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Vorticices in Fluid Dynamics

Consider a fluid with velocity field v(r). The circulation around
a closed loop C enclosing a domain D is, by Stokes,

∮
C

v · d` =
∫
D

(∇× v) · ndS.

Hence nonzero circulation requires that the vorticity

∇× v

is nonzero somewhere in D.

A region where ∇× v 6= 0 is called a vortex.
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A bathtub vortex 



Quantum vortices 



Why is vorticity quantized in a superfluid?

Describe the superfluid by a complex valued function (”order Pa-

rameter”) ψ satisfying a nonlinear Schrödinger Equation (Gross-

Pitaevskii equation). The phase of ψ determines the velocity: If

ψ = eiϕ|ψ| then

v =
~
m
∇ϕ.

Since ψ is single valued we have
∮
C∇ϕ ·d` = n2π with n ∈ Z, so∮

C
v · d` = n

h

m
.

On the other hand, where the phase is nonsingular, i.e., where

|ψ(x)| 6= 0, we have

∇× v = 0.
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The Basic Many-Body Hamiltonian

The quantum mechanical Hamiltonian for N spinless bosons with

a pair interaction potential v and external potential, V , in a

rotating frame with angular velocity Ω is

H =
N∑
j=1

(
−1

2∇
2
j + V (xj)− Lj ·Ω

)
+

∑
1≤i<j≤N

v(|xi − xj|).

Here xj ∈ R3, j = 1, . . . , N are the positions and Lj = −i xj ×∇j
the angular momentum operators of the particles. Units have

been chosen so that ~ = m = 1 and thus h/m = 2π. The pair

interaction potential v is assumed to be radially symmetric, of

short range and repulsive.

H operates on symmetric functions in L2(R3N).



Hamiltonian, Magnetic Version

The Hamiltonian can alternatively be written in the form

H =
N∑
j=1

(
1
2[i∇j + A(xj)]2 + V (xj)− 1

2Ω2r2
j

)
+

∑
1≤i<j≤N

v(|xi−xj|).

with

A(x) = Ω× x = Ωr eθ

and r=distance from the rotation axis.

This corresponds to the splitting of the rotational effects into

Coriolis and centrifugal forces. The Coriolis forces have formally

the same effect as a magnetic field with vector potential A(x).
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Harmonic vs. Anharmonic Traps

If V is harmonic in the direction ⊥ to Ω, i.e.,

V (x) = 1
2Ωtrapr

2 + V ‖(z)

then stability requires Ω < Ωtrap. Rapid rotation means here

that

Ω→ Ωtrap

from below.

If V is anharmonic and increases faster than quadratically in the

direction ⊥ to Ω, e.g. V (x) ∼ rs + V ‖(z) with s > 2, then rapid

rotation means simply Ω→∞.
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Gross-Pitaevskii Equation

Basic fact (E. Lieb and R. Seiringer, 2005) about the the many-

body Hamiltonian for N → ∞ with Na and Ω fixed, where a is

the scattering length of the interaction potential v:

There is Bose-Einstein condensation in the ground state as N →
∞, and the wave function of the condensate satisfies a non-linear

Schrödinger equation, the Gross-Pitaevskii equation

{
1
2(i∇+ A)2 + (V − 1

2Ω2r2) + 4πNa|ψ|2
}
ψ = µψ .

5



Gross-Pitaevskii Energy Functional

The GP equation is obtained by minimizing the energy functional

EGP[ψ] =
∫
R3

{
1
2|∇ψ|

2 + V |ψ|2 − ψ∗Ω · Lψ + 2πNa|ψ|4
}
dx

=
∫
R3

{
1
2|(i∇+ A)ψ|2 + (V − 1

2Ω2r2)|ψ|2 + 2πNa|ψ|4
}
dx

with the normalization condition
∫

R3|ψ|2 = 1. A minimizer, i.e.,

a solution of the GP equation, will be denoted by ψGP.
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Asymptotic Regimes

The GP minimization problem has two parameters, Ω and Na.

In anharmonic traps we shall consider it in the asymptotic regime

where both these parameter are large. It is convenient to intro-

duce

ε ≡ (2πNa)−1/2

which is small if Na is large.

In harmonic traps with Ω→ Ωtrap it turns out to be appropriate

to restrict the wave functions to the Lowest Landau Level of the

magnetic Hamiltonian 1
2(i∇+ A)2. Discussed in the lecture of

Mathieu Lewin!
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Status of GP for Rapid Rotation

Important note: The rigorous derivation of Lieb and Seiringer
of the GP equation from the many-body problem is carried out
for Ω and ε fixed. For rapid rotation the GP description may
break down both in harmonic and anharmonic traps. The exact
limitations can be conjectured but are still not completely proven.
Step in this direction in anharmonic traps:

If N → ∞ and Ω → ∞ but the gas remains dilute (in the sense
that mean density � a−3) the TF approximation, i.e., GP with-
out the kinetic term 1

2|(i∇+ A)ψ|2, gives the leading term in the
ground state energy as a function of Ω and ε.

