

Absolutely continuous spectrum for periodic magnetic fields

Michael J. Gruber, TU Clausthal Quantum Systems, IMSc Chennai, 2010-08-18

Contents

Introduction

Magnetic Schrödinger operators The geometry of magnetic fields Bloch/Floquet

General results

Continuity and band spectrum Analyticity and singular continuous spectrum

Flux dependent results

Flux zero Irrational flux Rational flux

Contents

Introduction

Magnetic Schrödinger operators

The geometry of magnetic fields Bloch/Floquet

General results

Continuity and band spectrum Analyticity and singular continuous spectrum

Flux dependent results

Flux zero Irrational flux Rational flux

• $H = (\iota \nabla + A)^2 + V$ on $L^2(\mathbb{R}^d)$ (usually d = 2)

- V smooth function, A smooth vector field
- $\blacksquare B = \operatorname{curl} A \text{ magnetic field}$
- B, V are assumed Γ -periodic (usually $\Gamma = \mathbb{Z}^d$)
- $\blacksquare \qquad M \coloneqq \mathbb{R}^d / \Gamma$

- $H = (\iota \nabla + A)^2 + V$ on $L^2(\mathbb{R}^d)$ (usually d = 2)
- V smooth function, A smooth vector field
- $B = \operatorname{curl} A \text{ magnetic field}$
- B, V are assumed Γ -periodic (usually $\Gamma = \mathbb{Z}^d$)
- $\blacksquare \qquad M \coloneqq \mathbb{R}^d / \Gamma$

- $H = (\iota \nabla + A)^2 + V$ on $L^2(\mathbb{R}^d)$ (usually d = 2)
- V smooth function, A smooth vector field
- $B = \operatorname{curl} A$ magnetic field
- B, V are assumed Γ -periodic (usually $\Gamma = \mathbb{Z}^d$)
- $M \coloneqq \mathbb{R}^d / \Gamma$

- $H = (\iota \nabla + A)^2 + V$ on $L^2(\mathbb{R}^d)$ (usually d = 2)
- V smooth function, A smooth vector field
- $B = \operatorname{curl} A$ magnetic field
- B, V are assumed Γ -periodic (usually $\Gamma = \mathbb{Z}^d$)

 $M \coloneqq \mathbb{R}^d / \Gamma$

- $H = (\iota \nabla + A)^2 + V$ on $L^2(\mathbb{R}^d)$ (usually d = 2)
- V smooth function, A smooth vector field
- $B = \operatorname{curl} A$ magnetic field
- B, V are assumed Γ -periodic (usually $\Gamma = \mathbb{Z}^d$)
- $M \coloneqq \mathbb{R}^d / \Gamma$

The main dichotomy

•
$$V \equiv 0, A \equiv 0$$
:

 $\operatorname{spec} \Delta = [0, \infty)$

continuous spectrum

 $d = 2, B \neq 0$ constant:

spec $H = \{B(1 + 2n) \mid n \in \mathbb{N}_0\}$

infinitely degenerate eigenvalues

The main dichotomy

$$V \equiv 0, A \equiv 0$$
:

$$\operatorname{spec} \Delta = [0, \infty)$$

continuous spectrum

• $d = 2, B \neq 0$ constant:

 $\operatorname{spec} H = \{B(1+2n) \mid n \in \mathbb{N}_0\}$

infinitely degenerate eigenvalues

Michael J. Gruber AC spectrum for periodic magnetic fields Introduction Magnetic Schrödinger operators

Contents

Introduction

Magnetic Schrödinger operators The geometry of magnetic fields Bloch/Floquet

General results

Continuity and band spectrum Analyticity and singular continuous spectrum

Flux dependent results

Flux zero Irrational flux Rational flux

- Riemannian manifold (X, g), Hilbert space $L^2(X)$
- magnetic field is exact 2-form $b = da \in \Omega^2(X)$
- *a* defines connection $d_a \coloneqq d \iota \frac{ea}{\hbar}$ on the trivial complex line bundle $L \coloneqq X \times \mathbb{C}$

$$\operatorname{curv}(\operatorname{d}_a) = \frac{1}{2\pi} \operatorname{d} \frac{ea}{\hbar} = \frac{e}{h} b = \frac{1}{\Phi_0} b$$

Magnetic Laplacian is Bochner-Laplacian $\Delta_a = \mathrm{d}_a^*\mathrm{d}_a$

- Riemannian manifold (X, g), Hilbert space $L^2(X)$
- magnetic field is exact 2-form $b = da \in \Omega^2(X)$
- *a* defines connection $d_a \coloneqq d \iota \frac{ea}{\hbar}$ on the trivial complex line bundle $L \coloneqq X \times \mathbb{C}$

$$\operatorname{curv}(\operatorname{d}_a) = \frac{1}{2\pi} \operatorname{d} \frac{ea}{\hbar} = \frac{e}{h} b = \frac{1}{\Phi_0} b$$

Magnetic Laplacian is Bochner-Laplacian $\Delta_a = \mathrm{d}_a^*\mathrm{d}_a$

- Riemannian manifold (X, g), Hilbert space $L^2(X)$
- magnetic field is exact 2-form $b = da \in \Omega^2(X)$
- *a* defines connection $d_a \coloneqq d \iota \frac{ea}{\hbar}$ on the trivial complex line bundle $L \coloneqq X \times \mathbb{C}$

$$\operatorname{curv}(\operatorname{d}_a) = \frac{1}{2\pi} \operatorname{d} \frac{ea}{\hbar} = \frac{e}{h} b = \frac{1}{\Phi_0} b$$

Magnetic Laplacian is Bochner-Laplacian $\Delta_a = \mathrm{d}_a^*\mathrm{d}_a$

- Riemannian manifold (X, g), Hilbert space $L^2(X)$
- magnetic field is exact 2-form $b = da \in \Omega^2(X)$
- *a* defines connection $d_a \coloneqq d \iota \frac{\varrho a}{\hbar}$ on the trivial complex line bundle $L \coloneqq X \times \mathbb{C}$
- curvature = magnetic field:

$$\operatorname{curv}(\operatorname{d}_a) = \frac{1}{2\pi} \operatorname{d} \frac{ea}{\hbar} = \frac{e}{h} b = \frac{1}{\Phi_0} b$$

Magnetic Laplacian is Bochner-Laplacian $\Delta_a = \mathrm{d}_a^*\mathrm{d}_a$

- Riemannian manifold (X, g), Hilbert space $L^2(X)$
- magnetic field is exact 2-form $b = da \in \Omega^2(X)$
- *a* defines connection $d_a \coloneqq d \iota \frac{\varrho a}{\hbar}$ on the trivial complex line bundle $L \coloneqq X \times \mathbb{C}$

$$\operatorname{curv}(\operatorname{d}_a) = \frac{1}{2\pi} \operatorname{d} \frac{ea}{\hbar} = \frac{e}{h} b = \frac{1}{\Phi_0} b$$

Magnetic Laplacian is Bochner-Laplacian $\Delta_a = d_a^* d_a$

• *b* periodic $\Leftrightarrow b \in \Omega^2(X)$ induced by $b_M \in \Omega^2(M)$

- b = a, but a need not be periodic
- *a* periodic $\Leftrightarrow b_M$ exact $\Leftrightarrow [b_M] = 0$ in $H^2(M, \mathbb{R})$
- *L* is induced by line bundle L_M over $M \Leftrightarrow [b_M/\Phi_0] \in H^2(M,\mathbb{Z})$
- d = 2, Euclidean: $\Phi = \int_{[0,1]^2} B(x, y) dx dy = \int_M b_M$
- Flux = Chern number $\cdot \Phi_0$
- rational ≡ integral

- *b* periodic $\Leftrightarrow b \in \Omega^2(X)$ induced by $b_M \in \Omega^2(M)$
- b = a, but a need not be periodic
- *a* periodic $\Leftrightarrow b_M$ exact $\Leftrightarrow [b_M] = 0$ in $H^2(M, \mathbb{R})$
- *L* is induced by line bundle L_M over $M \Leftrightarrow [b_M/\Phi_0] \in H^2(M,\mathbb{Z})$
- d = 2, Euclidean: $\Phi = \int_{[0,1]^2} B(x, y) dx dy = \int_M b_M$
- Flux = Chern number $\cdot \Phi_0$
- rational ≡ integral

- *b* periodic $\Leftrightarrow b \in \Omega^2(X)$ induced by $b_M \in \Omega^2(M)$
- b = da, but a need not be periodic
- *a* periodic \Leftrightarrow b_M exact \Leftrightarrow $[b_M] = 0$ in $H^2(M, \mathbb{R})$
- *L* is induced by line bundle L_M over $M \Leftrightarrow [b_M/\Phi_0] \in H^2(M,\mathbb{Z})$
- d = 2, Euclidean: $\Phi = \int_{[0,1]^2} B(x, y) dx dy = \int_M b_M$
- Flux = Chern number $\cdot \Phi_0$
- rational ≡ integral

- *b* periodic $\Leftrightarrow b \in \Omega^2(X)$ induced by $b_M \in \Omega^2(M)$
- b = da, but a need not be periodic
- *a* periodic $\Leftrightarrow b_M$ exact $\Leftrightarrow [b_M] = 0$ in $H^2(M, \mathbb{R})$
- *L* is induced by line bundle L_M over $M \Leftrightarrow [b_M/\Phi_0] \in H^2(M,\mathbb{Z})$
- d = 2, Euclidean: $\Phi = \int_{[0,1]^2} B(x, y) dx dy = \int_M b_M$
- Flux = Chern number $\cdot \Phi_0$
- rational ≡ integral

- *b* periodic $\Leftrightarrow b \in \Omega^2(X)$ induced by $b_M \in \Omega^2(M)$
- b = da, but a need not be periodic
- *a* periodic $\Leftrightarrow b_M$ exact $\Leftrightarrow [b_M] = 0$ in $H^2(M, \mathbb{R})$
- *L* is induced by line bundle L_M over $M \Leftrightarrow [b_M/\Phi_0] \in H^2(M,\mathbb{Z})$
- d = 2, Euclidean: $\Phi = \int_{[0,1]^2} B(x, y) dx dy = \int_M b_M$
- Flux = Chern number $\cdot \Phi_0$
- rational ≡ integral

- *b* periodic $\Leftrightarrow b \in \Omega^2(X)$ induced by $b_M \in \Omega^2(M)$
- b = da, but a need not be periodic
- *a* periodic \Leftrightarrow b_M exact \Leftrightarrow $[b_M] = 0$ in $H^2(M, \mathbb{R})$ "flux zero"
- *L* is induced by line bundle L_M over $M \Leftrightarrow [b_M/\Phi_0] \in H^2(M, \mathbb{Z})$ "integral flux"
- d = 2, Euclidean: $\Phi = \int_{[0,1]^2} B(x, y) dx dy = \int_M b_M$
- Flux = Chern number $\cdot \Phi_0$
- rational ≡ integral

- *b* periodic $\Leftrightarrow b \in \Omega^2(X)$ induced by $b_M \in \Omega^2(M)$
- b = da, but a need not be periodic
- *a* periodic \Leftrightarrow b_M exact \Leftrightarrow $[b_M] = 0$ in $H^2(M, \mathbb{R})$ "flux zero"
- *L* is induced by line bundle L_M over $M \Leftrightarrow [b_M/\Phi_0] \in H^2(M, \mathbb{Z})$ "integral flux"
- d = 2, Euclidean: $\Phi = \int_{[0,1]^2} B(x, y) dx dy = \int_M b_M$
- Flux = Chern number $\cdot \Phi_0$
- rational ≡ integral

