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The main player

H = (ı∇+A)2 + V on L2(Rd) (usually d = 2)

V smooth function, A smooth vector field

B = curlA magnetic field

B,V are assumed Γ -periodic (usually Γ = Zd)

M Í Rd/Γ
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The main dichotomy

V ≡ 0, A ≡ 0:
spec∆ = [0,∞)

continuous spectrum

d = 2, B � 0 constant:

specH = {B(1+ 2n) | n ∈ N0}

infinitely degenerate eigenvalues
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What is in between?
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Magnetic curvature

Riemannian manifold (X,g), Hilbert space L2(X)

magnetic field is exact 2-form b = da ∈ Ω2(X)

a defines connection da Í d− ıea� on the trivial complex

line bundle L Í X × C
curvature = magnetic field:

curv(da) = 1
2π dea

�
= ehb =

1
Φ0
b

Magnetic Laplacian is Bochner-Laplacian ∆a = d∗ada
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Flux and Chern number

b periodic a b ∈ Ω2(X) induced by bM ∈ Ω2(M)

b exact a b = da, but a need not be periodic

a periodic a bM exact a [bM] = 0 in H2(M,R)

“flux zero”

L is induced by line bundle LM over M a
[bM/Φ0] ∈ H2(M,Z)

“integral flux”

d = 2, Euclidean: Φ =
∫
[0,1]2 B(x,y)dx dy =

∫
M bM

Flux = Chern number ·Φ0

rational ≡ integral
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In short

Zero flux ⇐⇒ periodic coefficients

Integral flux ⇐⇒ reduction to (bundle over) smooth
compact quotient
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Bloch/Floquet decomposition

Only for abelian Γ , rational flux:

L2(X) '
∫ ⊕
Γ̂
L2(M)dχ,

H '
∫ ⊕
Γ̂
Hχ dχ, with

Γ̂ = character space

Write χ(γ) = eı(k,γ) for some k ∈ Rd. Then

Hχ = H(k) = (ı∇− k+A)2 + V = (da + ık)∗(da + ık)+ V.
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Band structure

(
Hχ
)
χ∈Γ̂ is a continuous family of elliptic operators on

L2(M), M compact

specHχ consists of discrete eigenvalues λn(χ), n ∈ N0

specH =
⋃
χ∈Γ̂

specHχ =
⋃
n∈N0

λn(Γ̂ ) is a union of countably

many “bands” λn(Γ̂ )

specH is a locally finite union of closed intervals (“band
structure”)
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Fermi surfaces

Definition
The Fermi surface of the n-th band at energy λ is

Fn(λ) Í {χ ∈ Γ̂ | λn(χ) = λ}.

The Fermi surface at energy λ is

F(λ) Í
⋃
n∈N0

Fn(λ) = {χ ∈ Γ̂ | λ ∈ specHχ}

“Generically”: codimF(λ) = 1⇒measF(λ) = 0

But: λ ∈ specpHa measF(λ) > 0
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Fermi measure

Definition
For each Borel set B ⊂ R define the quasi-measure of the Fermi
shell by

µF(B) Ímeas
⋃
λ∈B
F(λ) =meas{χ ∈ Γ̂ | specHχ ∩ B 6= �}

λ is an atom of µF a µF({λ}) > 0 a λ ∈ specpH
Recall: The spectral measure of H at f ∈ L2(X) is

µHf (B) =
〈
f
∣∣∣PHB f〉 = ∫

Γ̂
µHχfχ dχ.
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Determinants

(Hχ)χ∈Γ̂ is a real-analytic operator family

The family dH(λ, χ) Í detζ(Hχ − λ) of ζ-regularized
determinants is real-analytic in χ, analytic in λ.

dH(λ, χ) = 0 a λ ∈ specHχ

Definition
The associated quasi-measure to dH for a Borel set B ⊂ R is

µdH (B) Ímeas{χ ∈ Γ̂ | ∃λ ∈ B : dH(λ, χ) = 0}.

Michael J. Gruber General results
AC spectrum for periodic magnetic fields Analyticity and SC spectrum 18



Determinants

(Hχ)χ∈Γ̂ is a real-analytic operator family

The family dH(λ, χ) Í detζ(Hχ − λ) of ζ-regularized
determinants is real-analytic in χ, analytic in λ.

dH(λ, χ) = 0 a λ ∈ specHχ

Definition
The associated quasi-measure to dH for a Borel set B ⊂ R is

µdH (B) Ímeas{χ ∈ Γ̂ | ∃λ ∈ B : dH(λ, χ) = 0}.

