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The problem

Consider a simple two channel Hamiltonian with one open
and one closed channel. The closed channel has a bound
state close to a threshold of the open channel.

open channel

X

closed channel

What happens to the bound state, if the two channels are
weakly coupled?



The problem

Simplified model. In the closed channel take only the bound
state. Assume it is non-degenerate. Model problem (¢ > 0):

H(g) = H+eW = [ 0 EO]+5 [W21 0 ] on H =HypeC.

The operator Hyp is assumed to have the properties of a
Schrodinger operator in odd dimensions, with a threshold at
zero. The eigenfunction for eigenvalue Ej for € = 0 is
denoted by ¥j.

Problem: Estimate the survival probability
(Yo, e "tHE )2

for € small, as Eg is tuned past the threshold.



The problem

This set-up can be realized experimentally, by applying a
magnetic field to a system. Physicists use the term Feshbach
resonance for the associated phenomenon. I do not know
whether the term “resonance” is appropriate in this context.

But the results I present here would lead me to say that in
many cases this term is inappropriate.

We are not aware of other rigorous treatments of the
problem presented here.



Preliminaries

Define A¢(t) = (¥o, e 1H (Y)Y, Stone’s formula:
Ag(t) =11{{)1%J e X Im (¥, (H(e) — x — in) " '¥) dx
n — 00

Feshbach formula yields:

1
—x—qin)~ 1 — I
Im(¥y, (H(e) —x —in)” '¥Yo) ImF(x Tine)’
with

F(z,&) =Ey—z — €*(Yo, WQ* (Hop — 2) 'QWY)).

Q: Hop ® C — H,p orthogonal projection.



Assume Ey < 0. Analytic perturbation theory tells us that
H(¢) has an eigenvalue E(¢) close to Eg for € small. We have
E(e) - Egas € — 0, and

|Ag(t) — e—itE(E)l < 62.

So we expect the survival probability to be close to one in
this case, for Ej close to 0 and & small.



For Eg > 0 and not too close to 0 we expect the embedded
eigenvalue Ej to become a metastable state with an
exponential decay law |A¢ (£)]% = e2F(8)t at least for a
considerable time interval.



For Eg > 0 and not too close to 0 we expect the embedded
eigenvalue Ej to become a metastable state with an
exponential decay law |A¢ (£)]% = e2F(8)t at least for a
considerable time interval.

Outline of the argument: Assume F(z, €) sufficiently smooth
with boundary values for Re z close to Ey. Write

F(x +1i0,¢&) = R(x) +il(x)

Then the equation R(x) = 0 has a solution xq (&) nearby Ej.
Main contribution to the integral in A, (t) will then come
from x close to xg(&) and in this neighborhood

m 1 - —I(xo(¢))
F(x +in,e)  (x —x0(€))? + I(xo(€))?




This type of result leads to exponential decay with
I'(e) = —I(xg(€)). The optimal error estimate is

(\Ifo’e—itH(S)\I/()) — e—it(XO(E)—ir(E)) + 0(82)

if we are away from the threshold.

For xo(¢) ~ € we may get a different error estimate,
depending on the nature of the threshold. We may get an

error O(gv), v = % orv = %

We will now look at the case when Ey can be tuned through
Zero.



Preliminaries

Define
g(z) = (Yo, WQ* (Hop — 2) 1 QWY)).

Assume that there is an interval (-a,0), a > 0, such that Hyp
has no spectrum here.

Assumption

LetD; ={ze€C\[0,)]]|z]| <a,}.
Assume for z € D,

s
JZ

and the expansion is once differentiable.

3/2)

g9(z) =—=g-1+9go—ivzg1 —zg> + O(z



Preliminaries

The Assumption can be verified for Schrodinger operators in
odd dimensions.
Examples:

2
« Hop= -5 4 V(r) on Hep = L?([0,))
Dirichlet boundary condition.
Note: g-1 # 0 can occur for certain V.
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Preliminaries

The Assumption can be verified for Schrodinger operators in
odd dimensions.
Examples:

2
« Hop= -5 4 V(r) on Hep = L?([0,))
Dirichlet boundary condition.
Note: g-1 # 0 can occur for certain V.

2
« Hop = —45 + 15D L v(r) on 3y = L2([0, )

72
e Hop = —-A+V(x) on Hyp=L>R™M),
where m is odd.

Technique: Asymptotic expansion of the resolvent near the
threshold zero. Perturbation argument based on known
kernel of free resolvent. The coefficients g_; and g; are
explicitly computable.



Classification

There are three different types of results, depending on how
regular or singular g(z) is at zero.

e Singular case g_1 # 0
e Regular case g1 =0and g; # 0
e Smooth caseg_.1=0and g1 =0



Smooth case g_; =0and g; =0

In the smooth case one gets the following result:

Theorem

Assume Eg € (—a/2,a/2). Write
F(x +10,¢€) = R(x,¢) + il(x, &). Then for € sufficiently small
there exists a unique solution xo(e) € (—a,a) toR(x,&) = 0.

LetT(e) = —1(xo(¢€), &) For € > 0 sufficiently small and all
t > 0 we have

| A (t) — e—it(xo(s)—ir(e))| < Szllnel.



Singular case g_; # 0

Main idea is to replace g(z) in F(z, &) = Eg — z — €2g(z) by
the leading terms in the asymptotic expansion. We take

.1 1
Hi(z,e) =Fy—z—€’g_1i—= —€°go=E—z— €°g_1i—

vz vz

with E = Eg — €2gp.
For E = —a/2 and ¢ sufficiently small the equations

F(x,e) =0 and H(x,&) =0

on (—a,0) and (—o0,0) have unique solutions xj; and Xy,
respectively.