In short

■ Zero flux ⇔ periodic coefficients

■ Integral flux ⇔ reduction to (bundle over) smooth compact quotient

In short

- Zero flux ⇔ periodic coefficients
- Integral flux ⇔ reduction to (bundle over) smooth compact quotient

Contents

Introduction

Magnetic Schrödinger operators The geometry of magnetic fields Bloch/Floquet

General results

Continuity and band spectrum Analyticity and singular continuous spectrum

Flux dependent results

Flux zero Irrational flux Rational flux

Bloch/Floquet decomposition

Only for abelian Γ , rational flux:

$$L^{2}(X) \simeq \int_{\hat{\Gamma}}^{\oplus} L^{2}(M) \, \mathrm{d}\chi,$$

 $H \simeq \int_{\hat{\Gamma}}^{\oplus} H_{\chi} \, \mathrm{d}\chi,$ with
 $\hat{\Gamma} = \text{character space}$

Write $\chi(\gamma) = e^{\iota(k,\gamma)}$ for some $k \in \mathbb{R}^d$. Then

 $H_{\chi} = H(k) = (\iota \nabla - k + A)^2 + V = (\mathbf{d}_a + \iota k)^* (\mathbf{d}_a + \iota k) + V.$

Bloch/Floquet decomposition

Only for abelian Γ , rational flux:

$$L^{2}(X) \simeq \int_{\hat{\Gamma}}^{\oplus} L^{2}(M) \, \mathrm{d}\chi,$$
$$H \simeq \int_{\hat{\Gamma}}^{\oplus} H_{\chi} \, \mathrm{d}\chi, \text{ with}$$
$$\hat{\Gamma} = \text{character space}$$

Write $\chi(\gamma) = e^{\iota(k,\gamma)}$ for some $k \in \mathbb{R}^d$. Then

 $H_{\chi} = H(k) = (\iota \nabla - k + A)^2 + V = (\mathbf{d}_a + \iota k)^* (\mathbf{d}_a + \iota k) + V.$

Bloch/Floquet decomposition

Only for abelian Γ , rational flux:

$$L^{2}(X) \simeq \int_{\hat{\Gamma}}^{\oplus} L^{2}(M) \, \mathrm{d}\chi,$$
$$H \simeq \int_{\hat{\Gamma}}^{\oplus} H_{\chi} \, \mathrm{d}\chi, \text{ with}$$
$$\hat{\Gamma} = \text{character space}$$

Write $\chi(\gamma) = e^{\iota(k,\gamma)}$ for some $k \in \mathbb{R}^d$. Then

 $H_{\chi} = H(k) = (\iota \nabla - k + A)^2 + V = (\mathbf{d}_a + \iota k)^* (\mathbf{d}_a + \iota k) + V.$

Bloch/Floquet decomposition

Only for abelian Γ , rational flux:

$$L^{2}(X) \simeq \int_{\hat{\Gamma}}^{\oplus} L^{2}(M) \, \mathrm{d}\chi,$$
$$H \simeq \int_{\hat{\Gamma}}^{\oplus} H_{\chi} \, \mathrm{d}\chi, \text{ with}$$
$$\hat{\Gamma} = \text{character space}$$

Write $\chi(\gamma) = e^{\iota(k,\gamma)}$ for some $k \in \mathbb{R}^d$. Then

$$H_{\chi} = H(k) = (\iota \nabla - k + A)^2 + V = (\mathbf{d}_a + \iota k)^* (\mathbf{d}_a + \iota k) + V.$$

Contents

Introduction

Magnetic Schrödinger operators The geometry of magnetic fields Bloch/Floquet

General results

Continuity and band spectrum

Analyticity and singular continuous spectrum

Flux dependent results

Flux zero Irrational flux Rational flux

- $(H_{\chi})_{\chi \in \hat{\Gamma}}$ is a continuous family of elliptic operators on $L^2(M)$, M compact
- spec H_{χ} consists of discrete eigenvalues $\lambda_n(\chi)$, $n \in \mathbb{N}_0$
- spec $H = \bigcup_{\chi \in \hat{\Gamma}} \operatorname{spec} H_{\chi} = \bigcup_{n \in \mathbb{N}_0} \lambda_n(\hat{\Gamma})$ is a union of countably many "bands" $\lambda_n(\hat{\Gamma})$
- spec H is a locally finite union of closed intervals ("band structure")

- $(H_{\chi})_{\chi \in \hat{\Gamma}}$ is a continuous family of elliptic operators on $L^2(M)$, M compact
- spec H_{χ} consists of discrete eigenvalues $\lambda_n(\chi)$, $n \in \mathbb{N}_0$
- spec $H = \bigcup_{\chi \in \hat{\Gamma}} \operatorname{spec} H_{\chi} = \bigcup_{n \in \mathbb{N}_0} \lambda_n(\hat{\Gamma})$ is a union of countably many "bands" $\lambda_n(\hat{\Gamma})$
- spec H is a locally finite union of closed intervals ("band structure")

- $(H_{\chi})_{\chi \in \hat{\Gamma}}$ is a continuous family of elliptic operators on $L^2(M)$, M compact
- spec H_{χ} consists of discrete eigenvalues $\lambda_n(\chi)$, $n \in \mathbb{N}_0$
- spec $H = \bigcup_{\chi \in \hat{\Gamma}} \operatorname{spec} H_{\chi} = \bigcup_{n \in \mathbb{N}_0} \lambda_n(\hat{\Gamma})$ is a union of countably many "bands" $\lambda_n(\hat{\Gamma})$
- spec H is a locally finite union of closed intervals ("band structure")

- $(H_{\chi})_{\chi \in \hat{\Gamma}}$ is a continuous family of elliptic operators on $L^2(M)$, M compact
- spec H_{χ} consists of discrete eigenvalues $\lambda_n(\chi)$, $n \in \mathbb{N}_0$
- spec $H = \bigcup_{\chi \in \hat{\Gamma}} \operatorname{spec} H_{\chi} = \bigcup_{n \in \mathbb{N}_0} \lambda_n(\hat{\Gamma})$ is a union of countably many "bands" $\lambda_n(\hat{\Gamma})$
- spec H is a locally finite union of closed intervals ("band structure")

Contents

Introduction

Magnetic Schrödinger operators The geometry of magnetic fields Bloch/Floquet

General results

Continuity and band spectrum Analyticity and singular continuous spectrum

Flux dependent results

Flux zero Irrational flux Rational flux

Michael J. Gruber AC spectrum for periodic magnetic fields

Fermi surfaces

Definition The Fermi surface of the n-th band at energy λ is

$$F_n(\lambda) \coloneqq \{\chi \in \hat{\Gamma} \mid \lambda_n(\chi) = \lambda\}.$$

The Fermi surface at energy λ is

$$F(\lambda) \coloneqq \bigcup_{n \in \mathbb{N}_0} F_n(\lambda) = \{ \chi \in \hat{\Gamma} \mid \lambda \in \operatorname{spec} H_{\chi} \}$$

- "Generically": $\operatorname{codim} F(\lambda) = 1 \Rightarrow \operatorname{meas} F(\lambda) = 0$
- But: $\lambda \in \operatorname{spec}_p H \Leftrightarrow \operatorname{meas} F(\lambda) > 0$

Michael J. Gruber AC spectrum for periodic magnetic fields

Fermi surfaces

Definition

The Fermi surface of the n-th band at energy λ is

$$F_n(\lambda) \coloneqq \{ \chi \in \hat{\Gamma} \mid \lambda_n(\chi) = \lambda \}.$$

The Fermi surface at energy λ is

$$F(\lambda) \coloneqq \bigcup_{n \in \mathbb{N}_0} F_n(\lambda) = \{ \chi \in \hat{\Gamma} \mid \lambda \in \operatorname{spec} H_{\chi} \}$$

• "Generically": $\operatorname{codim} F(\lambda) = 1 \Rightarrow \operatorname{meas} F(\lambda) = 0$

But: $\lambda \in \operatorname{spec}_p H \Leftrightarrow \operatorname{meas} F(\lambda) > 0$

Michael J. Gruber AC spectrum for periodic magnetic fields

Fermi surfaces

Definition

The Fermi surface of the n-th band at energy λ is

$$F_n(\lambda) \coloneqq \{ \chi \in \hat{\Gamma} \mid \lambda_n(\chi) = \lambda \}.$$

The Fermi surface at energy λ is

$$F(\lambda) \coloneqq \bigcup_{n \in \mathbb{N}_0} F_n(\lambda) = \{ \chi \in \hat{\Gamma} \mid \lambda \in \operatorname{spec} H_{\chi} \}$$

- "Generically": $\operatorname{codim} F(\lambda) = 1 \Rightarrow \operatorname{meas} F(\lambda) = 0$
- But: $\lambda \in \operatorname{spec}_p H \Leftrightarrow \operatorname{meas} F(\lambda) > 0$

Michael J. Gruber AC spectrum for periodic magnetic fields

Definition

For each Borel set $B \subset \mathbb{R}$ define the quasi-measure of the Fermi shell by

 $\mu^{F}(B) \coloneqq \max \bigcup_{\lambda \in B} F(\lambda) = \max\{\chi \in \hat{\Gamma} \mid \operatorname{spec} H_{\chi} \cap B \neq \emptyset\}$

 λ is an atom of $\mu^F \Leftrightarrow \mu^F(\{\lambda\}) > 0 \Leftrightarrow \lambda \in \operatorname{spec}_p H$ Recall: The spectral measure of H at $f \in L^2(X)$ is

$$\mu_f^H(B) = \left\langle f \, \Big| \, P_B^H f \right\rangle = \int_{\hat{\Gamma}} \mu_{f_{\chi}}^{H_{\chi}} \, \mathrm{d}\chi.$$

Definition

For each Borel set $B \subset \mathbb{R}$ define the quasi-measure of the Fermi shell by

$$\mu^{F}(B) \coloneqq \max \bigcup_{\lambda \in B} F(\lambda) = \max\{\chi \in \hat{\Gamma} \mid \operatorname{spec} H_{\chi} \cap B \neq \emptyset\}$$

 λ is an atom of $\mu^F \Leftrightarrow \mu^F(\{\lambda\}) > 0 \Leftrightarrow \lambda \in \operatorname{spec}_p H$ Recall: The spectral measure of H at $f \in L^2(X)$ is

$$\mu_f^H(B) = \left\langle f \, \Big| \, P_B^H f \right\rangle = \int_{\hat{\Gamma}} \mu_{f_\chi}^{H_\chi} \, \mathrm{d}\chi.$$

Definition

For each Borel set $B \subset \mathbb{R}$ define the quasi-measure of the Fermi shell by

$$\mu^{F}(B) \coloneqq \max \bigcup_{\lambda \in B} F(\lambda) = \max\{\chi \in \hat{\Gamma} \mid \operatorname{spec} H_{\chi} \cap B \neq \emptyset\}$$

 λ is an atom of $\mu^F \Leftrightarrow \mu^F(\{\lambda\}) > 0 \Leftrightarrow \lambda \in \operatorname{spec}_p H$ Recall: The spectral measure of H at $f \in L^2(X)$ is

$$\mu_f^H(B) = \left\langle f \, \Big| \, P_B^H f \right\rangle = \int_{\hat{\Gamma}} \mu_{f_\chi}^{H_\chi} \, \mathrm{d}\chi.$$

