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The results presented here are joint work with
Gheorghe Nenciu, Bucharest.
Some of the results are also joint work with
Victor Dinu, Bucharest.
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The problem

Consider a simple two channel Hamiltonian with one open
and one closed channel. The closed channel has a bound
state close to a threshold of the open channel.

open channel

closed channel

What happens to the bound state, if the two channels are
weakly coupled?
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The problem

Simplified model. In the closed channel take only the bound
state. Assume it is non-degenerate. Model problem (ε > 0):

H(ε) = H+εW =
[
Hop 0

0 E0

]
+ε

[
0 W12

W21 0

]
on H =Hop⊕C.

The operator Hop is assumed to have the properties of a
Schrödinger operator in odd dimensions, with a threshold at
zero. The eigenfunction for eigenvalue E0 for ε = 0 is
denoted by Ψ0.

Problem: Estimate the survival probability

|〈Ψ0, e−itH(ε)Ψ0〉|2

for ε small, as E0 is tuned past the threshold.
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The problem

This set-up can be realized experimentally, by applying a
magnetic field to a system. Physicists use the term Feshbach
resonance for the associated phenomenon. I do not know
whether the term “resonance” is appropriate in this context.

But the results I present here would lead me to say that in
many cases this term is inappropriate.

We are not aware of other rigorous treatments of the
problem presented here.
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Preliminaries

Define Aε(t) = 〈Ψ0, e−itH(ε)Ψ0〉. Stone’s formula:

Aε(t) = lim
η↓0

1
π

∫∞
−∞
e−itx Im〈Ψ0, (H(ε)− x − iη)−1Ψ0〉dx

Feshbach formula yields:

Im〈Ψ0, (H(ε)− x − iη)−1Ψ0〉 = Im
1

F(x + iη, ε) ,

with

F(z, ε) = E0 − z − ε2〈Ψ0,WQ∗(Hop − z)−1QWΨ0〉.

Q : Hop ⊕C→Hop orthogonal projection.
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Case E0 < 0

Assume E0 < 0. Analytic perturbation theory tells us that
H(ε) has an eigenvalue E(ε) close to E0 for ε small. We have
E(ε)→ E0 as ε → 0, and

|Aε(t)− e−itE(ε)| Ü ε2.

So we expect the survival probability to be close to one in
this case, for E0 close to 0 and ε small.
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Case E0 ≥ 0

For E0 > 0 and not too close to 0 we expect the embedded
eigenvalue E0 to become a metastable state with an
exponential decay law |Aε(t)|2 � e−2Γ(ε)t , at least for a
considerable time interval.

Outline of the argument: Assume F(z, ε) sufficiently smooth
with boundary values for Rez close to E0. Write

F(x + i0, ε) = R(x)+ iI(x)

Then the equation R(x) = 0 has a solution x0(ε) nearby E0.
Main contribution to the integral in Aε(t) will then come
from x close to x0(ε) and in this neighborhood

Im
1

F(x + iη, ε) �
−I(x0(ε))

(x − x0(ε))2 + I(x0(ε))2
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Case E0 ≥ 0

This type of result leads to exponential decay with
Γ(ε) = −I(x0(ε)). The optimal error estimate is

〈Ψ0, e−itH(ε)Ψ0〉 = e−it(x0(ε)−iΓ(ε)) +O(ε2)

if we are away from the threshold.

For x0(ε) ∼ ε we may get a different error estimate,
depending on the nature of the threshold. We may get an
error O(εν), ν = 1

2 or ν = 3
2 .

We will now look at the case when E0 can be tuned through
zero.
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Preliminaries

Define
g(z) = 〈Ψ0,WQ∗(Hop − z)−1QWΨ0〉.

Assume that there is an interval (−a,0), a > 0, such that Hop

has no spectrum here.

Assumption

Let Da =
{
z ∈ CØ [0,∞) | |z| < a,

}
.

Assume for z ∈ Da

g(z) = i√
z
g−1 + g0 − i

√
zg1 − zg2 +O(z3/2)

and the expansion is once differentiable.
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Preliminaries

The Assumption can be verified for Schrödinger operators in
odd dimensions.
Examples:

• Hop = − d2

dr2 + V(r) on Hop = L2([0,∞))
Dirichlet boundary condition.
Note: g−1 ≠ 0 can occur for certain V .