Singular case g_; # 0

We have g_1 > 0. Choose parameters
s=(e°g-1)*’t and f=(e’g-1) *"E.

Let v (f) be the (unique) solution of f + v —v~1/2 =0 on
(0, o).

Theorem

Assume E € [—a/2,(a/2)&*>]. Then fort = 0 and & small we
have

2032, 1 (T 2

|40 - a1 ™ = )y oA

e‘isydy)

< 45,



Singular case g_; # 0

Comments:
* We always get a bound state close to zero.
¢ The decay law is definitely non-exponential.



Singular case g_; # 0

Comments:
* We always get a bound state close to zero.
¢ The decay law is definitely non-exponential.

Only quantity not computable from the model H;(z, €) is xp.
Thus we replace xj, by X3,. We have that for —¢*/3 < E < %/

20U ey L (T >
2v(f)3/2+1 mlo y(f-»)2+1
< g3/5 4 ge/3,

Ag(t) — e 8Ydy

Note that tx, = —sv (f).



Decay laws, singular case

f=0,0.5,1, 2, 3, 4 from top to bottom.




Decay laws, singular case

f=-4,-3,-2, -1, —0.5, from top to bottom.




Decay laws, singular case

f =30, left hand figure linear vertical scale, right hand figure
logarithmic vertical scale.
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Decay laws, singular case

f = —30. Note vertical scale.
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Regular case, g-1 =0,g1 # 0

Note that g1 < 0.
Model function

Hy(z,€) = Eo — z — €2(go — ig1vZ — g22) = b(E — z +i§1/2),

where b = 1 — €295, E = (Eg — €290) /b, and g1 = g1/b.

For E > 0 and ¢ sufficiently small we have that F(x, ) > 0 on
(—a,0),and Hy(x,&) > 0 on (—o0,0).

For —a/2 < E < 0 and ¢ sufficiently small the equations
F(x,e) =0and Hy(x,¢) = 0on (—-a,0) and (—o0,0) have
unique solutions xj, and Xj,, respectively.



Regular case, g-1 =0,g1 # 0

Choose parameters § = (¢2§1)%t and f = (£2g;)2E.

For E > 0 we have

1 (@ 1/2 .
‘Ag(t) - — »«y—ze_lsyd_’)/) S 84/3,
mlo (f-2)+y



Regular case, g-1 =0,g1 # 0

Choose parameters § = (¢2§1)%t and f = (£2g;)2E.

Theorem

For E > 0 we have
1 (@ 1/2 -
‘Ag(t) - — »«y—ze_lsyd_’)/) b 84/3,
mlo (f-y)2+y

For E < 0 we have

V1+41fl-1 _, e y1/2 s
A (t) S S > e itxy _ — ) 1sydy
‘ ) N mlo (F-»2+y

s gfd,



Regular case, g-1 =0,g1 # 0

The only parameter not computable is x;. We replace by X,

where %), = —(£2§1)20(f) and 7 (f) = (1 + 4|f| - D2
Suppose —&* < E < 0. Then for all t > 0 and sufficiently
small € we have

B AR | e Ly
V1 +4|f] mlo (f =¥y

< %3 4 54,




Decay laws, regular case

f =0,0.5,1, 2, 3, 4 from top to bottom. Left hand figure
linear vertical scale, right hand figure logarithmic vertical
scale.
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Decay laws, regular case

f = -4, -3, -2, -1, -0.5, from top to bottom.
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Decay laws, regular case

f =30, left hand figure linear vertical scale, right hand figure
logarithmic vertical scale.
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Decay laws, regular case

f = —30. Note the vertical scale. from top to bottom.
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A uniqueness result

We may ask in which sense the behavior found here is
unique. We look at the general framework, with a family of
Hamiltonians H (&) on #, an orthogonal projection Py, and
an effective Hamiltonian h(g) on PyJH .

Our results have the structure

where

suplld (e, t)|l < CeP  for some p > 0. (k)
t>0



A uniqueness result

Theorem

Assume Rank Py = 1. Assume that h!(¢) and h?(¢) both
satisfy (x) and (x *), with the same value for p. Assume that
for some co > 0 and q > 0 we have

—coelPy < Imh'(e) <0 for0 < € < &. (1)
Then for &g sufficiently small we have

Ih'(e) — h2 (&) lppoar) < CePF9, 0 <€ < &. (2)

Note that a closely related result has been obtained by
Cattaneo-Graf-Hunziker.



Plot, regular case

Regular case: threshold regime, p > 4, s = f2&*t the
parameter

Ag(t) = (1 — erf(ei™451/2)) 4+ @(eP~*)
Plot of |A¢(t)|? and log|A¢ (t) |2
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The message of this talk is summarized as:
Perturbation of a simple eigenvalue for operator of type
H:=Hy+&W,Hyp=-A+V,V(x) — 0as |x|tow sufficiently
fast, or...
» Away from thresholds general results are available,
either analytic perturbation theory or Fermi Golden Rule
type results for embedded eigenvalues

e Near thresholds no general results available. For specific
models results can be obtained, but are complicated.
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Some ideas

Stone’s formula

, 1 .
Pye 1tH@E py = 1jm — dx e "™ ImPy(H(e)—x—in) ' Py.
n=0 T Jo(H(e))

Localize near Eo: I = (eg(e) — d(¢),eq(e) + d(€)). Use
Schur-Livsic-Feshbach-Grushin formula. Howland's
formulation:

Po(H—2z)"'Py = F(z,)7},

where
F(Z, E) = EQPQ + EPQWPQ — EZPOWQORO,&‘ (Z)Q()Wp() — ZP().
Here

Ros(z) = (QoH(€)Qo—2zQo) ' on QoH.
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