Michael J. Gruber General results
AC spectrum for periodic magnetic fields Analyticity and SC spectrum 18



Determinants

(Hχ)χ∈Γ̂ is a real-analytic operator family

The family dH(λ, χ) Í detζ(Hχ − λ) of ζ-regularized
determinants is real-analytic in χ, analytic in λ.

dH(λ, χ) = 0 a λ ∈ specHχ

Definition
The associated quasi-measure to dH for a Borel set B ⊂ R is

µdH (B) Ímeas{χ ∈ Γ̂ | ∃λ ∈ B : dH(λ, χ) = 0}.

Michael J. Gruber General results
AC spectrum for periodic magnetic fields Analyticity and SC spectrum 18



Determinants

(Hχ)χ∈Γ̂ is a real-analytic operator family

The family dH(λ, χ) Í detζ(Hχ − λ) of ζ-regularized
determinants is real-analytic in χ, analytic in λ.

dH(λ, χ) = 0 a λ ∈ specHχ

Definition
The associated quasi-measure to dH for a Borel set B ⊂ R is

µdH (B) Ímeas{χ ∈ Γ̂ | ∃λ ∈ B : dH(λ, χ) = 0}.

Michael J. Gruber General results
AC spectrum for periodic magnetic fields Analyticity and SC spectrum 18



Connections

Theorem (G, 2002)

1. µdH = µF

2. µN and µF have the same null-sets (and atoms).

3. µHf (B) ≤
∫
Γ̂ ‖fχ‖2 trPHχB dχ

Proof.
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Spectral consequences

Corollary (G, 2002)

1. specs.c.H = �
2. specp.p.H discrete in R

3. λ ∈ specp.p.H ⇒ There is a component Λ ⊂ Γ̂ such that
∀χ ∈ Λ : λ ∈ specHχ.

4. µN has no singular-continuous component.

Applicable to abelian-periodic elliptic operators: magnetic
Schrödinger, magnetic Dirac, Pauli

Optimal under the given assumptions: cf. Schrödinger,
Landau
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Schrödinger, magnetic Dirac, Pauli

Optimal under the given assumptions: cf. Schrödinger,
Landau
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B ≡ 0

Bloch decomposition gives operator family
H(k) = (ı∇− k)2 + V on L2(M), k ∈ Rd

n-th band is non-degenerate iff λn(k) is not constant

extend the family to k ∈ Cd, find direction along which
H0(k) has a lower bound C(k)→∞ for k→∞, i.e.
‖H0(k)f‖ ≥ C(k)‖f‖ for all f .

⇒ ‖(H(k)− λ)f‖ ≥ (C(k)− ‖V − λ‖)‖f‖ > 0 for k→∞

Theorem (Thomas 1978)
The Schrödinger operator on Rd with periodic electric field has
purely absolutely continuous spectrum.
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B � 0

Thomas method can be extended to small periodic a
(Hempel/Herbst 1995) and d = 2 (Birman/Suslina 1998/’99)

Arbitrary periodic a requires construction of a
pseudo-differential parametrix (Sobolev 1999,
Kuchment/Levendorski 1999/2002)

Common to all these: H0 has purely AC spectrum, H is a
perturbation (with H −H0 not trace-class, of course)
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Motivation

B constant, V ≡ 0: what defines the lattice, hence the flux
per cell?

Influence of the potential: Dinaburg/Sinai/Soshnikov 1997

Do perturbations of B suffice to spread out the Landau
levels?
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Setup

X = R2, Γ = Z2.

B arbitrary smooth periodic, Φ = 1
2π
∫
[0,1]2 B(x,y)dx dy

Write B as

B = Bc + Bz with

Bc = 2πΦ and Bz = B − Bc .

