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1. Possible spectra for selfadjoint
operators

Let A be a selfadjoint operator in a Hilbert space .
Let B be a perturbation of A given by B=A+ M .

We are interested in the discrete spectrum of B, i. e. iIn
the isolated eigenvalues of finite multiplicity.



If B is selfadjoint there is only a restricted number of
possibilities:

Assume oc(A)=[c, c©), ec€R (very often ¢ =0) .

Then o4;s.(B) may have the form
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Gd&m) SH)

(atoms, molecules)

The only accumulation point is c .



Another possibility: o(A) has gaps
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then o4;5.(B) is
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For bounded A , o(A) = [a, b]

¢ b
Then o4;..(B) (discrete Schrodinger operators)
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2. Possible spectra for non-selfadjoint
operators

The variety is much larger.

The spectral theory is much less developed in comparison
with the selfadjoint case.

Example 1: For selfadjoint operators it is known that

o(B) = oess(B) U 04;s.(B) (disjoint union)

For non-selfadjoint B this must not be true. One promi-
nent example is the shift operator in [%(N) .



Let (Bf)(n) = f(n+1) ,neN. fel?N).
Then

O'ess(B) {Z & C ; IZl — ]_}
o(B) = {z€C ;|2 <1}
Odisc(B) = 0 .

|

(see e. g. Kato book, p. 237)



Example 2
Let A be a bounded selfadjoint operator, o(A) = [0,1].
Let B=A+ M and M a rank one operator.

If B is selfadjoint, o4;s.(B) consists of at most one
eigenvalue in R\ [0,1] .

If B is not selfadjoint, G. Katriel (2008) has constructed
a rank one operator M such that og;;.(B) has infinitely
many eigenvalues in C \ [0,1]. They may accumulate at

L 4

any point in [0,1]. A o ¢




Example 3: L?(R.)

2
Let Bf = — —Zw—g + V£ with boundary conditions of the

form: f£(0) = hf’(0) on L?(0,00) .

If V and h are real (selfadjoint case) | 4;5.(B) is finite




If V and h are complex og4;s.(B) is finite

it
sup |V(z)|e** <oco, €>0,
0<zx<oo
strong decrease!
P W P, W
and if
o @]

/:U|V(w)| e*dr< oo, €>0.
0



Paviov (1966) showed that o4;:;.(B) is also finite if

sup |V (z)[efVE < oo .
0<z<oco

This seems to be the borderline.

Because Pavilov (1967) also showed that og;s.(B) is not
finite if only

sup  |V(z)e®l® < oo for o <% .
0<z<oo

And the accumulation points can be somewhere in (0,00) .



Example 4: Localization of the discrete spectrum

Consider B = — zl‘fc—zz +Vin L*R) .

V complex valued and V € L}(R) N L*(R) .

2
Then V is relatively compact w.r.t. — aﬂiw—z .

o(B) = [0,00) U {eigenvalues accumulating on [0,00)}.
But the spectrum is localized, i.e. :
P (=)

1
o(B) C[0,00) U{z€C; [2[ = 7 V11713

A
/e + 1\ (Abranov, Aslanyan, Davies, 2001)
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A similar result holds for

2
B = -9, +Vin L?(0,00) with Dirichlet boundary condi-
tions. ** ’

Let X\ = |\|e’® be an eigenvalue of B . Then

A< 2 90) [ V@) da
0

And g¢g(@), is a function such that the maximal values of

(Frank, Laptev, Seiringer, 2009)



For general L2(R%) , d>2, B=—-A+V ,

Safronov (2008) showed that for

1
V()| < ¢ ;s g>1,

(14 |z|)?

o4isc(B) is contained in a disc.

Frank (2010) proved for d>2 and 0 <~y < ¢,

that any eigenvalue X € C\ [0,00) of B satisfies

d
A" < Doy g / V()" de

R4
where D, 4 is a constant independent of V .
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Concluding these remarks there are several problems:

1) In which region of C are the non-real eigenvalues of B
located?

2) Can they accumulate at infinity?

3) Are they contained in a disc or in a bounded region?



4) A rough estimate can be given by the numerical range:

Num(B) = {< Bf, f >, f € domB; ||f]| =1}

If B is closed, if C\Num(B) is connected and if C\ Num(B)
contains at least one point not in o(B), then o(B) C
Num(B) .