Definition

For each Borel set $B \subset \mathbb{R}$ define the quasi-measure of the Fermi shell by

$$\mu^{F}(B) \coloneqq \max \bigcup_{\lambda \in B} F(\lambda) = \max\{\chi \in \hat{\Gamma} \mid \operatorname{spec} H_{\chi} \cap B \neq \emptyset\}$$

 λ is an atom of $\mu^F \Leftrightarrow \mu^F(\{\lambda\}) > 0 \Leftrightarrow \lambda \in \operatorname{spec}_p H$ Recall: The spectral measure of H at $f \in L^2(X)$ is

$$\mu_f^H(B) = \left\langle f \, \Big| \, P_B^H f \right\rangle = \int_{\hat{\Gamma}} \mu_{f_\chi}^{H_\chi} \, \mathrm{d}\chi.$$

• $(H_{\chi})_{\chi \in \hat{\Gamma}}$ is a real-analytic operator family

The family $d_H(\lambda, \chi) \coloneqq \det^{\zeta}(H_{\chi} - \lambda)$ of ζ -regularized determinants is real-analytic in χ , analytic in λ .

$$d_H(\lambda, \chi) = 0 \Leftrightarrow \lambda \in \operatorname{spec} H_{\chi}$$

Definition

The associated quasi-measure to d_H for a Borel set $B\subset \mathbb{R}$ is

$$\mu^{d_H}(B) \coloneqq \operatorname{meas}\{\chi \in \widehat{\Gamma} \mid \exists \lambda \in B : d_H(\lambda, \chi) = 0\}.$$

- $(H_{\chi})_{\chi \in \hat{I}}$ is a real-analytic operator family
- The family $d_H(\lambda, \chi) \coloneqq \det^{\zeta}(H_{\chi} \lambda)$ of ζ -regularized determinants is real-analytic in χ , analytic in λ .
- $d_H(\lambda, \chi) = 0 \Leftrightarrow \lambda \in \operatorname{spec} H_{\chi}$

Definition

The associated quasi-measure to d_H for a Borel set $B\subset \mathbb{R}$ is

$$\mu^{d_H}(B) \coloneqq \operatorname{meas}\{\chi \in \widehat{\Gamma} \mid \exists \lambda \in B : d_H(\lambda, \chi) = 0\}.$$

Michael J. Gruber AC spectrum for periodic magnetic fields

- $(H_{\chi})_{\chi \in \hat{I}}$ is a real-analytic operator family
- The family $d_H(\lambda, \chi) \coloneqq \det^{\zeta}(H_{\chi} \lambda)$ of ζ -regularized determinants is real-analytic in χ , analytic in λ .
- $d_H(\lambda, \chi) = 0 \Leftrightarrow \lambda \in \operatorname{spec} H_{\chi}$

Definition

The associated quasi-measure to d_H for a Borel set $B\subset \mathbb{R}$ is

$$\mu^{d_H}(B) \coloneqq \operatorname{meas}\{\chi \in \widehat{\Gamma} \mid \exists \lambda \in B : d_H(\lambda, \chi) = 0\}.$$

- $(H_{\chi})_{\chi \in \hat{I}}$ is a real-analytic operator family
- The family $d_H(\lambda, \chi) \coloneqq \det^{\zeta}(H_{\chi} \lambda)$ of ζ -regularized determinants is real-analytic in χ , analytic in λ .

$$d_H(\lambda, \chi) = 0 \Leftrightarrow \lambda \in \operatorname{spec} H_{\chi}$$

Definition

The associated quasi-measure to d_H for a Borel set $B \subset \mathbb{R}$ is

$$\mu^{d_H}(B) \coloneqq \operatorname{meas}\{\chi \in \widehat{\Gamma} \mid \exists \lambda \in B : d_H(\lambda, \chi) = 0\}.$$

Michael J. Gruber AC spectrum for periodic magnetic fields

Theorem (G, 2002)

- 1. $\mu^{d_H} = \mu^F$
- 2. $\mu^{\mathcal{N}}$ and μ^{F} have the same null-sets (and atoms).
- 3. $\mu_f^H(B) \le \int_{\widehat{\Gamma}} \|f_{\chi}\|^2 \operatorname{tr} P_B^{H_{\chi}} d\chi$

Theorem (G, 2002)

- 1. $\mu^{d_H} = \mu^F$
- 2. $\mu^{\mathcal{N}}$ and μ^{F} have the same null-sets (and atoms).
- 3. $\mu_f^H(B) \le \int_{\widehat{\Gamma}} \|f_{\chi}\|^2 \operatorname{tr} P_B^{H_{\chi}} \, \mathrm{d}\chi$

Theorem (G, 2002)

- 1. $\mu^{d_H} = \mu^F$
- 2. $\mu^{\mathcal{N}}$ and μ^{F} have the same null-sets (and atoms).
- 3. $\mu_f^H(B) \le \int_{\widehat{\Gamma}} \|f_{\chi}\|^2 \operatorname{tr} P_B^{H_{\chi}} \, \mathrm{d}\chi$

Theorem (G, 2002)

- 1. $\mu^{d_H} = \mu^F$
- 2. $\mu^{\mathcal{N}}$ and μ^{F} have the same null-sets (and atoms).
- 3. $\mu_f^H(B) \le \int_{\widehat{\Gamma}} \|f_{\chi}\|^2 \operatorname{tr} P_B^{H_{\chi}} d\chi$

Theorem (G, 2002)

- 1. $\mu^{d_H} = \mu^F$
- 2. $\mu^{\mathcal{N}}$ and μ^{F} have the same null-sets (and atoms).

3.
$$\mu_f^H(B) \le \int_{\widehat{\Gamma}} \|f_{\chi}\|^2 \operatorname{tr} P_B^{H_{\chi}} d\chi$$

Proof.

 $\mu^{d_H} = \mu^F$ by definition and the properties of the determinant.

Theorem (G, 2002)

1. $\mu^{d_H} = \mu^F$

2. $\mu^{\mathcal{N}}$ and μ^{F} have the same null-sets (and atoms).

3.
$$\mu_f^H(B) \le \int_{\widehat{\Gamma}} \|f_X\|^2 \operatorname{tr} P_B^{H_X} d\chi$$

Proof.

$$\mu^{\mathcal{N}}(B) = \int_{\hat{\Gamma}} \operatorname{tr} P_B^{H_{\chi}} d\chi \quad \text{and}$$
$$\operatorname{tr} P_B^{H_{\chi}} \neq 0 \Leftrightarrow P_B^{H_{\chi}} \neq 0 \Leftrightarrow B \cap \operatorname{spec} H_{\chi} \neq \emptyset$$
$$\Leftrightarrow \exists \lambda \in B : d_H(\lambda, \chi) \neq 0$$

Michael J. Gruber AC spectrum for periodic magnetic fields

Theorem (G, 2002)

- 1. $\mu^{d_H} = \mu^F$
- 2. $\mu^{\mathcal{N}}$ and μ^{F} have the same null-sets (and atoms).
- 3. $\mu_f^H(B) \le \int_{\widehat{\Gamma}} \|f_{\chi}\|^2 \operatorname{tr} P_B^{H_{\chi}} d\chi$

Proof.

$$\begin{split} \mu_{f_{\chi}}^{H_{\chi}}(B) &= \left\langle f_{\chi} \middle| P_{B}^{H_{\chi}} f_{\chi} \right\rangle \\ &\leq \|f_{\chi}\|^{2} \operatorname{tr} P_{B}^{H_{\chi}} \\ \mu_{f}^{H}(B) &= \int_{\hat{f}} \mu_{f_{\chi}}^{H_{\chi}}(B) \, \mathrm{d}\chi \leq \int_{\hat{f}} \|f_{\chi}\|^{2} \operatorname{tr} P_{B}^{H_{\chi}} \, \mathrm{d}\chi \end{split}$$

Corollary (G, 2002)

- 1. $\operatorname{spec}_{s.c.} H = \emptyset$
- 2. spec_{p,p} H discrete in \mathbb{R}
- 3. $\lambda \in \operatorname{spec}_{p,p} H \Rightarrow$ There is a component $\Lambda \subset \hat{\Gamma}$ such that $\forall \chi \in \Lambda : \lambda \in \operatorname{spec} H_{\chi}$.
- 4. $\mu^{\mathcal{N}}$ has no singular-continuous component.
- Applicable to abelian-periodic elliptic operators: magnetic Schrödinger, magnetic Dirac, Pauli
- Optimal under the given assumptions: cf. Schrödinger, Landau

Corollary (G, 2002)

- 1. $\operatorname{spec}_{s.c.} H = \emptyset$
- 2. spec_{*p*,*p*} H discrete in \mathbb{R}
- 3. $\lambda \in \operatorname{spec}_{p,p} H \Rightarrow$ There is a component $\Lambda \subset \hat{\Gamma}$ such that $\forall \chi \in \Lambda : \lambda \in \operatorname{spec} H_{\chi}$.
- 4. $\mu^{\mathcal{N}}$ has no singular-continuous component.
- Applicable to abelian-periodic elliptic operators: magnetic Schrödinger, magnetic Dirac, Pauli
- Optimal under the given assumptions: cf. Schrödinger, Landau

Corollary (G, 2002)

- 1. $\operatorname{spec}_{s.c.} H = \emptyset$
- 2. spec_{*p*,*p*.} *H* discrete in \mathbb{R}
- 3. $\lambda \in \operatorname{spec}_{p,p} H \Rightarrow$ There is a component $\Lambda \subset \hat{\Gamma}$ such that $\forall \chi \in \Lambda : \lambda \in \operatorname{spec} H_{\chi}$.
- 4. $\mu^{\mathcal{N}}$ has no singular-continuous component.
- Applicable to abelian-periodic elliptic operators: magnetic Schrödinger, magnetic Dirac, Pauli
- Optimal under the given assumptions: cf. Schrödinger, Landau

Corollary (G, 2002)

- 1. $\operatorname{spec}_{s.c.} H = \emptyset$
- 2. spec_{*p*,*p*.} *H* discrete in \mathbb{R}
- 3. $\lambda \in \operatorname{spec}_{p.p.} H \Rightarrow$ There is a component $\Lambda \subset \hat{\Gamma}$ such that $\forall \chi \in \Lambda : \lambda \in \operatorname{spec} H_{\chi}$.
- 4. $\mu^{\mathcal{N}}$ has no singular-continuous component.
- Applicable to abelian-periodic elliptic operators: magnetic Schrödinger, magnetic Dirac, Pauli
- Optimal under the given assumptions: cf. Schrödinger, Landau

Corollary (G, 2002)

- 1. $\operatorname{spec}_{s.c.} H = \emptyset$
- 2. spec_{*p*,*p*} *H* discrete in \mathbb{R}
- 3. $\lambda \in \operatorname{spec}_{p.p.} H \Rightarrow$ There is a component $\Lambda \subset \hat{\Gamma}$ such that $\forall \chi \in \Lambda : \lambda \in \operatorname{spec} H_{\chi}$.
- 4. $\mu^{\mathcal{N}}$ has no singular-continuous component.
- Applicable to abelian-periodic elliptic operators: magnetic Schrödinger, magnetic Dirac, Pauli
- Optimal under the given assumptions: cf. Schrödinger, Landau

Corollary (G, 2002)

- 1. $\operatorname{spec}_{s.c.} H = \emptyset$
- 2. spec_{*p*,*p*} *H* discrete in \mathbb{R}
- 3. $\lambda \in \operatorname{spec}_{p.p.} H \Rightarrow$ There is a component $\Lambda \subset \hat{\Gamma}$ such that $\forall \chi \in \Lambda : \lambda \in \operatorname{spec} H_{\chi}$.
- 4. $\mu^{\mathcal{N}}$ has no singular-continuous component.
- Applicable to abelian-periodic elliptic operators: magnetic Schrödinger, magnetic Dirac, Pauli
- Optimal under the given assumptions: cf. Schrödinger, Landau