Bz has flux 0, choose vector potential Az as

Az(x,y) =
(
ε0A0(y)
ε1A1(x,y)

)
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Magnetic Laplacian

Bc constant, choose

Ac(y) = Bc
(
y
0

)

to get the magnetic Laplacian

H =
(1
ı
∂
∂x − Bcy − ε0A0(y)

)2

+
(

1
ı
∂
∂y − ε1A1(x,y)

)2
 .
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ε1 = 0

Fourier transform on L2(Rx), L2(R2) =
∫⊕
R L2(Ry)dξ with

L2(R2) 3 f , f̂ , f̂ξ(y) =
∫
R
f(x,y)e−2πıξx dx,

f(x,y) =
∫
R
fξ(y)e2πıξx dξ;

H =
∫ ⊕
R
Ĥξ dξ, Ĥξ = − d2

dy2 + Vξ(y) with

Vξ(y) =
(
2πξ − Bcy − ε0A0(y)

)2
.
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ε0 = 0 = ε1

Vξ(y) =
(
2πξ − Bcy

)2 = B2
c
(
y − βξ

)2

is a harmonic oscillator potential shifted by βξ, β = 2π
Bc =

1
Φ .

specHξ is discrete pure point, independent of ξ (Landau levels),
eigenfunctions Ψξ,m(y) = 4

√
Bc hm

(√
Bc
(
y − βξ

))
, hm is

Weber-Hermite function

hm(y) =
(−1)m√√
π2mm!

exp
(
y2

2

)
dm

dym exp
(
−y2

)
, m ∈ Z+.
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ε0 6= 0 = ε1

With a unitary transformation (shift ỹ = y − βξ) we get:

Vξ(ỹ) = B2
c

(
ỹ + ε0A0 (ỹ + βξ))2

.

“periodic” perturbation of a harmonic oscillator
Spectrum of Hξ is discrete pure point, possibly depending on ξ.
Eigenvalues differ by at most Cmε0 max |A0| from Landau levels.
Vξ is periodic in ξ with period Bc

2π = Φ.
H =

∫⊕
R Ĥξ dξ has band spectrum, band width at most

2Cmε0 max |A0|, possibly 0!
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Vξ(ỹ) = B2
c

(
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ỹ + ε0A0 (ỹ + βξ))2

.

“periodic” perturbation of a harmonic oscillator
Spectrum of Hξ is discrete pure point, possibly depending on ξ.
Eigenvalues differ by at most Cmε0 max |A0| from Landau levels.
Vξ is periodic in ξ with period Bc

2π = Φ.
H =

∫⊕
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ε0 6= 0 6= ε1

H is x-dependent, periodic in x.
Bloch theory in x and Weber-Hermite decomposition in y leads to
L2(R2) =

∫⊕
[0,1] L2([0,1]x)⊗ `2(N0)dξ and H =

∫⊕
[0,1] Ĥξ dξ, Ĥξ is

sum of difference operators, typical coefficient:

A0
l,m(p) = Bc

3
2

∫
R
A0(y + p)yhl

(√
Bcy

)
hm

(√
Bcy

)
dy

Assumptions:

diophantine There is C > 0, 1 > κ > 0 such that
|{βn}| > C/|n|κ for all n ∈ Z \ 0.

smooth A0 and A1 are smooth; all ∂
jA1

∂yj
are analytic in

|=x| < δ for some δ > 0.

Morse A0
m,m is a Morse function on S1 with 2 critical

points.
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Spectrum

Using general results on ergodic families of difference operators
(Dinaburg, 1997), the restriction Hm to the lowest m bands can
be analysed:

Theorem (G, 2003)

1. . . . (detailed results about eigenfunctions and -values)

2. Hm is uniformly ε0-close to band structure. The Lebesgue
measure of specHm is ε0| ranA0

m,m| +O(ε2
0).

Dinaburg/Sinai/Soshnikov 1997 treat constant B and
V(x,y) = ε0V0(x)+ ε1V1(x,y).

Applies to simultaneous perturbations in B and V .
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Motivation

Spectral nature for integral (rational) non-zero flux is open

point spectrum possible (unperturbed Landau operator)

Expectation: AC spectrum for every non-zero perturbation

Consider constant magnetic field on R2, periodic V(y).
Fourier transform as before:

Ĥξ = − d2

dy2 +
(
2πξ − By

)2 + V(y)

Unitarily equivalent to:

˜̂Hξ = − d2

dỹ2 + B
2ỹ2 + V(ỹ + βξ)
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Looks and karma

Bad bad bad! (looks good but means bad karma)

Crossing are in fact avoided

Perturbation analysis still hopeless

Michael J. Gruber Flux dependent results
AC spectrum for periodic magnetic fields Rational flux 36