5) What is the essential spectrum of a non-selfadjoint ope-
rator?

There are several (= 5) definitions of the essential spec-
trum. We follow

E. B. Davies: Linear operators and their spectra
Cambridge 2007, Chapters: 4.3. and 11.2.



Definition:

A bounded operator P in a Banachspace is Fredholm
iff ran(P) is closed and if both

dimker(P) <oo , (null(P) < oo)
and dimcoker(P) <oco , (def(P) < oo) .
A € oess(P) Iff (A — P) is not a Fredholm operator

(Davies allows semi-Fredholm points).
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Let P be a closed unbounded operator acting in a Ba-
nachspace, let A\ € o(P). Then

2z c O'ess(P) iff =z # A and (A—Z)_l - O'ess{(AI—P)_l}.

C\oess(P) may consist of a bounded and an unbounded
set.

In the unbounded set o(P) consists only of a count-
able set of isolated eigenvalues with finite algebraic and
geometric multiplicities.



If A and B are closed unbounded operators and if

s € res(A) Nres(B) exists such that (s —B)~! —(s—A)~!
IS compact,

then oess(A) = oess(B). (Weyl’'s Theorem, Davies
p. 331).

In the following we consider a selfadjoint A with

o(A) = [0,00), and closed (nonselfadjoint) operator B
in $.

For some s € res(A) Nres(B) we assume

(s—B)y l-(s—-A)tles,.



Then oess(B) = gess(A) = [0, 00).

Hence C\ [0, co0) is the unbounded set in the complement
of O'ess(B).

= In C\[0,00) there are only eigenvalues, isolated,
with finite multiplicities.

They may accumulate at any point of

o(A) = [0, 00).



3. Quantitative estimates

The next theorem gives some answers to these questions
Theorem (Hansmann, Katriel, Demuth, 2008)

Let A be a selfadjoint operator in a Hilbert space § .

Let 0(A) =[0,00) .

Let B be a closed operator in $) .

Assume that for some s € res(B) Nres(A)

R:=(s—B)™1—(s—A)"1ecS, p>0. (Schatten class)



Then eigenvalues of B satisfy
dist(\, [0,00))7

2B arpy S 1Els,
A€o gisc(B)
¢ = 07917 ¢
v > max (14 p, 2p)
p > 0.

This formula gives a possible distribution of the eigenvalues
near [0,00) = o(A) and also of their number in certain
domains of C.
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Example 1:

Let Ap:={z:dist[z,[0,00)] > a, |2| < R}
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Then
(dist[A, [0, 00)])?

co = >
rcdise(p) A2 (L+IAD7
1 1
> a’ Np(Ai1) ,

R7/2 (1+ R)Y
where Npg(Ai) is the number of eigenvalues of B in A;,
or

1
Np(41) <eg — R/2 (1+R)7 .
a




Example 2:

Let As = {z: Re(z) 20, |arg(z)| > a, e<|z| <1}
l4

v:
Then dist [\, [0,00)] = |A| |sin(arg(A))| > |A| | sin ¢f

Such that:
1 1

Np(A2) <27 ¢

| sin al’)’ 6’)’/2 )




From

dist(, [0, 00))?
2 < IRIE,

we get for the left hand plane:

—wo < ReA <0

>, P2<c|RIG, -
AEO’disc(B)

Here we used that the numerical range of B is contained
in {z€C: Rez > —wp} , w>0.



7N

For 1< ReA<b and 0<|Im A| <1 /

we get

iy

AE0 disc(B)

And if for instance Im A\| =1, Re A >1
NN T N N — A

then

_3
S A< cIRIG, -
AE0 disc(B)

4 4
S ImAPY < c|RIE /
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4. Proof method

The original idea is based on Jensen’s identity.
Let h: U — C be a holomorphic function

U — open unit disc.
Let h(0) =1 .

Let 2, be an open disc centered at zero, radius r and
Q. C U.

Then (see e.g. Rudin, Real and Complex Analysis, p. 307)



Jensen’s identity
, [ )
/M du = log H d

u =
0 zEQy

h(z)=0 )

1 2m

= — /log|h(rei®)[d@
2T

0

2|

n(u)— number of zeros of h(.) in Q,, 0<u<r.