Corollary (G, 2002)

- 1. $\operatorname{spec}_{s.c.} H = \emptyset$
- 2. spec_{*p*,*p*} *H* discrete in \mathbb{R}
- 3. $\lambda \in \operatorname{spec}_{p.p.} H \Rightarrow$ There is a component $\Lambda \subset \hat{\Gamma}$ such that $\forall \chi \in \Lambda : \lambda \in \operatorname{spec} H_{\chi}$.
- 4. $\mu^{\mathcal{N}}$ has no singular-continuous component.
- Applicable to abelian-periodic elliptic operators: magnetic Schrödinger, magnetic Dirac, Pauli
- Optimal under the given assumptions: cf. Schrödinger, Landau

Contents

Introduction

Magnetic Schrödinger operators The geometry of magnetic fields Bloch/Floquet

General results

Continuity and band spectrum Analyticity and singular continuous spectrum

Flux dependent results

Flux zero Irrational flux Rational flux

- $B \equiv 0$
- Bloch decomposition gives operator family $H(k) = (\iota \nabla - k)^2 + V$ on $L^2(M)$, $k \in \mathbb{R}^d$
- *n*-th band is non-degenerate iff $\lambda_n(k)$ is not constant
- extend the family to $k \in \mathbb{C}^d$, find direction along which $H_0(k)$ has a lower bound $C(k) \to \infty$ for $k \to \infty$, i.e. $||H_0(k)f|| \ge C(k)||f||$ for all f.
- $\Rightarrow \qquad \|(H(k) \lambda)f\| \ge (C(k) \|V \lambda\|)\|f\| > 0 \text{ for } k \to \infty$

Theorem (Thomas 1978)

The Schrödinger operator on \mathbb{R}^d with periodic electric field has purely absolutely continuous spectrum.

- $B \equiv 0$
- Bloch decomposition gives operator family $H(k) = (\iota \nabla k)^2 + V$ on $L^2(M)$, $k \in \mathbb{R}^d$
- *n*-th band is non-degenerate iff $\lambda_n(k)$ is not constant
- extend the family to $k \in \mathbb{C}^d$, find direction along which $H_0(k)$ has a lower bound $C(k) \to \infty$ for $k \to \infty$, i.e. $\|H_0(k)f\| \ge C(k)\|f\|$ for all f.
- $\Rightarrow \qquad \|(H(k) \lambda)f\| \ge (C(k) \|V \lambda\|)\|f\| > 0 \text{ for } k \to \infty$

Theorem (Thomas 1978)

The Schrödinger operator on \mathbb{R}^d with periodic electric field has purely absolutely continuous spectrum.

 $B \equiv 0$

- Bloch decomposition gives operator family $H(k) = (\iota \nabla k)^2 + V$ on $L^2(M)$, $k \in \mathbb{R}^d$
- *n*-th band is non-degenerate iff $\lambda_n(k)$ is not constant
- extend the family to $k \in \mathbb{C}^d$, find direction along which $H_0(k)$ has a lower bound $C(k) \to \infty$ for $k \to \infty$, i.e. $||H_0(k)f|| \ge C(k)||f||$ for all f.
- $\Rightarrow \qquad \|(H(k) \lambda)f\| \ge (C(k) \|V \lambda\|)\|f\| > 0 \text{ for } k \to \infty$

Theorem (Thomas 1978)

The Schrödinger operator on \mathbb{R}^d with periodic electric field has purely absolutely continuous spectrum.

22

 $B \equiv 0$

- Bloch decomposition gives operator family $H(k) = (\iota \nabla - k)^2 + V$ on $L^2(M)$, $k \in \mathbb{R}^d$
- *n*-th band is non-degenerate iff $\lambda_n(k)$ is not constant
- extend the family to $k \in \mathbb{C}^d$, find direction along which $H_0(k)$ has a lower bound $C(k) \to \infty$ for $k \to \infty$, i.e. $||H_0(k)f|| \ge C(k)||f||$ for all f.
- $\Rightarrow \qquad \|(H(k) \lambda)f\| \ge (C(k) \|V \lambda\|)\|f\| > 0 \text{ for } k \to \infty$

Theorem (Thomas 1978)

The Schrödinger operator on \mathbb{R}^d with periodic electric field has purely absolutely continuous spectrum.

 $B \equiv 0$

- Bloch decomposition gives operator family $H(k) = (\iota \nabla - k)^2 + V$ on $L^2(M)$, $k \in \mathbb{R}^d$
- *n*-th band is non-degenerate iff $\lambda_n(k)$ is not constant
- extend the family to $k \in \mathbb{C}^d$, find direction along which $H_0(k)$ has a lower bound $C(k) \to \infty$ for $k \to \infty$, i.e. $||H_0(k)f|| \ge C(k)||f||$ for all f.

$$\Rightarrow \qquad \|(H(k) - \lambda)f\| \ge (C(k) - \|V - \lambda\|)\|f\| > 0 \text{ for } k \to \infty$$

Theorem (Thomas 1978)

The Schrödinger operator on \mathbb{R}^d with periodic electric field has purely absolutely continuous spectrum.

 $B \not\equiv 0$

- Thomas method can be extended to *small* periodic a (Hempel/Herbst 1995) and d = 2 (Birman/Suslina 1998/'99)
- Arbitrary periodic *a* requires construction of a pseudo-differential parametrix (Sobolev 1999, Kuchment/Levendorski 1999/2002)
- Common to all these: H_0 has purely AC spectrum, H is a perturbation (with $H H_0$ not trace-class, of course)

23

 $B \not\equiv 0$

- Thomas method can be extended to *small* periodic *a* (Hempel/Herbst 1995) and *d* = 2 (Birman/Suslina 1998/'99)
- Arbitrary periodic *a* requires construction of a pseudo-differential parametrix (Sobolev 1999, Kuchment/Levendorski 1999/2002)
- Common to all these: H_0 has purely AC spectrum, H is a perturbation (with $H H_0$ not trace-class, of course)

 $B \not\equiv 0$

- Thomas method can be extended to *small* periodic *a* (Hempel/Herbst 1995) and *d* = 2 (Birman/Suslina 1998/'99)
- Arbitrary periodic *a* requires construction of a pseudo-differential parametrix (Sobolev 1999, Kuchment/Levendorski 1999/2002)
- Common to all these: H_0 has purely AC spectrum, H is a perturbation (with $H H_0$ not trace-class, of course)

Contents

Introduction

Magnetic Schrödinger operators The geometry of magnetic fields Bloch/Floquet

General results

Continuity and band spectrum Analyticity and singular continuous spectrum

Flux dependent results

Flux zero Irrational flux Rational flux

Motivation

- *B* constant, $V \equiv 0$: what defines the lattice, hence the flux per cell?
- Influence of the potential: Dinaburg/Sinai/Soshnikov 1997
- Do perturbations of *B* suffice to spread out the Landau levels?

Motivation

- *B* constant, $V \equiv 0$: what defines the lattice, hence the flux per cell?
- Influence of the potential: Dinaburg/Sinai/Soshnikov 1997
- Do perturbations of *B* suffice to spread out the Landau levels?

Motivation

- *B* constant, $V \equiv 0$: what defines the lattice, hence the flux per cell?
- Influence of the potential: Dinaburg/Sinai/Soshnikov 1997
- Do perturbations of B suffice to spread out the Landau levels?

• $X = \mathbb{R}^2$, $\Gamma = \mathbb{Z}^2$.

B arbitrary smooth periodic, $\Phi = \frac{1}{2\pi} \int_{[0,1]^2} B(x, y) dx dy$ Write *B* as

$$B = B_c + B_z$$
 with
 $B_c = 2\pi\Phi$ and $B_z = B - B_c$.

 B_z has flux 0, choose vector potential A_z as

$$A_{z}(x, y) = \begin{pmatrix} \varepsilon_{0} A^{0}(y) \\ \varepsilon_{1} A^{1}(x, y) \end{pmatrix}$$

- $X = \mathbb{R}^2, \Gamma = \mathbb{Z}^2.$
- *B* arbitrary smooth periodic, $\Phi = \frac{1}{2\pi} \int_{[0,1]^2} B(x, y) dx dy$ Write *B* as

$$B = B_c + B_z$$
 with
 $B_c = 2\pi\Phi$ and $B_z = B - B_c$.

 B_z has flux 0, choose vector potential A_z as

$$A_{z}(x, y) = \begin{pmatrix} \varepsilon_{0} A^{0}(y) \\ \varepsilon_{1} A^{1}(x, y) \end{pmatrix}$$

- $X = \mathbb{R}^2, \Gamma = \mathbb{Z}^2.$
- *B* arbitrary smooth periodic, $\Phi = \frac{1}{2\pi} \int_{[0,1]^2} B(x, y) dx dy$ Write *B* as

$$B = B_c + B_z$$
 with
 $B_c = 2\pi\Phi$ and $B_z = B - B_c$.

 B_z has flux 0, choose vector potential A_z as

$$A_{z}(x, y) = \begin{pmatrix} \varepsilon_{0} A^{0}(y) \\ \varepsilon_{1} A^{1}(x, y) \end{pmatrix}$$

- $X = \mathbb{R}^2, \Gamma = \mathbb{Z}^2.$
- *B* arbitrary smooth periodic, $\Phi = \frac{1}{2\pi} \int_{[0,1]^2} B(x, y) \, dx \, dy$ Write *B* as

$$B = B_c + B_z$$
 with
 $B_c = 2\pi\Phi$ and $B_z = B - B_c$.

 B_z has flux 0, choose vector potential A_z as

$$A_{z}(x, y) = \begin{pmatrix} \varepsilon_{0} A^{0}(y) \\ \varepsilon_{1} A^{1}(x, y) \end{pmatrix}$$

- $X = \mathbb{R}^2, \Gamma = \mathbb{Z}^2.$
- *B* arbitrary smooth periodic, $\Phi = \frac{1}{2\pi} \int_{[0,1]^2} B(x, y) \, dx \, dy$ Write *B* as

$$B = B_c + B_z$$
 with
 $B_c = 2\pi\Phi$ and $B_z = B - B_c$.

