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The Model(s)

We consider the random operators

Hω = −∆ +
∑
n∈Zd

ωnun,

on L2(Rd) and

hω = h0 +
∑
n∈Zd

ωnPn

on `2(Zd) where h0 is the discrete Laplacian for this talk.
Our models include more general free parts replacing −∆, h0, see
Dolai-Mallick-Krishna [1].
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Integrated Density of States

Denote the spectral projection of a self-adjoint operator A by EA(·). Then
we take the integrated density of states of the above operarors as

N c(E ) =
1∫

u0(x)dx
E
(
Tr
(
u0EHω((−∞,E ])

))
and

N d(E ) =
1

tr(P0)
E
(
tr

(
P0Ehω((−∞,E ])

))
for the above two models.
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Operators in finite boxes

We will need the compression of Hω
Λ and hωΛ of Hω and hω respectively to

finite boxes Λ in Zd or Rd in which case we define

N c
Λ (E ) =

1∫
u0(x)dx

E
(
Tr
(
u0EHω

Λ
((−∞,E ])

))
and

N d
Λ (E ) =

1

tr(P0)
E
(
tr

(
P0EhωΛ

((−∞,E ])

))
In the case of Rd we take Dirichlet boundary conditions to define the
compressions. In these cases the expectation is clearly over finitely many
variables ωn.
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Assumptions on randomness

We assume that ωn are i.i.d random variables with distribution
ρ(x)dx , where ρ is of compact support in (0,∞).

We take un(x) = u0(x − n), n ∈ Zd with u0 supported in the unit
cube centered at 0 and

∑
n∈Zd un(x) = 1.

Our method of proof allows for non-stationary randomness but cannot
extend as of now to ρ of unbounded support.
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Assumptions on the Spectral Region

We consider the part of the spectrum of hω where exponential localization
is valid, more precisely an interval J such that

sup
<(z)∈J,=(z)>0

E
[
‖Pn(hω − z)−1Pm‖s

]
≤ Ce−ξd(n,m) (1)

hold for some 0 < s < 1, for any n,m with d(n,m) > M, for large enough
M. For the operators hωΛ exponential localization is similarly defined with
ξΛ replacing ξ in the bound. We also assume for Λ large enough

ξ ≤ ξΛ.

A similar definition for the continuous case using the Operator Kernels
un(Hω − z)−1um to define the region of exponential localization gives the
energy region J.
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IDS in finite boxes

The average IDS in finite boxes Λ satisfies

Lemma

N (d)
Λ ∈ Cm(R) if ρ ∈ Cm(R).

Proof: This comes from a simple observation that if A is a self-adjoint
operator and {Tn} is a finite partition of unity by positive operators, {ωn}
independent random variables distributed as {ρn(x)dx}, then for the
operators Aω = A +

∑N
n=1 ωnTn we have Eg(Aω − E ) is just the

convolution of two functions on RN evaluated at the point
E~1,~1 = (1, 1, . . . , 1)t , i.e. Eg(Aω − E ) is of the form∫

F (~ω − E~1)Φ(~ω)d~ω,

where Φ(~ω) =
∏N

n=1 ρn(ωn).
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Therefore any derivative over E is the directional derivative of the above
convolution along the direction ~1 in RN , so we can integrate by parts and
transfer the derivative to the function Φ, namely

dm

dEm

∫
F (~ω − E~1)Φ(~ω)d~ω =

∫
F (~ω − E~1)(∇mΦ)(~ω)d~ω.

