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General Set-Up

We consider a collection of quantum systems labeled by x ∈ Γ.

Associated to each system is a Hilbert space Hx and a densely

defined self-adjoint operator Hx . For finite Λ ⊂ Γ, the Hilbert

space of the composite system is

HΛ =
⊗
x∈Λ

Hx ,

and the algebra of observables for the composite system is

AΛ =
⊗
x∈Λ

B(Hx) = B(HΛ) .

If X ⊂ Λ, then by identifying A ∈ AX with A⊗ 1lΛ\X ∈ AΛ, we see

that AX ⊂ AΛ.

In general, these systems may describe spins, qudits, oscillators,

atoms . . . etc.
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Two Typical Examples

1. A quantum spin system has a Hilbert space of states given by

HΛ =
⊗
x∈Λ

Cnx

where nx ≥ 2 is an integer, and e.g. the Hamiltonian may be

Hx = S j
x , where for j = 1, 2, 3, S j

x is a spin matrix.

2. A quantum oscillator system has composite Hilbert space

HΛ =
⊗
x∈Λ

L2(R) ,

and the on-site Hamiltonians Hx may be position qx or

momentum px = −i d
dqx

.

Of course, each of these on-site Hamiltonians may be regarded as

acting on the composite system by tensoring with an appropriate

identity.
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Interactions

In general, a bounded interaction for these quantum systems is a

map Φ from the set of finite subsets of Γ to the algebra of

observables such that for all finite X ⊂ Γ, Φ(X )∗ = Φ(X ) and

Φ(X ) ∈ AX .

For finite Λ ⊂ Γ, local Hamiltonians are given by

HΛ =
∑
x∈Λ

Hx +
∑
X⊂Λ

Φ(X ),

and the corresponding Heisenberg dynamics, {τΛ
t }t∈R, is defined by

τΛ
t (A) = e itHΛAe−itHΛ , for A ∈ AΛ.
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Examples of Models

1. (Quantum Spin) Take Hx = C2. A Heisenberg Hamiltonian

over Λ ⊂ Γ = Zd is given by

HΛ =
∑
x∈Λ

hS3
x +

∑
1≤|x−y |≤R

JxySx · Sy ,

where Sx = (S1
x , S

2
x , S

3
x ) has components the Pauli spin

matrices. Here h ∈ R, 1 ≤ R <∞, and {Jxy} are parameters.

2. (Quantum Oscillator) An anharmonic Hamiltonian over

Λ ⊂ Γ = Zd is given by

HΛ =
∑
x∈Λ

p2
x +ω2q2

x +V (qx)+
∑
|x−y |=1

λ(qx−qy )2 +Φ(qx−qy ) .

Here ω2 ≥ 0, λ ≥ 0, V is chosen so that

Hx = p2
x + ω2q2

x + V (qx) is a densely defined, self-adjoint

operator on Hx = L2(R), and Φ ∈ L∞(R).
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Observables and Support

As we have seen, for any finite sets X ⊂ Λ ⊂ Γ, each A ∈ AX can

be identified with a unique element A⊗ 1lΛ\X ∈ AΛ.

The support of an observable A is the smallest set X such that

A ∈ AX . We denote this by supp(A), and A ∈ AX if and only if

supp(A) ⊂ X .

Let X ⊂ Λ ⊂ Γ and consider HΛ a s.a. operator on HΛ with, e.g.,

nearest neighbor interactions. For general A ∈ AX ,

supp(τΛ
t (A)) = Λ for all t 6= 0.

Question: Does the dynamics of such a Hamiltonian satisfy some

weaker form of locality?
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Some Comments

Clearly, if A ∈ AX , B ∈ AY , and X ∩ Y = ∅, then [A,B] = 0, i.e.,

observables with disjoint supports commute.

Moreover, if A ∈ AΛ and

[A,B] = 0 for all B ∈ AY ,

then supp(A) ⊂ Λ \ Y .

In fact, a more general statement is true.

If A almost commutes with all B ∈ AY , then A is approximately

supported in Λ \ Y .
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A Lemma

Lemma

Let ε ≥ 0 and take A ∈ AΛ. If there is Y ⊂ Λ with

‖[A,B]‖ ≤ ε‖B‖, for all B ∈ AY (1)

then there exists A′ ∈ AΛ\Y such that

‖A′ ⊗ 1l− A‖ ≤ cε

with c = 1 if dimHY <∞, and c = 2 in general.

