl operators:

W (f ) = exp

[
i√
2

(a(f ) + a∗(f ))

]
,

where the creation and annihilation operators for each

oscillator are defined by

ax =
1√
2

(qx + ipx) and a∗x =
1√
2

(qx − ipx) .
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Theorem (N-Schlein-Sims-Starr-Zagrebnov, RMP

2010)

Assume ω > 0, ‖kV̂ (k)‖1 <∞, ‖k2V̂ (k)‖1 <∞. For all

f ∈ `1(Zν), and all t ∈ R, the limit

lim
Λ↑Zν

τΛ
t (W (f )) = τ∞t (W (f ))

converges in the operator norm topology and the resulting the

dynamics is continuous in t in the weak operator topology.

The convergence has to be considered on a suitable Hilbert

space (a regular representation), e.g., Fock space.
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The essential argument for the proof of this theorem is again

based on a Lieb-Ronbinson bound.

Theorem (N-Raz-Schlein-Sims, CMP 2009)

Let λ ≥ 0, ω > 0, and V such that ‖k2V̂ (k)‖1 <∞. Then,

for all f , g ∈ `1(Zν), we have∥∥∥ [τΛ
t (W (f )),W (g)

] ∥∥∥ ≤ C
∑
x ,y

|f (x)| |g(y)|e−2(d(x ,y)−v |t|)

with

v = 6
√
ω2 + 4νλ + c‖k2V̂ (k)‖1.
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2. The Exponential Clustering Theorem
In a relativistic quantum field theory, the speed of light plays

the role of an automatic bound for the Lieb-Robinson velocity.

This implies decay of correlations in a QFT with a gap and a

unique vacuum (Ruelle, others). Fredenhagen proved an

exponential bound for the decay: ∼ e−γc
−1|x |, i.e., ξ ≤ c/γ. In

a QFT the gap γ is interpreted as the mass of the lightest

particle.

In condensed matter physics, a gap also implies exponential

decay under general conditions (Hastings 2004, N-Sims 2006,

Hastings-Koma 2006).
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Theorem (N-Sims 2006, Hastings-Koma 2006)

Suppose that ‖Φ‖a <∞ for some a > 0 and that H has a

spectral gap γ > 0 above a unique ground state 〈·〉. Then, for

all A ∈ AX , B ∈ AY ,

|〈AB〉 − 〈A〉 〈B〉| ≤ c‖A‖ ‖B‖min(|X |, |Y |)e−µd(X ,Y ).

with µ = (aγ)/(γ + 4‖Φ‖a). If interaction is of finite range:

|〈AB〉 − 〈A〉 〈B〉| ≤ c‖A‖ ‖B‖min(|∂ΦX |, |∂ΦY |)e−µd(X ,Y ).

with

∂ΦX = {x ∈ X | ∃Z with x ∈ Z ,Z ∩ X c 6= ∅, and Φ(Z ) 6= 0 } .
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3. Local perturbations perturb locally
We begin with an instructive result which does not by itself

imply the later results to be discussed but which makes them

at least plausible. Consider a system with a Hamiltonian of the

form

Hs = H0 + sΦ, s ∈ [0, 1]

and suppose that the spectrum of Hs can be decomposed into

two parts Σ1(s) and Σ2(s) such that, for all s, Σ1(s) ⊂ I , a

bounded interval, and Σ2(s) ⊂ R \ (I − δ) ∪ (I + δ), for some

fixed δ > 0.

Γ

δ
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Let Ps denote the spectral projection of Hs corresponding to

Σ1(s). One can show that

Ps = UsP0U∗s

with Us , the unitary solution Us of

d

ds
Us = iDsUs ,U0 = 1l,

and

Ds =

∫ ∞
−∞

dt Fδ(t)e itHs Φe−itHs

The function Fδ ∈ L1(R) can be chosen to decay faster than

any power.
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E.g., consider a system with Hamiltonian Hs of the form

H0 + sΦ, with the following additional assumptions:

1. The system is defined on a metric graph and there are

constants C (A,B), µ > 0 and a Lieb-Robinson velocity

v ≥ 0 such that for all s ∈ [0, 1]

‖[τ (s)
t (A),B]‖ ≤ C (A,B)e−µ(d−v |t|)

Here, τt is the Heisenberg dynamics generated by Hs ,

d = dist(supp A, supp B), and C (A,B) is of a suitable

form such as C‖A‖ ‖B‖min(| supp A|, | supp B |).