Looks and karma

Bad bad bad! (looks good but means bad karma)

Crossing are in fact avoided

Perturbation analysis still hopeless

Michael J. Gruber Flux dependent results
AC spectrum for periodic magnetic fields Rational flux 36



Looks and karma

Bad bad bad! (looks good but means bad karma)

Crossing are in fact avoided

Perturbation analysis still hopeless

Michael J. Gruber Flux dependent results
AC spectrum for periodic magnetic fields Rational flux 36



Strategy for genericity

Want to show genericity of AC spectrum for continuous
periodic perturbations V of the Landau operator

Have to show that λn(ξ) (1-dim. perturbation) resp. λn(k)
(2-dim. perturbation) is not constant

Lemma (Klopp 2009)
For all k0, V0, n and all ε > 0 there is a pair (kε, Vε) and δ > 0
such that ∀(k, V) ∈ Uδ(kε, Vε) : λn(k, V) is analytically
degenerate.

Lemma (G 2010)
λn(ξ, V) is non-degenerate.
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Lemma (Klopp 2009)
Let λn(k0, V0) be analytically non-degenerate. Then for all ε > 0
there is a V ∈ Uε(V0) such that k, λn(k, V) is not constant.
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Lemma (G 2010)
For all ε > 0 there is V ∈ Uε(V0) such that ξ , λn(ξ, V) is not
constant.
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Lemma (Klopp 2009)
Let λn(k0, V0) be analytically non-degenerate. Then for all ε > 0
there is a V ∈ Uε(V0) such that k, λn(k, V) is not constant.

Theorem (Klopp 2009)
For a generic periodic potential V , the spectrum of the Landau
operator perturbed by V (with rational flux) is absolutely
continuous.
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Lemma (G 2010)
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Lemma (G 2010)
For all ε > 0 there is V ∈ Uε(V0) such that ξ , λn(ξ, V) is not
constant.

Theorem (G 2010)
For a generic 1-dimensional almost-periodic potential V , the
spectrum of the Landau operator perturbed by V is absolutely
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Lemma (G 2010)
For all ε > 0 there is V ∈ Uε(V0) such that ξ , λn(ξ, V) is not
constant.

Theorem (G 2010)
For a generic 1-dimensional almost-periodic potential V , the
spectrum of the Schrödinger operator with 1-dimensional periodic
field perturbed by V is absolutely continuous.
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Lemmata ⇒ Theorem

Proof.

NCn Í {V : λn(·, V) is not constant}
By Lipshitz continuity in V : NCn is open

Given V0, n, ε, apply Lemma 1 and find (k, V1) nearby (resp.
take (ξ, V1 = V0) such that λn is analytically degenerate

Apply Lemma 2 to find V2 nearby such that λn(·, V2) is not
constant

⇒ NC =
⋂
n∈N0

NCn is Gδ
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Feynman-Hellmann ⇒ Lemma 2

Proof.

Assume ∃ε > 0 : ∀V ∈ Uε(V0) : λn(·, V) is constant

Take arbitrary U of norm 1, V Í V0 + tU , ϕ eigenfunction

∂tλ = 〈Uϕ,ϕ〉 by Feynman-Hellmann

⇒ By constancy of λn in k, ∇k
(
|ϕ|

)2 = 0

Analysing nodal sets, this gives a contradiction

⇒ By constancy of λn in ξ, ∂ξ
(
|ϕ|2

)
= β∂y

(
|ϕ|

)2

As a function of ξ, ϕ solves (for each y) a periodic
Sturm-Liouville problem with eigenvalue
β2λn − (2π)2y2
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Further research line

Analyze matrix elements of periodic V with respect to hn
Control special Hermite functions

For large B, replace V(y + βξ) by V(βξ)

Theorem (G 2010)
Let V ∈ C∞(R) be non-constant and smooth enough, M ∈ N.
Then, for B (constant) large enough, the first M bands are
non-degenerate; in particular, they consist of AC spectrum only.

Similar for non-zero (flux zero) 1-dimensional periodic
perturbations of B.
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Conclusion

Magnetic fields can change the spectrum drastically

Non-vanishing and rationality of flux are key

Methods differ case by case

Outlook

Non-abelian groups, irrational flux: non-commutative
geometry

Open questions even for integral/rational flux
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Thank you

धनयवाद
 நனற
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