Since,

N (d)
Λ (E ) =

∫
Tr(P0EhωΛ

(−∞,E ))
∏
n∈Λ

ρ(ωn)dωn

=

∫
Tr(P0EhωΛ−E (−∞, 0))

∏
n∈Λ

ρ(ωn)dωn,

is precisely of the above form, the Lemma follows from the above
observation.
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Stieltjes Transforms

It is known that given a measure g(x)dx , then g(x) is obtained as

πg(x) = lim
ε↓0
=(

∫
1

y − x − iε
g(y) dy), a.e.x

therefore to show that g ∈ Cm(J), it is enough to show that

sup
x∈J, ε>0

| d
m

dxm
(

∫
1

y − x − iε
g(y) dy)| <∞.
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Approximation by finite boxes

We will use the fact that hωΛ converges in the strong resolvent sense to hω

and therefore, if z = x + iε, ε > 0,

(hω − z)−1 = lim
Λ↑Zd

(hωΛ − z)−1,

implying,

ETr(P0(hω − z)−1) = ETr(P0(hωM − z)−1)

+
∞∑

K=M

ETr(P0(hωK+1 − z)−1)− ETr(P0(hωK − z)−1)

where K parametrize side lengths of the the boxes ΛK = {n : |n| ≤ K}
and take hωK = hωΛK

.
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Idea of Proof

If we show that

sup
<(z)∈J

| d
m−1

dzm−1
ETr(P0

[
(hωK+1 − z)−1)− (hωK − z)−1

]
P0)| < Ce−γK , γ > 0,

we are done. Since P0 is finite rank projection and so trace class, it is
enough to get a norm bound

sup
<(z)∈J

| d
m−1

dzm−1
EP0

[
(hωK+1 − z)−1)− (hωK − z)−1

]
P0| < Ce−γK , γ > 0.
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Idea of Proof

Transferring the derivatives to the measure in the Stieltjes transform as we
have setting gK (x) to be the density of the absolutely continous measure
E(EHω

K
(·)), we have

dm−1

dzm−1
EP0

[
(hωK+1 − z)−1)− (hωK − z)−1

]
P0 =∫

P0

[
(hωK+1 − z)−1)− (hωK − z)−1

]
P0∇m−1

ω

∏
n∈ΛK+1

ρ(ωn)dωn∫
P0

[
(hωK+1 − z)−1)− (hωK − z)−1

]
P0ΨK (ω)

∏
n∈Λ

dωn.

where ΨK is sums of derivatives of products of ρ and its L∞ norm is
polynomially bounded in K .
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What to do?

Taking resolvent differences we have∫
P0

[
(hωK+1 − z)−1

(
(h0)K+1 − (h0)K

)
(hωK − z)−1

]
P0ΨK (ω)

∏
n∈Λ

dωn

The above expression appears to want to decay in norm since the resolvent
difference has matrix elements of the form P0(hωX − z)−1Pn, with |n| ≥ K
and we are in the localized part of the spectrum. But the only known
exponential decay estimates in the average come from the fractional
moment bounds, so we have to extract fractional moments out of this
expression. We do this using the following resolvent equation.

M Krishna ( Ashoka University, Rai, Haryana, India)Regularity of the Density of States0
25 June 2019 Talk given at Univeristy of California, Irvine 13

/ 25



A non-standard formula

Given a self-adjoint operator A and a bounded positive operator F , We
have a non-standard resolvent formula that we use, namely

F
1
2 (A + xF − z)−1F

1
2 =

1

x
I − 1

x2
(

1

x
I + F

1
2 (A− z)−1F

1
2 )−1,

where I is the identity on the range of F . A similar two parameter formula
for two self-adjoints A,B, F1,F2 and 2F = F1 + F2, 2G = F1 − F2 is

F
1
2 (A + x1F1 + x2F2 − z)−1F

1
2 = F

1
2 (A + xF + yG − z)−1F

1
2

=
1

x
I − 1

x2
(

1

x
I + F

1
2 (A + yG − z)−1F

1
2 )−1,

where we take x = 1
2 (x1 + x2), y = 1

2 (x1 − x2). A can be unbounded here,
only F needs to be bounded.
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A Remarkable Inequality

With the above notation we have the following:

Lemma

Let A,B are self-adjoint operators, F a positive operator and =(z) > 0.
Suppose ρ has compact support in (0,∞) and has α holder continuous
derivative for positive α. Then

‖
∫ (

F
1
2 (A + xF − z)−1F

1
2 − F

1
2 (B + xF − z)−1F

1
2

)
ρ(x)dx‖

≤ C

∫
‖F

1
2 (A + xF − z)−1F

1
2 − F

1
2 (B + xF − z)−1F

1
2 ‖sρ(x)dx ,

for some 0 < s < 1 depending upon α.