2. Φ = Φ∗ is a bounded perturbation of finite support.
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Let BR denote the following ‘fattening’ of supp Φ:

BR = {x such that there exists y ∈ supp Φ with d(x , y) ≤ R}

Theorem
For any m > 0, there is a constant Cm such that, for every R

large enough there exists a unitary VR with supp VR ⊂ BR and

‖P1 − V ∗RP0VR‖ ≤ CmR−m

Idea of the proof:

The LR bounds imply that there exists a constant C (Φ) and

Φ(R , s, t) = Φ(R , s, t)∗ with supp Φ(R , s, t) ⊂ BR and such

that

‖τ (s)
t (Φ)− Φ(R , s, t)‖ ≤ C (Φ)e−µ(R−v |t|)



31

Pick a choice of Fδ which satisfies

|Fδ(t)| ≤ Fn|t|−n

to define Ds(R) with supp(Ds(R)) ⊂ BR as follows:

Ds(R) =

∫ T

−T

dt Fδ(t)Φ(R , s, t).

With T = (µR −m log R)/(µv) and n = m + 1, we have

‖Ds(R)− Ds‖ ≤
Fn‖Φ‖
n − 1

|T |−m + C (Φ)e−µ(R−vT ) ≤ C ′mR−m

One now just has to define VR to be solution at s = 1 of

−i
∂

∂s
Vs = Ds(R)Vs ,V0 = 1l.
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Meaning of this result for an isolated eigenvector:

If P0 = |ψ0〉 〈ψ0|, we get that we see that, for any n, there is

an operator VR with diam supp(Φ) ≤ r + R such that

‖ψ1 − ARψ0‖ ≤ Cn‖Φ‖R−n.

E.g., if the ground state ψs of Hs is isolated in the sense of

above, ψs is well-approximated by a local perturbation of

ψ0.The effect of a local operator can of course be felt far away

if there are long-range correlations in ψ0. Those correlations

can be controlled with the Exponential Clustering Theorem.
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4. Structure of gapped ground states
The Exponential Clustering Theorem says that a non-vanishing

gap γ implies a finite correlation length ξ. Can one say more?

E.g., with the goal of devising better algorithms to compute

ground states? Or to do quantum computation?

It turns out that gapped ground states have an approximate

product structure.
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An approximation factorization theorem
We will consider a system of the following type: Let Λ be a

finite subset of Zν . At each x ∈ Λ, we have a

finite-dimensional Hilbert space of dimension nx . Let

HV =
∑

{x ,y}⊂Λ,|x−y |=1

Φ(x , y),

with ‖Φ(x , y)‖ ≤ J . Suppose HV has a unique ground state

and denote by P0 the corresponding projection, and let γ > 0

be the gap above the ground state energy.

For a set A ⊂ Λ, the boundary of A, denoted by ∂A, is

∂A = {x ∈ A | there exists y ∈ Λ \ A,with |x − y | = 1}.

For ` ≥ 1, define B(`) = {x ∈ Λ | d(x , ∂A) < `} .



35

`

A B Λ
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The following generalizes a result by Hastings (2007):

Theorem (Hamza-Michalakis-N-Sims JMP2009)

There exists ξ > 0 (given explicitly in terms of d, J, and γ),

such that for any sufficiently large ` > 0, and any A ⊂ Λ, there

exist two orthogonal projections PA ∈ AA, and PΛ\A ∈ AΛ\A,

and an operator PB ∈ AB(`) with ‖PB‖ ≤ 1, such that

‖PB(PA ⊗ PΛ\A)− P0‖ ≤ C (ξ)|∂A|2e−`/ξ

where C (ξ) is an explicit polynomial in ξ.
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Area Law for Gapped 1-Dim’l Systems
The Area Law Conjecture states that the entropy of local

restrictions of a gapped ground state grows no faster than the

surface area for the local region. In general, this means that

for X ⊂ Λ and ρX ∈ AX the density matrix describing the

restriction of the state to AX , then

S(ρX ) = −TrρX log ρX ≤ C |∂X |

So far proved only for one-dimensional systems (in general).
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Theorem (Hastings 07)

Consider a quantum spin chain with dimHx ≤ n, and with

Hamiltonian

H =
∑

x

Φ({x , x + 1})

with ‖Φ({x , x + 1})‖ ≤ J and assume H had a unique ground

state with a gap γ > 0 in the spectrum above the ground

state. There exist constants C and ξ <∞ depending only on

J and γ, such that

S(ρ[a,b]) ≤ Cξ log(ξ) log(n)2ξ log(n)

The proof of this theorem uses the factorization property of

gapped ground states which in turn relies on Lieb-Robinson

bounds in an essential way.
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Concluding remarks

I The local structure of interactions in physical systems

implies a finite speed of propagation.

I Bounds on the speed of propagation of the Lieb-Robinson

type allow for a (quasi-) local analysis of the dynamics

and existence of the dynamics for infinite systems.

I The locality of the dynamics in turn implies useful

properties of important states of the system, such as the

ground state (and equilibrium states).

I Propagation bounds can also be derived for irreversible

dynamics (Markov semigroups), Poulin 2010.
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