 B_z has flux 0, choose vector potential A_z as

$$A_{z}(x, y) = \begin{pmatrix} \varepsilon_{0} A^{0}(y) \\ \varepsilon_{1} A^{1}(x, y) \end{pmatrix}$$

Magnetic Laplacian

 B_c constant, choose

$$A_c(\mathcal{Y}) = B_c \begin{pmatrix} \mathcal{Y} \\ 0 \end{pmatrix}$$

to get the magnetic Laplacian

$$H = \left[\left(\frac{1}{\iota} \frac{\partial}{\partial x} - B_c y - \varepsilon_0 A^0(y) \right)^2 + \left(\frac{1}{\iota} \frac{\partial}{\partial y} - \varepsilon_1 A^1(x, y) \right)^2 \right].$$

 $\varepsilon_1 = 0$

Fourier transform on $L^2(\mathbb{R}_x)$, $L^2(\mathbb{R}^2) = \int_{\mathbb{R}}^{\oplus} L^2(\mathbb{R}_y) d\xi$ with

$$L^{2}(\mathbb{R}^{2}) \ni f \mapsto \hat{f}, \quad \hat{f}_{\xi}(y) = \int_{\mathbb{R}} f(x, y) e^{-2\pi i \xi x} \, \mathrm{d}x,$$
$$f(x, y) = \int_{\mathbb{R}} f_{\xi}(y) e^{2\pi i \xi x} \, \mathrm{d}\xi;$$

$$H = \int_{\mathbb{R}}^{\oplus} \hat{H}_{\xi} \, \mathrm{d}\xi, \quad \hat{H}_{\xi} = -\frac{\mathrm{d}^2}{\mathrm{d}y^2} + V_{\xi}(y) \quad \text{with}$$
$$V_{\xi}(y) = \left(2\pi\xi - B_c y - \varepsilon_0 A^0(y)\right)^2$$

Michael J. Gruber AC spectrum for periodic magnetic fields Flux dependent results Irrational flux

 $\varepsilon_1 = 0$

Fourier transform on $L^2(\mathbb{R}_x)$, $L^2(\mathbb{R}^2) = \int_{\mathbb{R}}^{\oplus} L^2(\mathbb{R}_y) d\xi$ with

$$L^{2}(\mathbb{R}^{2}) \ni f \mapsto \hat{f}, \quad \hat{f}_{\xi}(y) = \int_{\mathbb{R}} f(x, y) e^{-2\pi i \xi x} \, \mathrm{d}x,$$
$$f(x, y) = \int_{\mathbb{R}} f_{\xi}(y) e^{2\pi i \xi x} \, \mathrm{d}\xi;$$

$$H = \int_{\mathbb{R}}^{\oplus} \hat{H}_{\xi} \, \mathrm{d}\xi, \quad \hat{H}_{\xi} = -\frac{\mathrm{d}^2}{\mathrm{d}y^2} + V_{\xi}(y) \quad \text{with}$$
$$V_{\xi}(y) = \left(2\pi\xi - B_c y - \varepsilon_0 A^0(y)\right)^2.$$

Michael J. Gruber AC spectrum for periodic magnetic fields Flux dependent results Irrational flux

$$\varepsilon_0 = 0 = \varepsilon_1$$

$$V_{\xi}(\boldsymbol{y}) = (2\pi\xi - B_{c}\boldsymbol{y})^{2} = B_{c}^{2} (\boldsymbol{y} - \beta\xi)^{2}$$

is a harmonic oscillator potential shifted by $\beta \xi$, $\beta = \frac{2\pi}{B_c} = \frac{1}{\Phi}$. spec H_{ξ} is discrete pure point, independent of ξ (Landau levels), eigenfunctions $\Psi_{\xi,m}(y) = \sqrt[4]{B_c} h_m (\sqrt{B_c} (y - \beta \xi))$, h_m is Weber-Hermite function

$$h_m(\gamma) = \frac{(-1)^m}{\sqrt{\sqrt{\pi}2^m m!}} \exp\left(\frac{\gamma^2}{2}\right) \frac{\mathrm{d}^m}{\mathrm{d}\gamma^m} \exp\left(-\gamma^2\right), \quad m \in \mathbb{Z}_+.$$

$$\varepsilon_0 = 0 = \varepsilon_1$$

$$V_{\xi}(\boldsymbol{y}) = (2\pi\xi - B_{c}\boldsymbol{y})^{2} = B_{c}^{2} (\boldsymbol{y} - \beta\xi)^{2}$$

is a harmonic oscillator potential shifted by $\beta \xi$, $\beta = \frac{2\pi}{B_c} = \frac{1}{\Phi}$. spec H_{ξ} is discrete pure point, independent of ξ (Landau levels), eigenfunctions $\Psi_{\xi,m}(\gamma) = \sqrt[4]{B_c} h_m (\sqrt{B_c} (\gamma - \beta \xi))$, h_m is Weber-Hermite function

$$h_m(\gamma) = \frac{(-1)^m}{\sqrt{\sqrt{\pi}2^m m!}} \exp\left(\frac{\gamma^2}{2}\right) \frac{\mathrm{d}^m}{\mathrm{d}\gamma^m} \exp\left(-\gamma^2\right), \quad m \in \mathbb{Z}_+.$$

$$\varepsilon_0 = 0 = \varepsilon_1$$

$$V_{\xi}(\boldsymbol{y}) = \left(2\pi\xi - B_{c}\boldsymbol{y}\right)^{2} = B_{c}^{2}\left(\boldsymbol{y} - \boldsymbol{\beta}\boldsymbol{\xi}\right)^{2}$$

is a harmonic oscillator potential shifted by $\beta\xi$, $\beta = \frac{2\pi}{B_c} = \frac{1}{\Phi}$. spec H_{ξ} is discrete pure point, independent of ξ (Landau levels), eigenfunctions $\Psi_{\xi,m}(y) = \sqrt[4]{B_c} h_m (\sqrt{B_c} (y - \beta\xi))$, h_m is Weber-Hermite function

$$h_m(\gamma) = \frac{(-1)^m}{\sqrt{\sqrt{\pi}2^m m!}} \exp\left(\frac{\gamma^2}{2}\right) \frac{\mathrm{d}^m}{\mathrm{d}\gamma^m} \exp\left(-\gamma^2\right), \quad m \in \mathbb{Z}_+.$$

$$\varepsilon_0 \neq 0 = \varepsilon_1$$

$$V_{\xi}(\tilde{y}) = B_c^2 \left(\tilde{y} + \varepsilon_0 A^0 \left(\tilde{y} + \beta \xi \right) \right)^2.$$

"periodic" perturbation of a harmonic oscillator

Spectrum of H_{ξ} is discrete pure point, possibly depending on ξ . Eigenvalues differ by at most $C_m \varepsilon_0 \max |A^0|$ from Landau levels. V_{ξ} is periodic in ξ with period $\frac{B_c}{2\pi} = \Phi$. $H = \int_{\mathbb{R}}^{\oplus} \hat{H}_{\xi} d\xi$ has band spectrum, band width at most $2C_m \varepsilon_0 \max |A^0|$, possibly 0!

30

$$\varepsilon_0 \neq 0 = \varepsilon_1$$

$$V_{\xi}(\tilde{y}) = B_c^2 \left(\tilde{y} + \varepsilon_0 A^0 \left(\tilde{y} + \beta \xi \right) \right)^2.$$

"periodic" perturbation of a harmonic oscillator Spectrum of H_{ξ} is discrete pure point, possibly depending on ξ . Eigenvalues differ by at most $C_m \varepsilon_0 \max |A^0|$ from Landau levels. V_{ξ} is periodic in ξ with period $\frac{B_c}{2\pi} = \Phi$. $H = \int_{\mathbb{R}}^{\oplus} \hat{H}_{\xi} d\xi$ has band spectrum, band width at most $2C_m \varepsilon_0 \max |A^0|$, possibly 0!

$$\varepsilon_0 \neq 0 = \varepsilon_1$$

$$V_{\xi}(\tilde{y}) = B_c^2 \left(\tilde{y} + \varepsilon_0 A^0 \left(\tilde{y} + \beta \xi \right) \right)^2.$$

"periodic" perturbation of a harmonic oscillator Spectrum of H_{ξ} is discrete pure point, possibly depending on ξ . Eigenvalues differ by at most $C_m \varepsilon_0 \max |A^0|$ from Landau levels. V_{ξ} is periodic in ξ with period $\frac{B_c}{2\pi} = \Phi$. $H = \int_{\mathbb{R}}^{\oplus} \hat{H}_{\xi} d\xi$ has band spectrum, band width at most $2C_m \varepsilon_0 \max |A^0|$, possibly 0!

$$\varepsilon_0 \neq 0 = \varepsilon_1$$

$$V_{\xi}(\tilde{y}) = B_c^2 \left(\tilde{y} + \varepsilon_0 A^0 \left(\tilde{y} + \beta \xi \right) \right)^2.$$

"periodic" perturbation of a harmonic oscillator Spectrum of H_{ξ} is discrete pure point, possibly depending on ξ . Eigenvalues differ by at most $C_m \varepsilon_0 \max |A^0|$ from Landau levels. V_{ξ} is periodic in ξ with period $\frac{B_c}{2\pi} = \Phi$. $H = \int_{\mathbb{R}}^{\oplus} \hat{H}_{\xi} d\xi$ has band spectrum, band width at most $2C_m \varepsilon_0 \max |A^0|$, possibly 0!

$$\varepsilon_0 \neq 0 = \varepsilon_1$$

$$V_{\xi}(\tilde{y}) = B_c^2 \left(\tilde{y} + \varepsilon_0 A^0 \left(\tilde{y} + \beta \xi \right) \right)^2.$$

"periodic" perturbation of a harmonic oscillator Spectrum of H_{ξ} is discrete pure point, possibly depending on ξ . Eigenvalues differ by at most $C_m \varepsilon_0 \max |A^0|$ from Landau levels. V_{ξ} is periodic in ξ with period $\frac{B_c}{2\pi} = \Phi$. $H = \int_{\mathbb{R}}^{\oplus} \hat{H}_{\xi} d\xi$ has band spectrum, band width at most $2C_m \varepsilon_0 \max |A^0|$, possibly 0!

$\varepsilon_0 \neq 0 \neq \varepsilon_1$

H is x-dependent, periodic in x.

Bloch theory in x and Weber-Hermite decomposition in y leads to $L^2(\mathbb{R}^2) = \int_{[0,1]}^{\oplus} L^2([0,1]_x) \otimes \ell^2(\mathbb{N}_0) d\xi$ and $H = \int_{[0,1]}^{\oplus} \hat{H}_{\xi} d\xi$, \hat{H}_{ξ} is sum of difference operators, typical coefficient:

$$A_{l,m}^{0}(p) = B_{c}^{\frac{3}{2}} \int_{\mathbb{R}} A^{0}(\gamma + p) \gamma h_{l}\left(\sqrt{B_{c}}\gamma\right) h_{m}\left(\sqrt{B_{c}}\gamma\right) d\gamma$$

Assumptions:

diophantineThere is $C > 0, 1 > \kappa > 0$ such that
 $|\{\beta n\}| > C/|n|^{\kappa}$ for all $n \in \mathbb{Z} \setminus 0$.smooth A^0 and A^1 are smooth; all $\frac{\partial^j A^1}{\partial y^J}$ are analytic in
 $|\Im x| < \delta$ for some $\delta > 0$.Morse $A_{m,m}^0$ is a Morse function on S^1 with 2 critical
points.

 $\varepsilon_0 \neq 0 \neq \varepsilon_1$

H is x-dependent, periodic in x.

Bloch theory in x and Weber-Hermite decomposition in y leads to $L^2(\mathbb{R}^2) = \int_{[0,1]}^{\oplus} L^2([0,1]_x) \otimes \ell^2(\mathbb{N}_0) \, \mathrm{d}\xi$ and $H = \int_{[0,1]}^{\oplus} \hat{H}_{\xi} \, \mathrm{d}\xi$, \hat{H}_{ξ} is sum of difference operators, typical coefficient:

$$A_{l,m}^{0}(p) = B_{c}^{\frac{3}{2}} \int_{\mathbb{R}} A^{0}(\gamma + p) \gamma h_{l}\left(\sqrt{B_{c}}\gamma\right) h_{m}\left(\sqrt{B_{c}}\gamma\right) d\gamma$$

Assumptions:

 $\begin{array}{lll} \text{diophantine} & \text{There is } C > 0, \ 1 > \kappa > 0 \text{ such that} \\ |\{\beta n\}| > C/|n|^{\kappa} \text{ for all } n \in \mathbb{Z} \setminus 0. \\ \text{smooth} & A^0 \text{ and } A^1 \text{ are smooth; all } \frac{\partial^j A^1}{\partial y^j} \text{ are analytic in} \\ |\Im x| < \delta \text{ for some } \delta > 0. \\ \text{Morse} & A_{m,m}^0 \text{ is a Morse function on } S^1 \text{ with 2 critical} \\ \text{points.} \end{array}$

 $\varepsilon_0 \neq 0 \neq \varepsilon_1$

H is x-dependent, periodic in x.