• Hop = − d2

dr2 + `(`+1)
r2 + V(r) on Hop = L2([0,∞))

• Hop = −∆+ V(x) on Hop = L2(Rm),
where m is odd.

Technique: Asymptotic expansion of the resolvent near the
threshold zero. Perturbation argument based on known
kernel of free resolvent. The coefficients g−1 and g1 are
explicitly computable.
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Classification

There are three different types of results, depending on how
regular or singular g(z) is at zero.

• Singular case g−1 ≠ 0

• Regular case g−1 = 0 and g1 ≠ 0

• Smooth case g−1 = 0 and g1 = 0
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Smooth case g−1 = 0 and g1 = 0

In the smooth case one gets the following result:

Theorem

Assume E0 ∈ (−a/2, a/2). Write
F(x + i0, ε) = R(x, ε)+ iI(x, ε). Then for ε sufficiently small
there exists a unique solution x0(ε) ∈ (−a,a) to R(x, ε) = 0.
Let Γ(ε) = −I(x0(ε), ε) For ε > 0 sufficiently small and all
t > 0 we have

|Aε(t)− e−it(x0(ε)−iΓ(ε))| Ü ε2|ln ε|.
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Singular case g−1 ≠ 0

Main idea is to replace g(z) in F(z, ε) = E0 − z − ε2g(z) by
the leading terms in the asymptotic expansion. We take

Hs(z, ε) = E0 − z − ε2g−1i
1√
z
− ε2g0 = E − z − ε2g−1i

1√
z

with E = E0 − ε2g0.
For E ≥ −a/2 and ε sufficiently small the equations

F(x, ε) = 0 and Hs(x, ε) = 0

on (−a,0) and (−∞,0) have unique solutions xb and x̃b,
respectively.
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Singular case g−1 ≠ 0

We have g−1 > 0. Choose parameters

s = (ε2g−1)2/3t and f = (ε2g−1)−2/3E.

Let v(f) be the (unique) solution of f + v − v−1/2 = 0 on
(0,∞).

Theorem

Assume E ∈ [−a/2, (a/2)ε4/5]. Then for t ≥ 0 and ε small we
have∣∣∣Aε(t)− 2v(f)3/2

2v(f)3/2 + 1
e−itxb − 1

π

∫∞
0

y1/2

y(f −y)2 + 1
e−isydy

∣∣∣
Ü ε4/5.
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Singular case g−1 ≠ 0

Comments:

• We always get a bound state close to zero.

• The decay law is definitely non-exponential.

Only quantity not computable from the model Hs(z, ε) is xb.
Thus we replace xb by x̃b. We have that for −ε4/3 Ü E Ü ε4/5

∣∣∣Aε(t)− 2v(f)3/2

2v(f)3/2 + 1
eisv(f) − 1

π

∫∞
0

y1/2

y(f −y)2 + 1
e−isydy

∣∣∣
Ü ε4/5 + sε4/3.

Note that tx̃b = −sv(f).
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Decay laws, singular case

f = 0, 0.5, 1, 2, 3, 4 from top to bottom.
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Decay laws, singular case

f = −4, −3, −2, −1, −0.5, from top to bottom.
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Decay laws, singular case

f = 30, left hand figure linear vertical scale, right hand figure
logarithmic vertical scale.
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Decay laws, singular case

f = −30. Note vertical scale.
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Regular case, g−1 = 0, g1 ≠ 0

Note that g1 < 0.
Model function

Hr (z, ε) = E0 − z− ε2(g0 − ig1
√
z−g2z) = b(Ẽ − z+ ig̃1

√
z),

where b = 1− ε2g2, Ẽ = (E0 − ε2g0)/b, and g̃1 = g1/b.
For Ẽ ≥ 0 and ε sufficiently small we have that F(x, ε) > 0 on
(−a,0), and Hr (x, ε) > 0 on (−∞,0).
For −a/2 ≤ Ẽ < 0 and ε sufficiently small the equations
F(x, ε) = 0 and Hr (x, ε) = 0 on (−a,0) and (−∞,0) have
unique solutions xb and x̃b, respectively.
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Regular case, g−1 = 0, g1 ≠ 0

Choose parameters s̃ = (ε2g̃1)2t and f̃ = (ε2g̃1)−2Ẽ.