In this case, we can approximate supp(τΛ
t (A)) by estimating

[τΛ
t (A),B] for B ∈ AY .

This is the basic idea of a Lieb-Robinson bound.
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Quasi-Locality of the Dynamics

Under some conditions (to be made precise below), one may prove

quasi-locality of the dynamics. Rigorously, this notion is expressed

by an estimate on commutators of the form

‖[τΛ
t (A),B]‖ ≤ C (A,B)e−µ(d(X ,Y )−v |t|).

Here A ∈ AX , B ∈ AY , and t ∈ R. Crucially, the numbers

C (A,B) and v are independent of Λ.

Note that if d(X ,Y ) > 0, then [τΛ
0 (A),B] = [A,B] = 0. The

above bound then indicates that the commutator remains

exponentially small for times

t ∼ d(X ,Y )

v
.

The first such estimates were proven by Lieb and Robinson in 1972.

A variety of interesting generalizations have recently been derived.
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Assumptions 1

Let Γ be a set equipped with a metric. If Γ has infinite cardinality,

we need to assume there is a non-decreasing function

F : [0,∞)→ (0,∞) satisfying:

i) ‖F‖ = supx∈Γ

∑
y∈Γ F (d(x , y)) <∞

ii) there exists C > 0 such that for all x , y ∈ Γ,∑
z∈Γ

F (d(x , z))F (d(z , y)) ≤ C F (d(x , y)).

Example: If Γ = Zν , take F (r) = (1 + r)−(ν+ε).

Note that, in general, if F satisfies i) and ii) above, then so does

Fa(r) = e−ar F (r) for all a ≥ 0. Moreover, ‖Fa‖ ≤ ‖F‖ and also

Ca ≤ C .
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Assumption 2

We need an assumption on the interactions being considered.

Recall that we already have assumed that there is a collection of

on-site Hamiltonians denoted by {Hx}x∈Γ.

Let Γ be a set equipped with a metric and a function F as above.

For any a ≥ 0, we consider those interactions Φ for which

‖Φ‖a = sup
x ,y∈Γ

1

Fa(d(x , y))

∑
X⊂Γ:

x ,y∈X

‖Φ(X )‖ < ∞.

If Γ = Zν and F (r) = (1 + r)ν+1, then clearly finite range

interactions satisfy ‖Φ‖a <∞ for all a ≥ 0.
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A Lieb-Robinson Bound

Let Γ be a set equipped with a metric and a function F as

described above.

Theorem (Nachtergaele, Raz, Schlein, S. 09)

Fix a collection of on-site Hamiltonians {Hx}x∈Γ. Let a ≥ 0, take

Φ such that ‖Φ‖a <∞, and consider finite subsets X ,Y ⊂ Γ. For

any finite Λ ⊂ Γ with X ∪ Y ⊂ Λ, any A ∈ AX , B ∈ AY , and

t ∈ R, one has that

‖[τΛ
t (A),B]‖ ≤ Ce−a(d(X ,Y )−vΦ|t|),

where

C =
2‖A‖‖B‖‖F‖

Ca
min[|∂ΦX |, |∂ΦY |] and vΦ =

2‖Φ‖aCa

a
.
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Sketch of the Proof

First, suppose there are no on-sites Hamiltonians.

Consider the function f defined by

f (t) := [τΛ
t (A),B]. (2)

Differentiate to see that f satisfies the following differential

equation

f ′(t) = −i
[
f (t), τΛ

t (HX )
]
− i
[
τΛ
t (A),

[
τΛ
t (HX ),B

]]
, (3)

with the notation

HY =
∑
Z⊂Λ:

Z∩Y 6=∅

Φ(Z ), (4)

for any subset Y ⊂ V . The first term in (3) above is

norm-preserving, and therefore we have

‖ [τΛ
t (A),B] ‖ ≤ ‖[A,B]‖ + 2‖A‖

∫ |t|
0
‖ [τΛ

s (HX ),B] ‖ ds (5)
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Define the quantity