Bloch theory in x and Weber-Hermite decomposition in y leads to $L^2(\mathbb{R}^2) = \int_{[0,1]}^{\oplus} L^2([0,1]_x) \otimes \ell^2(\mathbb{N}_0) \,\mathrm{d}\xi$ and $H = \int_{[0,1]}^{\oplus} \hat{H}_{\xi} \,\mathrm{d}\xi$, \hat{H}_{ξ} is sum of difference operators, typical coefficient:

$$A_{l,m}^{0}(p) = B_{c}^{\frac{3}{2}} \int_{\mathbb{R}} A^{0}(\gamma + p) \gamma h_{l}\left(\sqrt{B_{c}}\gamma\right) h_{m}\left(\sqrt{B_{c}}\gamma\right) d\gamma$$

Assumptions:

diophantineThere is $C > 0, 1 > \kappa > 0$ such that
 $|\{\beta n\}| > C/|n|^{\kappa}$ for all $n \in \mathbb{Z} \setminus 0$.smooth A^0 and A^1 are smooth; all $\frac{\partial^j A^1}{\partial y^j}$ are analytic in
 $|\Im x| < \delta$ for some $\delta > 0$.Morse $A^{0}_{m,m}$ is a Morse function on S^1 with 2 critical
points.

$$\varepsilon_0 \neq 0 \neq \varepsilon_1$$

Bloch theory in x and Weber-Hermite decomposition in y leads to $L^2(\mathbb{R}^2) = \int_{[0,1]}^{\oplus} L^2([0,1]_x) \otimes \ell^2(\mathbb{N}_0) \,\mathrm{d}\xi$ and $H = \int_{[0,1]}^{\oplus} \hat{H}_{\xi} \,\mathrm{d}\xi$, \hat{H}_{ξ} is sum of difference operators, typical coefficient:

$$A_{l,m}^{0}(p) = B_{c}^{\frac{3}{2}} \int_{\mathbb{R}} A^{0}(y+p)y h_{l}\left(\sqrt{B_{c}}y\right) h_{m}\left(\sqrt{B_{c}}y\right) dy$$

Assumptions:

$$\varepsilon_0 \neq 0 \neq \varepsilon_1$$

Bloch theory in x and Weber-Hermite decomposition in y leads to $L^2(\mathbb{R}^2) = \int_{[0,1]}^{\oplus} L^2([0,1]_x) \otimes \ell^2(\mathbb{N}_0) \,\mathrm{d}\xi$ and $H = \int_{[0,1]}^{\oplus} \hat{H}_{\xi} \,\mathrm{d}\xi$, \hat{H}_{ξ} is sum of difference operators, typical coefficient:

$$A_{l,m}^{0}(p) = B_{c}^{\frac{3}{2}} \int_{\mathbb{R}} A^{0}(y+p)y h_{l}\left(\sqrt{B_{c}}y\right) h_{m}\left(\sqrt{B_{c}}y\right) dy$$

Assumptions:

 $\begin{array}{ll} \text{diophantine} & \text{There is } C > 0, \ 1 > \kappa > 0 \text{ such that} \\ |\{\beta n\}| > C/|n|^{\kappa} \text{ for all } n \in \mathbb{Z} \setminus 0. \\ \text{smooth} & A^0 \text{ and } A^1 \text{ are smooth; all } \frac{\partial^j A^1}{\partial y^j} \text{ are analytic in} \\ |\Im x| < \delta \text{ for some } \delta > 0. \\ \text{Morse} & A_{m,m}^0 \text{ is a Morse function on } S^1 \text{ with 2 critical} \\ \text{points.} \end{array}$

$$\varepsilon_0 \neq 0 \neq \varepsilon_1$$

Bloch theory in x and Weber-Hermite decomposition in y leads to $L^2(\mathbb{R}^2) = \int_{[0,1]}^{\oplus} L^2([0,1]_x) \otimes \ell^2(\mathbb{N}_0) \,\mathrm{d}\xi$ and $H = \int_{[0,1]}^{\oplus} \hat{H}_{\xi} \,\mathrm{d}\xi$, \hat{H}_{ξ} is sum of difference operators, typical coefficient:

$$A_{l,m}^{0}(p) = B_{c}^{\frac{3}{2}} \int_{\mathbb{R}} A^{0}(y+p)y h_{l}\left(\sqrt{B_{c}}y\right) h_{m}\left(\sqrt{B_{c}}y\right) dy$$

Assumptions:

 $\begin{array}{ll} \text{diophantine} & \text{There is } C > 0, \ 1 > \kappa > 0 \text{ such that} \\ |\{\beta n\}| > C/|n|^{\kappa} \text{ for all } n \in \mathbb{Z} \setminus 0. \\ \text{smooth} & A^0 \text{ and } A^1 \text{ are smooth; all } \frac{\partial^j A^1}{\partial y^j} \text{ are analytic in} \\ |\Im x| < \delta \text{ for some } \delta > 0. \\ \text{Morse} & A_{m,m}^0 \text{ is a Morse function on } S^1 \text{ with 2 critical} \\ \text{points.} \end{array}$

$$\varepsilon_0 \neq 0 \neq \varepsilon_1$$

Bloch theory in x and Weber-Hermite decomposition in y leads to $L^2(\mathbb{R}^2) = \int_{[0,1]}^{\oplus} L^2([0,1]_x) \otimes \ell^2(\mathbb{N}_0) \,\mathrm{d}\xi$ and $H = \int_{[0,1]}^{\oplus} \hat{H}_{\xi} \,\mathrm{d}\xi$, \hat{H}_{ξ} is sum of difference operators, typical coefficient:

$$A_{l,m}^{0}(p) = B_{c}^{\frac{3}{2}} \int_{\mathbb{R}} A^{0}(\gamma + p)\gamma h_{l}\left(\sqrt{B_{c}}\gamma\right) h_{m}\left(\sqrt{B_{c}}\gamma\right) d\gamma$$

Assumptions:

 $\begin{array}{ll} \text{diophantine} & \text{There is } C > 0, \ 1 > \kappa > 0 \text{ such that} \\ |\{\beta n\}| > C/|n|^{\kappa} \text{ for all } n \in \mathbb{Z} \setminus 0. \\ \text{smooth} & A^0 \text{ and } A^1 \text{ are smooth; all } \frac{\partial^j A^1}{\partial \mathcal{Y}^j} \text{ are analytic in} \\ |\Im x| < \delta \text{ for some } \delta > 0. \\ \text{Morse} & A_{m,m}^0 \text{ is a Morse function on } S^1 \text{ with 2 critical} \\ \text{points.} \end{array}$

Spectrum

Using general results on ergodic families of difference operators (Dinaburg, 1997), the restriction H_m to the lowest m bands can be analysed:

Theorem (G, 2003)

- 1. ... (detailed results about eigenfunctions and -values)
- 2. H_m is uniformly ε_0 -close to band structure. The Lebesgue measure of spec H_m is $\varepsilon_0 |\operatorname{ran} A^0_{m,m}| + O(\varepsilon_0^2)$.
- Dinaburg/Sinai/Soshnikov 1997 treat constant *B* and $V(x, y) = \varepsilon_0 V^0(x) + \varepsilon_1 V^1(x, y)$.
- Applies to simultaneous perturbations in *B* and *V*.

32

Spectrum

Using general results on ergodic families of difference operators (Dinaburg, 1997), the restriction H_m to the lowest m bands can be analysed:

Theorem (G, 2003)

- 1. ... (detailed results about eigenfunctions and -values)
- 2. H_m is uniformly ε_0 -close to band structure. The Lebesgue measure of spec H_m is $\varepsilon_0 |\operatorname{ran} A^0_{m,m}| + O(\varepsilon_0^2)$.
- Dinaburg/Sinai/Soshnikov 1997 treat constant *B* and $V(x, y) = \varepsilon_0 V^0(x) + \varepsilon_1 V^1(x, y)$.
- Applies to simultaneous perturbations in *B* and *V*.

Spectrum

Using general results on ergodic families of difference operators (Dinaburg, 1997), the restriction H_m to the lowest m bands can be analysed:

Theorem (G, 2003)

- 1. ... (detailed results about eigenfunctions and -values)
- 2. H_m is uniformly ε_0 -close to band structure. The Lebesgue measure of spec H_m is $\varepsilon_0 |\operatorname{ran} A^0_{m,m}| + O(\varepsilon_0^2)$.
- Dinaburg/Sinai/Soshnikov 1997 treat constant *B* and $V(x, y) = \varepsilon_0 V^0(x) + \varepsilon_1 V^1(x, y)$.
- Applies to simultaneous perturbations in *B* and *V*.

Spectrum

Using general results on ergodic families of difference operators (Dinaburg, 1997), the restriction H_m to the lowest m bands can be analysed:

Theorem (G, 2003)

- 1. ... (detailed results about eigenfunctions and -values)
- 2. H_m is uniformly ε_0 -close to band structure. The Lebesgue measure of spec H_m is $\varepsilon_0 |\operatorname{ran} A^0_{m,m}| + O(\varepsilon_0^2)$.
- Dinaburg/Sinai/Soshnikov 1997 treat constant *B* and $V(x, y) = \varepsilon_0 V^0(x) + \varepsilon_1 V^1(x, y)$.
- Applies to simultaneous perturbations in *B* and *V*.

Spectrum

Using general results on ergodic families of difference operators (Dinaburg, 1997), the restriction H_m to the lowest m bands can be analysed:

Theorem (G, 2003)

- 1. ... (detailed results about eigenfunctions and -values)
- 2. H_m is uniformly ε_0 -close to band structure. The Lebesgue measure of spec H_m is $\varepsilon_0 |\operatorname{ran} A^0_{m,m}| + O(\varepsilon_0^2)$.
- Dinaburg/Sinai/Soshnikov 1997 treat constant *B* and $V(x, y) = \varepsilon_0 V^0(x) + \varepsilon_1 V^1(x, y)$.
- Applies to simultaneous perturbations in *B* and *V*.