This was proved by M. Correggi, J.-B. Bru, P. Pickl and JY in
2007.
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GP Theory for Rapid Rotation, Anharmonic Traps

Consider, for simplicity, a 2D ‘flat’, circular trap with radius 1.

The GP energy functional is then

EGP[ψ] =
∫
B

{
1
2|(i∇+ A)ψ|2 − 1

2Ω2r2|ψ|2 +
1

ε2
|ψ|4

}
dr

where B is the unit disc and A(r) = Ω r eθ.

It can be proved that if Ω ≤ Ω1| log ε| + O(log | log ε|) there is

a finite number of vortices, even as ε → 0. For larger Ω the

number of vortices is unbounded as ε→ 0.

If Ω = O(1/ε) the centrifugal term −(Ω2/2)r2|ψ(r)|2 and the

interaction term (1/ε2)|ψ(r)|4 are comparable in size.
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Vortices Reduce Kinetic Energy

The kinetic energy term 1
2|(i∇+ A(r))ψ(r)|2 is formally also of

order 1/ε2 if Ω ∼ 1/ε. However, it turns out that its contribution

to the energy is, in fact, of lower order, namely ∼ Ω| log ε|, be-

cause a lattice of vortices emerges as ε → 0. The velocity field

generated by the vortices compensates partly that generated by

A(r) = Ωr eθ.
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Energy to Subleading Order

THEOREM (M. Correggi and JY, 2008) Let EGP denote the

GP energy, i.e., the minimum of the GP energy functional. Let

ETF denote the minimal energy of the GP functional without

the kinetic term.

If | log ε| � Ω� 1/ε, then

EGP = ETF + 1
2Ω| log(ε2Ω)|(1 + o(1)).

If 1/ε . Ω� 1/(ε2| log ε|) then

EGP = ETF + 1
2Ω| log ε|(1 + o(1)).
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An Electrostatic Analogy

Write points r = (x, y) ∈ R2 as complex numbers, ζ = x+ iy, and

consider a lattice of points ζi. Placing a vortex of degree 1 at

each point ζi leads to a trial function for the GP energy of the

form

ψ(r) = f(r) exp{iϕ(r)}

where f is real valued and

exp{iϕ(r)} =
∏
i

ζ − ζi
|ζ − ζi|

.

Now

|(i∇+ A)ψ|2 = |∇f |2 + f2|A−∇ϕ|2
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and by some elementary complex analysis we can write

|A−∇ϕ|2 = |Ω rer −∇χ|2

where

χ(r) =
∑
i

log |r− ri|.

But

E(r) ≡ Ω rer −∇χ(r)

has a simple physical interpretation: It can be regarded as an

‘electric field’ generated by a uniform charge distribution of den-

sity Ω/π together with unit ‘charges’ of opposite sign at the

positions of the vortices, ri.



Vortex Lattice

We now distribute the vortices over the unit disk so that the

vorticity per unit area is Ω/π. (This is really 2Ω ·m/h.) Thus

every vortex ri sits at the center of lattice cell Qi of area |Qi| =
π/Ω, surrounded by a uniform charge distribution of the opposite

sign so that the total charge in the cell is zero. If the cells

were disc-shaped, then Newton’s theorem would imply that the

’electric field’ generated by the cell would vanish outside the cell,

i.e, there would be no interaction between the cells.
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Why hexagonal cells are optimal

The cells can, of course, not be disc shaped, but the closest

approximation to that are hexagonal cells, giving the optimal

energy. The vortices then sit on a triangular lattice. The in-

teraction between the cells, although not zero, is small because

the cells have only a quadrupole moment or higher and no dipole

moment.
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Emergence of a ‘Giant Vortex’

If Ω � 1/ε the centrifugal forces dominate the repulsive inter-
action forces and the density becomes concentrated in a thin
annulus of size ∼ (εΩ)−1. This is � 1 if Ω � 1/ε. Neverthe-
less, this annulus may still contain a lattice of vortices. In fact,
as long as Ω � (ε2| log ε|)−1 it can be shown that, for ε → 0,
vorticity is uniformly distributed in the annulus with density Ω/π.