CB(X , t) := sup
A∈AX

‖[τΛ
t (A),B]‖
‖A‖

, (6)

then (5) implies that

CB(X , t) ≤ CB(X , 0) + 2
∑
Z⊂Λ:

Z∩X 6=∅

‖Φ(Z )‖
∫ |t|

0
CB(Z , s)ds. (7)

Clearly, one has that

CB(Z , 0) ≤ 2 ‖B‖ δY (Z ), (8)

where δY (Z ) = 0 if Z ∩ Y = ∅ and δY (Z ) = 1 otherwise. Using

this fact, iterate (7) and find that

CB(X , t) ≤ 2‖B‖
∞∑

n=0

(2|t|)n

n!
an, (9)
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where the coefficients are given by

an =
∑
Z1⊂Λ:

Z1∩X 6=∅

∑
Z2⊂Λ:

Z2∩Z1 6=∅

· · ·
∑
Zn⊂Λ:

Zn∩Zn−1 6=∅

n∏
i=1

‖Φ(Zi )‖ δY (Zn). (10)

Using the properties of the function Fa and the norm ‖Φ‖a one can

estimate an:

an ≤ Ca

[
‖Φ‖a

Ca

]n ∑
x∈X

∑
y∈Y

Fa(d(x , y)) ,

This completes the proof.

If there are on-site Hamiltonians, re-work the above argument for

the function f̃ defined by

f̃ (t) := [τΛ
t (τΛ;loc
−t (A)),B] . (11)
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Applications

In the context of quantum spin systems, there have recently been a

variety of applications: Exponential Clustering, a multi-dimensional

Lieb-Schultz Mattis Theorem, an area law for one-dimensional

gapped systems, quantization of hall conductance, stability of

topologically ordered systems under local perturbations . . . to

name a few.

Due to time constraints, I will only discuss one application:

the existence of a limiting dynamics
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Thermodynamic Limit

Question: For infinite Γ, does there exist a suitable limiting

dynamics as Λ→ Γ?

The Set-Up

Suppose Γ has infinite cardinality. Let {Λn}n≥1 be an increasing

sequence of finite subsets with Λn → Γ.

Take X ⊂ Γ finite, A ∈ AX , and t ∈ R.

What can be said about

lim
n→∞

τΛn
t (A) ?
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Result

Let

AΓ =
⋃
AΛ

where the union is over all finite subsets of Γ.

Theorem (Nachtergaele, Schlein, S., Starr, Zagrebnov)

Let Γ, F , and {Hx} be as before. Take a ≥ 0 and Φ with

‖Φ‖a <∞. For each t ∈ R and any A ∈ AΓ, the norm limit

lim
n→∞

τΛn
t (A)

exists. The limit defines a one parameter group of

∗-automorphisms on the completion of AΓ. Moreover, the

convergence is uniform for t varying in compact sets.
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Comments

1) If all the on-site Hamiltonians {Hx} are bounded, then the

limiting dynamics is strongly continuous.

2) If this is not the case, then we only have weak continuity of the

limiting dynamics. This is true, for example, in any product state

whose factors correspond to normalized eigenvectors of Hx .
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Sketch of the proof

Assume there are no on-site Hamiltonians.

Let X ⊂ Λm ⊂ Λn all finite subsets of Γ. Observe that for any

strictly local A ∈ AX and t ∈ R, the norm-estimate∥∥∥τΛn
t (A)− τΛm

t (A)
∥∥∥ ≤ ∑

z∈Λn\Λm

∑
Z3z

∫ t

0
‖[τΛm

s (A),Φ(Z )]‖ ds ,

readily follows. By our Lieb-Robinson bound, the above

commutator is small (in distance between X and Z ), independently

of Λm. This shows that the sequence τΛn
t (A) is Cauchy .

A similar trick applies in the case of non-trivial on-site

Hamiltonians.
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What about unbounded interactions?

In all of the previous discussion, it was assumed that the

interactions are bounded. What can be said about systems where

this assumption is lifted?

Only a few models have been analyzed so far.
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The Harmonic Model

Take Λ ⊂ Zd , HΛ =
⊗

x∈Λ L2(R), and consider

Hh
Λ =

∑
x∈Λ

p2
x + ω2q2

x +
d∑

j=1

λj(qx − qx+ej )
2,

introduce annihilation and creation operators

ax =
1√
2

(qx + ipx) and a∗x =
1√
2

(qx − ipx)

which satisfy the CCR and for each f : Λ→ C let

a(f ) =
∑
x∈Λ

f (x)ax and a(f )∗ =
∑
x∈Λ

f (x)a∗x

and define a Weyl Operator by

W (f ) = exp

[
i

2
(a(f ) + a(f )∗)

]
.