Contents

Introduction

Magnetic Schrödinger operators The geometry of magnetic fields Bloch/Floquet

General results

Continuity and band spectrum Analyticity and singular continuous spectrum

Flux dependent results

Flux zero Irrational flux Rational flux

- Spectral nature for integral (rational) non-zero flux is open
- point spectrum possible (unperturbed Landau operator)
- Expectation: AC spectrum for every non-zero perturbation
- Consider constant magnetic field on R², periodic V(y).
 Fourier transform as before:

$$\hat{H}_{\xi} = -\frac{\mathrm{d}^2}{\mathrm{d}y^2} + (2\pi\xi - By)^2 + V(y)$$

Unitarily equivalent to:

$$\tilde{\hat{H}}_{\xi} = -\frac{\mathrm{d}^2}{\mathrm{d}\tilde{y}^2} + B^2\tilde{y}^2 + V(\tilde{y} + \beta\xi)$$

- Spectral nature for integral (rational) non-zero flux is open
- point spectrum possible (unperturbed Landau operator)
- Expectation: AC spectrum for every non-zero perturbation
- Consider constant magnetic field on R², periodic V(y).
 Fourier transform as before:

$$\hat{H}_{\xi} = -\frac{\mathrm{d}^2}{\mathrm{d}y^2} + \left(2\pi\xi - By\right)^2 + V(y)$$

Unitarily equivalent to:

$$\tilde{\hat{H}}_{\xi} = -\frac{\mathrm{d}^2}{\mathrm{d}\tilde{y}^2} + B^2\tilde{y}^2 + V(\tilde{y} + \beta\xi)$$

- Spectral nature for integral (rational) non-zero flux is open
- point spectrum possible (unperturbed Landau operator)
- Expectation: AC spectrum for every non-zero perturbation
- Consider constant magnetic field on R², periodic V(y).
 Fourier transform as before:

$$\hat{H}_{\xi} = -\frac{\mathrm{d}^2}{\mathrm{d}y^2} + \left(2\pi\xi - By\right)^2 + V(y)$$

Unitarily equivalent to:

$$\tilde{\hat{H}}_{\xi} = -\frac{\mathrm{d}^2}{\mathrm{d}\tilde{y}^2} + B^2\tilde{y}^2 + V(\tilde{y} + \beta\xi)$$

- Spectral nature for integral (rational) non-zero flux is open
- point spectrum possible (unperturbed Landau operator)
- Expectation: AC spectrum for every non-zero perturbation
- Consider constant magnetic field on R², periodic V(y).
 Fourier transform as before:

$$\hat{H}_{\xi} = -\frac{\mathrm{d}^2}{\mathrm{d}y^2} + \left(2\pi\xi - By\right)^2 + V(y)$$

Unitarily equivalent to:

$$\tilde{\hat{H}}_{\xi} = -\frac{\mathrm{d}^2}{\mathrm{d}\tilde{y}^2} + B^2\tilde{y}^2 + V(\tilde{y} + \beta\xi)$$

- Spectral nature for integral (rational) non-zero flux is open
- point spectrum possible (unperturbed Landau operator)
- Expectation: AC spectrum for every non-zero perturbation
- Consider constant magnetic field on \mathbb{R}^2 , periodic V(y). Fourier transform as before:

$$\hat{H}_{\xi} = -\frac{\mathrm{d}^2}{\mathrm{d}y^2} + (2\pi\xi - By)^2 + V(y)$$

Unitarily equivalent to:

$$\tilde{\hat{H}}_{\xi} = -\frac{\mathrm{d}^2}{\mathrm{d}\tilde{y}^2} + B^2 \tilde{y}^2 + V(\tilde{y} + \beta\xi)$$

Flux dependent results Rational flux

Flux dependent results Rational flux

Flux dependent results Rational flux

Flux dependent results Rational flux

Flux dependent results Rational flux

Flux dependent results Rational flux

Looks and karma

Bad bad bad! (looks good but means bad karma)

- Crossing are in fact avoided
- Perturbation analysis still hopeless

Looks and karma

- Bad bad bad! (looks good but means bad karma)
- Crossing are in fact avoided
- Perturbation analysis still hopeless

Looks and karma

- Bad bad bad! (looks good but means bad karma)
- Crossing are in fact avoided
- Perturbation analysis still hopeless

- Want to show genericity of AC spectrum for continuous periodic perturbations V of the Landau operator
- Have to show that λ_n(ξ) (1-dim. perturbation) resp. λ_n(k)
 (2-dim. perturbation) is not constant

Lemma (Klopp 2009)

For all k_0, V_0, n and all $\varepsilon > 0$ there is a pair $(k_{\varepsilon}, V_{\varepsilon})$ and $\delta > 0$ such that $\forall (k, V) \in U_{\delta}(k_{\varepsilon}, V_{\varepsilon}) : \lambda_n(k, V)$ is analytically degenerate.

Lemma (G 2010) $\lambda_n(\xi, V)$ is non-degenerate.

- Want to show genericity of AC spectrum for continuous periodic perturbations V of the Landau operator
- Have to show that λ_n(ξ) (1-dim. perturbation) resp. λ_n(k)
 (2-dim. perturbation) is not constant

Lemma (Klopp 2009)

For all k_0, V_0, n and all $\varepsilon > 0$ there is a pair $(k_{\varepsilon}, V_{\varepsilon})$ and $\delta > 0$ such that $\forall (k, V) \in U_{\delta}(k_{\varepsilon}, V_{\varepsilon}) : \lambda_n(k, V)$ is analytically degenerate.

Lemma (G 2010) $\lambda_n(\xi, V)$ is non-degenerate.

- Want to show genericity of AC spectrum for continuous periodic perturbations V of the Landau operator
- Have to show that $\lambda_n(\xi)$ (1-dim. perturbation) resp. $\lambda_n(k)$ (2-dim. perturbation) is not constant

Lemma (Klopp 2009)

For all k_0, V_0, n and all $\varepsilon > 0$ there is a pair $(k_{\varepsilon}, V_{\varepsilon})$ and $\delta > 0$ such that $\forall (k, V) \in U_{\delta}(k_{\varepsilon}, V_{\varepsilon}) : \lambda_n(k, V)$ is analytically degenerate.

Lemma (G 2010) $\lambda_n(\xi, V)$ is non-degenerate.

- Want to show genericity of AC spectrum for continuous periodic perturbations V of the Landau operator
- Have to show that $\lambda_n(\xi)$ (1-dim. perturbation) resp. $\lambda_n(k)$ (2-dim. perturbation) is not constant

Lemma (Klopp 2009)

For all k_0, V_0, n and all $\varepsilon > 0$ there is a pair $(k_{\varepsilon}, V_{\varepsilon})$ and $\delta > 0$ such that $\forall (k, V) \in U_{\delta}(k_{\varepsilon}, V_{\varepsilon}) : \lambda_n(k, V)$ is analytically degenerate.

Lemma (G 2010) $\lambda_n(\xi, V)$ is non-degenerate.

Lemma (Klopp 2009)

Let $\lambda_n(k_0, V_0)$ be analytically non-degenerate. Then for all $\varepsilon > 0$ there is a $V \in U_{\varepsilon}(V_0)$ such that $k \mapsto \lambda_n(k, V)$ is not constant.

Lemma (G 2010) For all $\varepsilon > 0$ there is $V \in U_{\varepsilon}(V_0)$ such that $\xi \mapsto \lambda_n(\xi, V)$ is not constant.

Lemma (Klopp 2009)

Let $\lambda_n(k_0, V_0)$ be analytically non-degenerate. Then for all $\varepsilon > 0$ there is a $V \in U_{\varepsilon}(V_0)$ such that $k \mapsto \lambda_n(k, V)$ is not constant.

Theorem (Klopp 2009)

For a generic periodic potential V, the spectrum of the Landau operator perturbed by V (with rational flux) is absolutely continuous.

Lemma (G 2010)

For all $\varepsilon > 0$ there is $V \in U_{\varepsilon}(V_0)$ such that $\xi \mapsto \lambda_n(\xi, V)$ is not constant.

Theorem (G 2010)

For a generic 1-dimensional periodic potential V, the spectrum of the Landau operator perturbed by V is absolutely continuous.

Lemma (G 2010)

For all $\varepsilon > 0$ there is $V \in U_{\varepsilon}(V_0)$ such that $\xi \mapsto \lambda_n(\xi, V)$ is not constant.

Theorem (G 2010)

For a generic 1-dimensional almost-periodic potential V, the spectrum of the Landau operator perturbed by V is absolutely continuous.

Lemma (G 2010)

For all $\varepsilon > 0$ there is $V \in U_{\varepsilon}(V_0)$ such that $\xi \mapsto \lambda_n(\xi, V)$ is not constant.

Theorem (G 2010)

For a generic 1-dimensional almost-periodic potential V, the spectrum of the Schrödinger operator with 1-dimensional periodic field perturbed by V is absolutely continuous.

Proof.

- $NC_n \coloneqq \{V : \lambda_n(\cdot, V) \text{ is not constant}\}$
- By Lipshitz continuity in $V: NC_n$ is open
- Given V_0 , n, ε , apply Lemma 1 and find (k, V_1) nearby (resp. take $(\xi, V_1 = V_0)$ such that λ_n is analytically degenerate
- Apply Lemma 2 to find V_2 nearby such that $\lambda_n(\cdot, V_2)$ is not constant

$$\Rightarrow NC = \bigcap_{n \in \mathbb{N}_0} NC_n \text{ is } G_\delta$$

39

Proof.

- $NC_n \coloneqq \{V : \lambda_n(\cdot, V) \text{ is not constant}\}$
- By Lipshitz continuity in $V: NC_n$ is open
- Given V_0 , n, ε , apply Lemma 1 and find (k, V_1) nearby (resp. take $(\xi, V_1 = V_0)$ such that λ_n is analytically degenerate
- Apply Lemma 2 to find V_2 nearby such that $\lambda_n(\cdot, V_2)$ is not constant

$$\Rightarrow NC = \bigcap_{n \in \mathbb{N}_0} NC_n \text{ is } G_\delta$$

Michael J. Gruber AC spectrum for periodic magnetic fields

39

Proof.

- $NC_n \coloneqq \{V : \lambda_n(\cdot, V) \text{ is not constant}\}$
- By Lipshitz continuity in $V: NC_n$ is open
- Given V_0 , n, ε , apply Lemma 1 and find (k, V_1) nearby (resp. take $(\xi, V_1 = V_0)$ such that λ_n is analytically degenerate
- Apply Lemma 2 to find V_2 nearby such that $\lambda_n(\cdot, V_2)$ is not constant

$$\Rightarrow \qquad NC = \bigcap_{n \in \mathbb{N}_0} NC_n \text{ is } G_\delta$$

Proof.

- $NC_n \coloneqq \{V : \lambda_n(\cdot, V) \text{ is not constant}\}$
- By Lipshitz continuity in $V: NC_n$ is open
- Given V_0 , n, ε , apply Lemma 1 and find (k, V_1) nearby (resp. take $(\xi, V_1 = V_0)$ such that λ_n is analytically degenerate
- Apply Lemma 2 to find V_2 nearby such that $\lambda_n(\cdot, V_2)$ is not constant

$$\Rightarrow \qquad NC = \bigcap_{n \in \mathbb{N}_0} NC_n \text{ is } G_\delta$$

39

Proof.