At first G. Katriel has used this idea for studying og;s.(B)
of selfadjoint B where

h(z) = det(1 — F(z))



with a trace class operator F(z) given by

F(z) ==z (1 —z e_A)—l (e_B — e_A>

B

assuming e - — e—A to be a trace class operator.

In this case

ogisc(B) ={logz , |2| <1, h(z) =0} .

In this situation we found

S A< D(v+1) ¢(v-1) [le P —e iy with v > 2.
AET gisc(B)



For non-selfadjoint B the use of semigroups becomes
problematic.

In this case it is more appropriate to study resolvents:
R:=(s—B)l-(s—A)~1les or €5,.

Thus we got the result mentioned above
Z [dist (A, [0,00))]7 <

ACogn(B) A2 (LAY~

for ~

D

Cx,p IIRll’ép



Improvements

Borichev, Golinskii, Kupin (2008/09) found bounds on the
zeros of a holomorphic function in the unit disc in terms of
the growth near the boundary. They are able to take into
account isolated values &; on 46U .

Assume that

log |h(2)] < Kj

with  [g|=1, a>0, B;>0.



Then the zeros of h(.) satisfy

N
S @zt |2 — gl BT+

h(z)=0 F=1

é C(aaﬁjv Sga T)'KO ’

with some 7 >0. Here (¢q)+ =0 1if ¢ <0 and

(@)+ =q if ¢>0.



What is h(z) in our case?

Let FA) =A+8)(s+B) 1M\ - A)"1

Then X € ogisc(B) Iiff 1— F(\) is not invertible.
F(\) isin S, (for instance trace class).

Then X € ogisc(B) iff detp (1 —F(\)) =: f(A) =0,

AeCh[0,00) .



Now let

Ps(z) = —s(zi}) .
¢s(.) is a conformal mapping from U — C \ [0,00) .
We take h(z) = f(¢s(2)).

Then

odisc(B) = {¢s(z), z €U, h(z) =0}, secres(B)Nres(A).

The estimates for h(z) are determined by the estimates of
1M —A)" s, -



For B=A+M , 0(A) =[0,00) , 0(B) = 04isc(B) U [0,00)

we assume that

MO —4)7HE < K

a>0, B€R. For

m
72
13

By assumption (1)

AP
dist(A, [0, 00))]>

T >0 we define

= a+1+7
= (@a—28)+ —1+71)4
= —a+8—T

o(B) C {A:ReX = —wqg, wg > 0} .

(1)



Then it holds
3 [dist(A, [0, 00))]™

T I 1
A€ disc(B)NL, IAIZ72 [|A] + wp|M3H2M+3ms

<c-K.

And
[dist(), [0, 00))]™
2

|A|B+1+T

<cK with c¢=c(a,8,p,7,wp).
Aeadisc(B)ﬂg



5. Schrodinger Operators

Take A=—-A, B=A+My,, $=L*R%,
with (My f)(z) =V (z)f(z) , V(.) complex valued.

For d =22 we have

A[E1

My(A—A)HE < 14}
” V( L ) ”Sp — Cp,d H ”Lp [diSt(A, [0,00))]p—l

for p>%.

That means in this case a=p—1, 6:%— 1.



That implies for the exponents

m=p+r7, >0,

p—d+71 forp>d
0 for%l<p<d,7-small.

2

N3 % —p—7  (which is negative).

I

For p >d and eigenvalues in U :

Z [diSt()‘a [07 OO))]p+T

d]
ACogise(B)N U [A[#72

< Cp,7 “V“%p

(2)



For d>p>‘§l, 7 small

2.

A€o gisc(B)N U

[dist(X, [0, 00))]P+T
A5

S Cp,r ”VHZID;I) (3)

And the eigenvalues of B in U®¢ and p > %l :

2.

A€o gisc(B)N U*C

[dist(, [0, 00))]P*T

< V(P 4
|>\|%+2T <cp,r |l ”Lp (4)

This is somewhat better than the results by Frank, Laptev,
Lieb, Seiringer (2008) or Laptev, Safronov (2008). They
need for (3) p>% +1.



T he detailed proof is published in
Journal Functional Analysis 257 (2009).