Note that the Weyl relation holds

W (f + g) = e−iIm[〈f ,g〉]W (f )W (g) .
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By going to Fourier variables,

Hh
Λ =

∑
k∈Λ∗

γ(k) (2b∗kbk + 1)

where

γ(k) =

√√√√ω2 + 4
d∑

j=1

λj sin2(kj/2) .

In this case, the dynamics is trivial

τh,Λ
t (bk) = e−2iγ(k)tbk and τh,Λ

t (b∗k) = e2iγ(k)tb∗k

Moreover, the b’s can be obtained from the a’s (and vice versa)

b(f ) = a(Uf ) + a(Vf )∗ and a(f ) = b(U∗f )− b(V ∗f )∗

where U and V are real-linear maps (Bogoliubov) which satisfy

U∗U − V ∗V = 1l and V ∗U − U∗V = 0 .
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Hence

τh,Λ
t (W (f )) = W (Tt f )

where

Tt f = (U + V )F−1Me2iγtF(U∗ − V ∗) = f ∗ K
(1)
t + f ∗ K

(2)
t

and for every µ > 0,

max{|K (1)
t (x)|, |K (2)

t (x)|} ≤ Cµe−µ(|x |−vh(µ)|t|) .

Using the Weyl relation[
τh,Λ
t (W (f )),W (g)

]
=
(

1− e2iIm[〈Tt f ,g〉]
)

W (Tt f )W (g)

we have a Lieb-Robinson bound for the harmonic model, i.e.∥∥∥[τh,Λ
t (W (f )),W (g)

]∥∥∥ ≤ Cµ
∑
x ,y

|f (x)||g(y)|e−µ(|x−y |−vh(µ)|t|) .
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Remarks

i) Again, it is important to note here that the constants Cµ and

vh(µ) are independent of Λ.

ii) Moreover, optimizing the velocity vh(µ) over the rate of spatial

decay µ, one finds the bound

vh(µ0) ≤ 4

√√√√ω2 + 4
ν∑

j=1

λj .
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Locality for Anharmonic Systems

Let V be real valued and satisfy

κV =

∫
|k |2|V̂ (k)| dk <∞ .

Define

Hah
Λ = Hh

Λ +
∑
x∈Λ

V (qx) ,

Theorem (Nachtergaele-Raz-Schlein-S. 09)

For every µ ≥ 1 and ε > 0, there exists a constant C > 0 such that

‖[τ ah,Λ
t (W (f )),W (g)]‖ ≤ C

∑
x ,y

|f (x)||g(y)|e−µ(|x−y |−vah(µ,ε)|t|)

for all functions f , g ∈ `2(Λ).

Here C and vah are independent of Λ with

vah(µ, ε) ≤
(

1 +
ε

µ

)[
vh(µ+ ε) +

C̃κV

µ+ ε

]
.
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The Thermodynamic Limit?

Some problems:

In the quantum spin context, τΛ
t is a strongly continuous,

1-parameter group of ∗-automorphisms; so too is the limit.

The harmonic dynamics τh,Λ
t is not strongly continuous w.r.t. time

since ‖W (f )−W (g)‖ = 2 if f 6= g .

Moreover, due to the unbounded terms in the Hamiltonian, the old

proof does not directly apply.

Solutions:

L. Amour, P. Levy-Bruhl, and J. Nourrigat ’09 introduce a modified

norm and prove convergence of the anharm. dynamics as Λ→ Zd .

We start with the infinite volume harmonic dynamics and prove

convergence as the perturbation grows from Λ→ Zd .
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∞-Volume Harmonic Dyamics

Consider a subspace D ⊂ `2(Zd) and let W(D) be the Weyl

Algebra generated by W (f ) for f ∈ D.

Examples: D = `2(Λ), D = `1(Zd), D = `2(Zd).