- $NC_n \coloneqq \{V : \lambda_n(\cdot, V) \text{ is not constant}\}$
- By Lipshitz continuity in $V: NC_n$ is open
- Given V_0 , n, ε , apply Lemma 1 and find (k, V_1) nearby (resp. take $(\xi, V_1 = V_0)$ such that λ_n is analytically degenerate
- Apply Lemma 2 to find V_2 nearby such that $\lambda_n(\cdot, V_2)$ is not constant

$$\Rightarrow \qquad NC = \bigcap_{n \in \mathbb{N}_0} NC_n \text{ is } G_\delta$$

39

- $NC_n \coloneqq \{V : \lambda_n(\cdot, V) \text{ is not constant}\}$
- By Lipshitz continuity in $V: NC_n$ is open
- Given V_0 , n, ε , apply Lemma 1 and find (k, V_1) nearby (resp. take $(\xi, V_1 = V_0)$ such that λ_n is analytically degenerate
- Apply Lemma 2 to find V_2 nearby such that $\lambda_n(\cdot, V_2)$ is not constant

$$\Rightarrow \qquad NC = \bigcap_{n \in \mathbb{N}_0} NC_n \text{ is } G_\delta$$

- Assume $\exists \varepsilon > 0 : \forall V \in U_{\varepsilon}(V_0) : \lambda_n(\cdot, V)$ is constant
- Take arbitrary U of norm 1, $V \coloneqq V_0 + tU$, φ eigenfunction
- $\partial_t \lambda = \langle U \varphi, \varphi \rangle$ by Feynman-Hellmann
- \Rightarrow By constancy of λ_n in k, $\nabla_k (|\varphi|)^2 = 0$
- Analysing nodal sets, this gives a contradiction
- $\Rightarrow \qquad \text{By constancy of } \lambda_n \text{ in } \xi, \ \partial_{\xi}(|\varphi|^2) = \beta \partial_{\mathcal{Y}}(|\varphi|)^2$
- As a function of ξ , φ solves (for each γ) a periodic Sturm-Liouville problem with eigenvalue $\beta^2 \lambda_n - (2\pi)^2 \gamma^2$

- Assume $\exists \varepsilon > 0 : \forall V \in U_{\varepsilon}(V_0) : \lambda_n(\cdot, V)$ is constant
- Take arbitrary U of norm 1, $V = V_0 + tU$, φ eigenfunction
- $\partial_t \lambda = \langle U \varphi, \varphi \rangle$ by Feynman-Hellmann
- \Rightarrow By constancy of λ_n in k, $\nabla_k (|\varphi|)^2 = 0$
- Analysing nodal sets, this gives a contradiction
- \Rightarrow By constancy of λ_n in ξ , $\partial_{\xi}(|arphi|^2)=eta\partial_{\mathcal{Y}}(|arphi|)^2$
- As a function of ξ , φ solves (for each γ) a periodic Sturm-Liouville problem with eigenvalue $\beta^2 \lambda_n - (2\pi)^2 \gamma^2$

- Assume $\exists \varepsilon > 0 : \forall V \in U_{\varepsilon}(V_0) : \lambda_n(\cdot, V)$ is constant
- Take arbitrary U of norm 1, $V = V_0 + tU$, φ eigenfunction
- $\partial_t \lambda = \langle U \varphi, \varphi \rangle$ by Feynman-Hellmann
- \Rightarrow By constancy of λ_n in k, $\nabla_k (|\varphi|)^2 = 0$
- Analysing nodal sets, this gives a contradiction
- \Rightarrow By constancy of λ_n in ξ , $\partial_{\xi}(|arphi|^2)=eta\partial_{\mathcal{Y}}(|arphi|)^2$
- As a function of ξ , φ solves (for each γ) a periodic Sturm-Liouville problem with eigenvalue $\beta^2 \lambda_n - (2\pi)^2 \gamma^2$

- Assume $\exists \varepsilon > 0 : \forall V \in U_{\varepsilon}(V_0) : \lambda_n(\cdot, V)$ is constant
- Take arbitrary U of norm 1, $V \coloneqq V_0 + tU$, φ eigenfunction
- $\partial_t \lambda = \langle U \varphi, \varphi \rangle$ by Feynman-Hellmann
- \Rightarrow By constancy of λ_n in k, $\nabla_k (|\varphi|)^2 = 0$
- Analysing nodal sets, this gives a contradiction
- \Rightarrow By constancy of λ_n in ξ , $\partial_{\xi}(|\varphi|^2) = \beta \partial_{\mathcal{Y}}(|\varphi|)^2$
- As a function of ξ , φ solves (for each γ) a periodic Sturm-Liouville problem with eigenvalue $\beta^2 \lambda_n - (2\pi)^2 \gamma^2$

- Assume $\exists \varepsilon > 0 : \forall V \in U_{\varepsilon}(V_0) : \lambda_n(\cdot, V)$ is constant
- Take arbitrary U of norm 1, $V \coloneqq V_0 + tU$, φ eigenfunction
- $\partial_t \lambda = \langle U \varphi, \varphi \rangle$ by Feynman-Hellmann
- \Rightarrow By constancy of λ_n in k, $\nabla_k (|\varphi|)^2 = 0$
- Analysing nodal sets, this gives a contradiction
- \Rightarrow By constancy of λ_n in ξ , $\partial_{\xi}(|\varphi|^2) = \beta \partial_{\mathcal{Y}}(|\varphi|)^2$
- As a function of ξ , φ solves (for each γ) a periodic Sturm-Liouville problem with eigenvalue $\beta^2 \lambda_n - (2\pi)^2 \gamma^2$

- Assume $\exists \varepsilon > 0 : \forall V \in U_{\varepsilon}(V_0) : \lambda_n(\cdot, V)$ is constant
- Take arbitrary U of norm 1, $V \coloneqq V_0 + tU$, φ eigenfunction
- $\partial_t \lambda = \langle U \varphi, \varphi \rangle$ by Feynman-Hellmann
- \Rightarrow By constancy of λ_n in k, $\nabla_k (|\varphi|)^2 = 0$
- Analysing nodal sets, this gives a contradiction
- \Rightarrow By constancy of λ_n in ξ , $\partial_{\xi}(|arphi|^2) = eta \partial_{\mathcal{Y}}(|arphi|)^2$
- As a function of ξ , φ solves (for each γ) a periodic Sturm-Liouville problem with eigenvalue $\beta^2 \lambda_n - (2\pi)^2 \gamma^2$

- Assume $\exists \varepsilon > 0 : \forall V \in U_{\varepsilon}(V_0) : \lambda_n(\cdot, V)$ is constant
- Take arbitrary U of norm 1, $V \coloneqq V_0 + tU$, φ eigenfunction
- $\partial_t \lambda = \langle U \varphi, \varphi \rangle$ by Feynman-Hellmann
- \Rightarrow By constancy of λ_n in k, $\nabla_k (|\varphi|)^2 = 0$
- Analysing nodal sets, this gives a contradiction
- $\Rightarrow \quad \text{By constancy of } \lambda_n \text{ in } \xi, \ \partial_{\xi}(|\varphi|^2) = \beta \partial_{\mathcal{Y}}(|\varphi|)^2$
- As a function of ξ , φ solves (for each γ) a periodic Sturm-Liouville problem with eigenvalue $\beta^2 \lambda_n - (2\pi)^2 \gamma^2$

- Assume $\exists \varepsilon > 0 : \forall V \in U_{\varepsilon}(V_0) : \lambda_n(\cdot, V)$ is constant
- Take arbitrary U of norm 1, $V \coloneqq V_0 + tU$, φ eigenfunction
- $\partial_t \lambda = \langle U \varphi, \varphi \rangle$ by Feynman-Hellmann
- \Rightarrow By constancy of λ_n in k, $\nabla_k (|\varphi|)^2 = 0$
- Analysing nodal sets, this gives a contradiction
- $\Rightarrow \qquad \text{By constancy of } \lambda_n \text{ in } \xi, \, \partial_{\xi}(|\varphi|^2) = \beta \partial_{\mathcal{Y}}(|\varphi|)^2$
- As a function of ξ , φ solves (for each γ) a periodic Sturm-Liouville problem with eigenvalue $\beta^2 \lambda_n - (2\pi)^2 \gamma^2$

Further research line

Analyze matrix elements of periodic V with respect to h_n

- Control special Hermite functions
- For large *B*, replace $V(\gamma + \beta \xi)$ by $V(\beta \xi)$

Theorem (G 2010)

Let $V \in \mathbb{C}^{\infty}(\mathbb{R})$ be non-constant and smooth enough, $M \in \mathbb{N}$. Then, for *B* (constant) large enough, the first *M* bands are non-degenerate; in particular, they consist of AC spectrum only. Similar for non-zero (flux zero) 1-dimensional periodic perturbations of *B*.

- Analyze matrix elements of periodic V with respect to h_n
- Control special Hermite functions
- For large *B*, replace $V(\gamma + \beta \xi)$ by $V(\beta \xi)$

Theorem (G 2010)

Let $V \in \mathbb{C}^{\infty}(\mathbb{R})$ be non-constant and smooth enough, $M \in \mathbb{N}$. Then, for *B* (constant) large enough, the first *M* bands are non-degenerate; in particular, they consist of AC spectrum only. Similar for non-zero (flux zero) 1-dimensional periodic perturbations of *B*.

4

- Analyze matrix elements of periodic V with respect to h_n
- Control special Hermite functions
- For large *B*, replace $V(y + \beta \xi)$ by $V(\beta \xi)$

Theorem (G 2010)

Let $V \in \mathbb{C}^{\infty}(\mathbb{R})$ be non-constant and smooth enough, $M \in \mathbb{N}$. Then, for *B* (constant) large enough, the first *M* bands are non-degenerate; in particular, they consist of AC spectrum only. Similar for non-zero (flux zero) 1-dimensional periodic perturbations of *B*

- Analyze matrix elements of periodic V with respect to h_n
- Control special Hermite functions
- For large *B*, replace $V(y + \beta \xi)$ by $V(\beta \xi)$

Theorem (G 2010)

Let $V \in \mathbb{C}^{\infty}(\mathbb{R})$ be non-constant and smooth enough, $M \in \mathbb{N}$. Then, for *B* (constant) large enough, the first *M* bands are non-degenerate; in particular, they consist of AC spectrum only.

Similar for non-zero (flux zero) 1-dimensional periodic perturbations of *B*.

Michael J. Gruber AC spectrum for periodic magnetic fields

- Analyze matrix elements of periodic V with respect to h_n
- Control special Hermite functions
- For large *B*, replace $V(y + \beta \xi)$ by $V(\beta \xi)$

Theorem (G 2010)

Let $V \in \mathbb{C}^{\infty}(\mathbb{R})$ be non-constant and smooth enough, $M \in \mathbb{N}$. Then, for *B* (constant) large enough, the first *M* bands are non-degenerate; in particular, they consist of AC spectrum only. Similar for non-zero (flux zero) 1-dimensional periodic

perturbations of B.

Magnetic fields can change the spectrum drastically

- Non-vanishing and rationality of flux are key
- Methods differ case by case

- Non-abelian groups, irrational flux: non-commutative geometry
- Open questions even for integral/rational flux

- Magnetic fields can change the spectrum drastically
- Non-vanishing and rationality of flux are key
- Methods differ case by case

- Non-abelian groups, irrational flux: non-commutative geometry
- Open questions even for integral/rational flux

- Magnetic fields can change the spectrum drastically
- Non-vanishing and rationality of flux are key
- Methods differ case by case

- Non-abelian groups, irrational flux: non-commutative geometry
- Open questions even for integral/rational flux

- Magnetic fields can change the spectrum drastically
- Non-vanishing and rationality of flux are key
- Methods differ case by case

- Non-abelian groups, irrational flux: non-commutative geometry
- Open questions even for integral/rational flux

- Magnetic fields can change the spectrum drastically
- Non-vanishing and rationality of flux are key
- Methods differ case by case

- Non-abelian groups, irrational flux: non-commutative geometry
- Open questions even for integral/rational flux

Thank you

धन्यवाद

References I

Dinaburg, E. I., Sinai, Y. G. & Soshnikov, A. B. (1997). Splitting of the low Landau levels into a set of positive measure under small periodic perturbation. *Comm. Math. Phys.* **189**, Nr. 2, 559–575

Gruber, M. J. (2002).

Measures of Fermi surfaces and absence of singular continuous spectrum for magnetic Schrödinger operators. *Math. Nachr.* **233-234**, Nr. 1, 111-127

Gruber, M. J. (2003).

Positive measure spectrum for Schrödinger operators with periodic magnetic fields.

J. Math. Phys. 44, Nr. 4, 1584-1599

References II

Gruber, M. J. (2010*a*).
Absolutely continuous spectrum for periodic magnetic fields.
In preparation

Gruber, M. J. (2010*b*). On genericity of absolutely continuous spectrum. In preparation

Klopp, F. (2010).

Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential. Preprint