For

Ω >
Ωc

ε2| log ε|

with a certain Ωc > 0, however, a phase transition occurs: Vor-
tices disappear completetly from the thin layer where the density
is concentrated and all the vorticity is concentrated in the ‘hole’.
This is called a Giant Vortex.
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A heuristic explanation for the transition at Ω ∼ 1/(ε2| log ε|) can
be given by exploiting the electrostatic analogy:

A variational ansatz for ψ of the form

ψ(r) = f(r) exp(iΩ̂θ)

with a real valued function f is optimal if

Ω̂ = Ω−O(ε−1).

The ’electric field’ generated by a charge Ω̂ at the origin exactly
cancels, in the annulus of thickness (εΩ)−1, the ’electric field’
generated in the annulus by the uniform charge density Ω/π of
the ‘hole’(by Newton’s theorem). However, the ‘charge’ corre-
sponding to A in the annulus is not cancelled, and this ‘residual
charge’ is

charge density x area of annulus ∼ Ω× (εΩ)−1 = ε−1.
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The electrostatic energy of the residual charge distribution is

∼ ε−2. Creating a vortex in the annulus neutralizes one charge

unit and thus reduces the electrostatic energy by ε−1. In other

words,

gain by creating a single vortex ∼
1

ε
.

On the other hand, the cost of a vortex is ∼ f2 | log ε|, and we

have f2 ∼ (εΩ), so

cost of a single vortex ∼ εΩ | log ε| .
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Gain and cost are thus comparable if

Ω ∼
1

ε2| log ε|
If Ω is smaller it still pays to have vortices also in the annulus,

but if Ω is larger, the cost outweighs the gain and there are no

vortices in the annulus. In other words: If

Ω >
const.

ε2| log ε|
all vorticity originates in the region where the density is vanish-

ingly small.

A mathematical proof of this is, however, far from simple.
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The ‘Giant Vortex Theorem’

Recall the GP energy functional

EGP[ψ] =
∫
B

{
1
2|(i∇+ A)ψ|2 − 1

2Ω2r2|ψ|2 +
1

ε2
|ψ|4

}
dr

with A(r) = Ω r eθ. Let ψGP be a minimizer. Define

Abulk := {r : Rh + ε| log ε|−1 ≤ r ≤ 1}
where Rh = 1 − c(Ωε)−1 is the radius of the ‘hole’ of the TF

density ρTF(r) = [1
4Ω2r2 − µTF]+.

THEOREM (M. Correggi, N. Rougerie, JY, 2010)
Suppose Ω = Ω0(ε2| log ε|)−1. If Ω0 > (3π)−1, then ψGP has
no zeros in Abulk for small ε. More precisely, for r ∈ Abulk∣∣∣|ψGP(r)|2−ρTF(r)

∣∣∣ ≤ Cε−7/8| log ε|3 � ρTF(r) = O(ε−1| log ε|−1).
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Steps of the proof

1. Determining the optimal giant vortex ansatz

2. Splitting of the energy functional

3. Concentration of the density

4. Simple energy bound

5. Division into cells and vortex ball construction

6. Jacobian estimate and improved energy bounds

7. Gradient estimate and completion of proof
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Determining the optimal giant vortex ansatz

Optimizing a variational ansatz of the form ψ(r) = g(r) exp(iΩ̂θ)

leads to a coupled minimization problem: The nonnegative func-

tion g minimizes the functional

ÊGP[g] =
∫
B

{
1
2

[
|∇g|2 −Ω2r2|g|2 +B2|g|2

]
+ ε−2|g|4

}
dr

under the normalization condition
∫
B g

2 = 1 with

B(r) ≡
(
Ω̂/r −Ωr

)
eθ

and

Ω̂ = Ω
(∫
B
g(r)2r−2dr

)−1
.
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Splitting of the energy functional

Write ψ(r) = u(r)g(r) exp(iΩ̂θ). Then, using the variational

equation for g, we obtain the splitting

EGP[ψ] = ÊGP + Eg[u]

with ÊGP the g.s.e. of ÊGP and

Eg[u] =
∫
B

{
|∇u|2 − i B · u∗∇u+ g2ε−2(1− |u|2)2

}
g2dr.

Minimizing EGP w.r.t. ψ is equivalent to minimizing the weighted

Ginzburg-Landau-type functional Eg w.r.t. u. Henceforth u de-

notes the minimizer with normalization
∫
B |u|2g2 = 1.
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Concentration of the density

The ‘shape function’ g depends on the small parameter ε. As
ε → 0 it gets concentrated in an annulus A of thickness ` ∼
(εΩ)−1 which is O(ε| log ε|) if Ω = Ω0ε

−2| log ε|−1. The same
holds for the full GP minimizer ψGP = ug. More precisely:

If r ≤ Rh − ε7/6 then g(r)2 ≤ C (εΩ) exp{−1/ε1/6}.
Here Rh = 1− ` is the radius of the ‘hole’.