By replacing Riemann sums with integrals, we can formally define

the harmonic dynamics on W(D) by setting

τ
(0)
t (W (f )) = W (Tt f ) for all f ∈ D ,

where

Tt f = (U + V )F−1M2iγtF(U∗ − V ∗) = f ∗ K
(1)
t + f ∗ K

(2)
t .
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One can easily check that for every µ > 0,

max{|K (1)
t (x)|, |K (2)

t (x)|} ≤ Cµe−µ(|x |−vh(µ)|t|)

still holds.

Moreover, one verifies that

1. For D as above, Tt : D → D.

2. T0 = 1l and Ts+t = Ts ◦ Tt .

3. Im[〈Tt f ,Ttg〉] = Im[〈f , g〉].

In this case, the previously defined τ
(0)
t is a 1-parameter group of

∗-automorphisms on W(D).
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Representing the Dynamics

We represent the dynamics in, e.g. the vacuum state for the

b-operators, i.e.,

ρ(W (f )) = e−(1/4)‖(U∗−V ∗)f ‖2
,

which is clearly regular and τ
(0)
t invariant by definition. A

calculation shows that

t 7→ ρ (W (g1)W (Tt f )W (g2)) for g1, g2, f ∈ D

is continuous, and hence τ
(0)
t is weakly continuous in the GNS

representation, denoted by (Hρ, πρ,Ωρ), of ρ. By invariance, the

dynamics can be extended to Mρ =W(D) and thereby (Mρ, τ
(0)
t )

is a W ∗-dynamical system.
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Finite Volume Perturbations

The perturbation theory of W ∗-dynamical systems is

well-understood.

In fact, if (M, αt) is a W ∗-dynamical system and P = P∗ ∈M,

then

αP
t (A) =αt(A) +

∑
n≥1

in
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

× [αtn(P), [· · · , [αt1(P), αt(P)]] · · · ] ,

defines a 1-parameter group of ∗-automorphisms on M which is

also weakly continuous.

Now for (Mρ, τ
(0)
t ) as before and

P = PΛ =
∑
x∈Λ

V (qx) ,

we have a well-defined, weakly-continuous dynamics τ
(Λ)
t .
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Lieb-Robinson Bounds Let V be real valued and satisfy

κV =

∫
|k |2|V̂ (k)| dk <∞ .

Define τ
(Λ)
t as a finite volume perturbation of the infinite volume

harmonic dynamics with

P = PΛ =
∑
x∈Λ

V (qx) .

Theorem (Nachtergaele-Schlein-S.-Starr-Zagrebnov 09)

For every µ ≥ 1, there exist numbers C and vah for which

‖[τ (Λ)
t (W (f )),W (g)]‖ ≤ C

∑
x ,y

|f (x)||g(y)|e−µ(|x−y |−vah(µ)|t|)

holds for all functions f , g ∈ `2(D).

Again, the numbers C and vah are independent of Λ.

This result holds for D = `2(Zd).
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Existence of the Dynamics

Let V be real valued and satisfy

κV = max

{∫
|k ||V̂ (k)| dk,

∫
|k |2|V̂ (k)| dk

}
<∞

Theorem (Nachtergaele-Schlein-S.-Starr-Zagrebnov 09)

Let τ
(0)
t be the harmonic dynamics defined on W(`1(Zd)). Let

{Λn} denote a non-decreasing, exhaustive sequence of finite

subsets of Zd . Denote PΛn as before. Then for each f ∈ `1(Zd)

and t ∈ R fixed, the limit

lim
n→∞

τ
(Λn)
t (W (f ))

exists in norm. The limiting dynamics is weakly continuous.
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The Proof

The old proof now works:

Take m ≤ n, then by iteratively perturbing

τ
(Λn)
t (W (f )) = τ

(Λm)
t (W (f ))+i

∫ t

0
τ

(Λn)
s

([
PΛn\Λm

, τ
(Λm)
t−s (W (f ))

])
ds .

The new Lieb-Robinson bounds complete the argument.

Weak continuity follows by an ε/3 argument; since it was true for

the finite volume perturbations.
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Conclusion

We continue to improve our understanding of the dynamics

corresponding to quantum many body systems. In particular,

investigating its locality properties has lead to a variety of new

results.

Improved knowledge of the dynamics can be used to better

understand correlations, excitations, and more general results in

perturbation theory.