Theorem

For Ẽ ≥ 0 we have∣∣∣Aε(t)− 1
π

∫∞
0

y1/2

(f̃ −y)2 +y
e−is̃ydy

∣∣∣ Ü ε4/3,

For Ẽ ≤ 0 we have∣∣∣∣∣Aε(t)−
√

1+ 4|f̃ | − 1√
1+ 4|f̃ |

e−itxb − 1
π

∫∞
0

y1/2

(f̃ −y)2 +y
e−is̃ydy

∣∣∣∣∣
Ü ε4/3.



Introduction Results I Results II Decay laws I Results III Decay laws II A uniqueness result Analytic results Summary Technical remark

Regular case, g−1 = 0, g1 ≠ 0

Choose parameters s̃ = (ε2g̃1)2t and f̃ = (ε2g̃1)−2Ẽ.
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Regular case, g−1 = 0, g1 ≠ 0

The only parameter not computable is xb. We replace by x̃b,

where x̃b = −(ε2g̃1)2ṽ(f̃ ) and ṽ(f̃ ) = 1
4(
√

1+ 4|f̃ | − 1)2.
Suppose −ε4 Ü E < 0. Then for all t > 0 and sufficiently
small ε we have∣∣∣∣∣Aε(t)−

√
1+ 4|f̃ | − 1√

1+ 4|f̃ |
eis̃ṽ(f̃ ) − 1

π

∫∞
0

y1/2

(f̃ −y)2 +y
e−is̃ydy

∣∣∣∣∣
Ü ε4/3 + s̃ε4.
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Decay laws, regular case

f̃ = 0, 0.5, 1, 2, 3, 4 from top to bottom. Left hand figure
linear vertical scale, right hand figure logarithmic vertical
scale.
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Decay laws, regular case

f̃ = −4, −3, −2, −1, −0.5, from top to bottom.
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Decay laws, regular case

f̃ = 30, left hand figure linear vertical scale, right hand figure
logarithmic vertical scale.
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Decay laws, regular case

f̃ = −30. Note the vertical scale. from top to bottom.
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A uniqueness result

We may ask in which sense the behavior found here is
unique. We look at the general framework, with a family of
Hamiltonians H(ε) onH , an orthogonal projection P0, and
an effective Hamiltonian h(ε) on P0H .
Our results have the structure

P0e−itH(ε)P0 = e−ith(ε)P0 + δ(ε, t), t > 0, (∗)

where
sup
t>0
‖δ(ε, t)‖ ≤ Cεp for some p > 0. (∗∗)
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A uniqueness result

Theorem

Assume RankP0 = 1. Assume that h1(ε) and h2(ε) both
satisfy (∗) and (∗∗), with the same value for p. Assume that
for some c0 > 0 and q > 0 we have

− c0εqP0 ≤ Imh1(ε) ≤ 0 for 0 ≤ ε < ε0. (1)

Then for ε0 sufficiently small we have

‖h1(ε)− h2(ε)‖B(P0H ) ≤ Cεp+q, 0 ≤ ε < ε0. (2)

Note that a closely related result has been obtained by
Cattaneo-Graf-Hunziker.
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Plot, regular case

Regular case: threshold regime, p > 4, s = β2ε4t the
parameter

Aε(t) = eis(1− erf(eiπ/4s1/2))+O(εp−4)

Plot of |Aε(t)|2 and log|Aε(t)|2:
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Summary

The message of this talk is summarized as:
Perturbation of a simple eigenvalue for operator of type
Hε = H0 + εW , H0 = −∆+ V , V(x)→ 0 as |x|to∞ sufficiently
fast, or . . .

• Away from thresholds general results are available,
either analytic perturbation theory or Fermi Golden Rule
type results for embedded eigenvalues

• Near thresholds no general results available. For specific
models results can be obtained, but are complicated.
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Some ideas

Stone’s formula

P0e−itH(ε)P0 = lim
η→0

1
π

∫
σ(H(ε))

dx e−itx ImP0(H(ε)−x−iη)−1P0.

Localize near E0: Iε = (e0(ε)− d(ε), e0(ε)+ d(ε)). Use
Schur-Livsic-Feshbach-Grushin formula. Howland’s
formulation:

P0(H − z)−1P0 = F(z, ε)−1,

where

F(z, ε) = E0P0 + εP0WP0 − ε2P0WQ0R0,ε(z)Q0WP0 − zP0.

Here

R0,ε(z) = (Q0H(ε)Q0 − zQ0)−1 on Q0H .
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