Analogous estimate holds for |ψGP|2.

On A, on the other hand, g2 can be shown to be close to a
function that rises from zero at r = Rh to O(εΩ) at r = 1.
Important: On Abulk = {r : Rh + ε| log ε|−1 ≤ r ≤ 1}

g2(r) ≥ c
εΩ

| log ε|
∼

1

ε| log ε|2
.
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Simple energy bound

Write

Eg[u] = Fg[u]− g2i B · u∗∇u

with

Fg[u] =
∫
B

{
|∇u|2 + g2ε−2(1− |u|2)2

}
g2dr.

In the annulus A we have B(r) ∼ Ω(1/r − r) = O(ε−1). The

upper bound Eg[u] ≤ 0, together with Cauchy-Schwarz and the

normalization condition, leads to

Fg[u] ≤
C

ε2
and Eg[u] ≥ −

C

ε2
.
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The simple estimate for Fg[u] is not enough to conclude that u
has no zeros. Estimates of this type have, however, been used
in Ginzburg-Landau theory (e.g. by E. Sandier and S. Sherfaty)
to show that eventual zeros can be isolated in little balls (‘vortex
balls’) and to obtain lower bounds on ‘magnetic’ functionals of
the type Eg in terms of winding numbers of u around these balls.
By ‘jacobian estimates’ one would then like to show that nonzero
winding numbers are too costly if Ω is too large. There are two
problems, however:

• The relevant domain Abulk is not fixed but depends on ε.

• The function g is not constant in Abulk.

The former is more serious than the latter.
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It is instructive to pretend for a moment that g2 is constant
∼ (εΩ) ∼ (ε| log ε|)−1 on Abulk and strictly zero in the ‘hole’. By
scaling, writing r = `̃r, ũ(̃r) = u(r) and B̃(r̃) = `B(r), we have∫
Abulk

{
|∇u|2 − i B · u∗∇u+ g2ε−2(1− |u|2)2

}
dr =∫

Ãbulk

{
|∇̃ũ|2 − i B̃ · ũ∗∇̃ũ+ ε̃−2(1− |ũ|2)2

}
dr̃

with ε̃ ∼ ε3/2| log ε|1/2. Since |B| ∼ ε−1 one sees that the scaled
vector potential satisfies

|B̃| ∼ Ω−1
0 | log ε̃|.

Hence after this scaling the effective vector potential gets smaller
as Ω0 increases. Moreover, since | log ε̃| is the order of the cost
of a vortex (by previous heuristics), vortices should dissappear
for Ω0 large enough. The problem is that Ãbulk still depends on
ε̃!
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Division into cells, vortex ball construction,
jacobian estimate

The first problem is overcome by a division of Abulk into ‘almost
rectangular’ cells and identifying ‘good’ cells where the vortex
ball construction can be applied. Using an iteration process the
number of ‘good’ cells can be increased until they cover the
whole of Abulk. An important ingredient is a ‘jacobian estimate’,
that relates the curl of iu∗∇u to the degrees of the winding
numbers around the vortex balls. In this way one obtains (after
considerable amount of work!) an improved bound:

THEOREM If Ω = Ω0(ε2| log ε|)−1 and Ω0 > (3π)−1, then

Fg[u] ≤
C

ε1/2
| log ε|5/2 and Eg[u] ≥ −

C

ε1/2
| log ε|3/2
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Gradient estimate and completion of proof

The last property needed is an estimate on the gradient of u:

Lemma With Ω = Ω0(ε2| log ε|)−1 and Ω0 > (3π)−1we have
on Abulk

|∇u(r)| ≤ C
| log ε|3/2

ε3/2
.

For the proof of the Lemma the variational equation for u and
the Gagliardo-Nirenberg inequality are used.

The proof that u has no zeros in Abulk follows from this and the
improved upper bound on Fg.
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Indeed, suppose for some r ∈ Abulk

|u(r)| ≤ (1− ε1/8| log ε|3).

Then |u(r)| ≤ (1−1
2ε

1/8| log ε|3) in a disc of radius ∼ ε13/8| log ε|3/2

around r. This implies

Fg[u] ≥
∫

Disc

g4

ε2
(1− |u|2)2 ≥

C| log ε|3

ε1/2

which contradicts the bound

Fg[u] ≤
C

ε1/2
| log ε|5/2

that holds for Ω0 > (3π)−1.
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