A,B can be unbounded.
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The Idea of proof of the Remarkable Inequality

We use the resolvent equation written earlier to write the difference

‖
∫ (

F
1
2 (A + xF − z)−1F

1
2 − F

1
2 (B + xF − z)−1F

1
2

)
ρ(x)dx‖

= ‖
∫ ∫ ∞

0
dt

(
e i

t
x

+itF
1
2 (A−z)−1F

1
2 − e i

t
x

+itF
1
2 (B−z)−1F

1
2

)
1

x2
ρ(x)dx‖

≤
∫ ∞

0
‖
(
e itF

1
2 (A−z)−1F

1
2 − e itF

1
2 (B−z)−1F

1
2

)
‖ρ̃(t)dt,

≤ 21−s‖F
1
2 (A− z)−1F

1
2 − F

1
2 (B − z)−1F

1
2 ‖s
∫ ∞

0
|t|s ρ̃(t)dt,

where ρ̃(x) = ρ( 1
x ).
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Contd..

The last inequality comes from using the fact that F
1
2 (B + xF − z)−1F

1
2 is

a bounded operator with a positive imaginary part, so genrates a
contraction semigroup and this semigroup of operators have their norm
uniformly bounded by 1. We use interpolation to get the estimate, for a
pair of bounded operators X ,Y with ‖e itX‖ ≤ 1, ‖e itY ‖ ≤ 1,

‖e itX − e itY ‖ ≤
∫ t

0
‖e i(t−w)X (X − Y )e iwY ‖dw ≤ 21−s |t|s‖X − Y ‖s .

If we use a dummy variable r and write xF = (x − r)F + rF in the above
inequalities and integrate over r finally, we will get the integral over
ρ(x)dx in the final expression.
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The Exponential Bound

The above analysis combined with the fractional moment bounds of
Aizenman-Molchanov [2] gives us

‖
∫

P0

[
(hωK+1 − z)−1)− (hωK − z)−1

]
P0∇m−1

ω

∏
n∈ΛK+1

ρ(ωn)dωn‖

≤ ‖
∫

P0

[
(hωK+1 − z)−1)− (hωK − z)−1

]
P0ΨK (ω)

∏
n∈Λ

dωn‖

≤ CP(K )E
(
‖P0

[
(hωK+1 − z)−1)− (hωK − z)−1

]
P0‖s

)
≤ CP(K )e−γK , γ > 0,

because the difference of resolvents has terms of the form Pn with |n| ≈ K .
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The ideas for the continuous case

For the continuous case on L2(Rd) essentially the same ideas work with
the required fractional moment bounds on the resolvent kernels
ux(Hω − z)−1uy , which are uniform in the real part of z in an interval in
the region of localization, coming from the results in
Aizenman-Elgart-Naboko-Shenker-Stolz [3].
There are however, some technical issues to be addressed, primarily
coming from the fact that the operator

u0(Hω − z)−1

is not trace class. Otherwise the method outlined earlier goes through.
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We premultiply by a finite dimensional projection Q in the range of u0 and
finally obtain bounds uniform in Q.
We use the fact that if x , y are far away sites in Zd , then the kernel
ux(H0 + a)−1uy , ux((H0)Λ + a)−1 are trace class in any dimension for a in
the resolvent set of H0. Therefore we subtract the free resolvents from the
difference

Qu0

(
(Hω

K+1 − z)−1 − (Hω
K − z)−1

)
u0

which gives us a similar term with a factor ((H0)K + a)−1u0 in the Shatten
d/2− class multiplying it plus a good term. Repeating this we pick up a
trace class factor multiplying the resolvent difference.
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Some techinical steps involved

Here are some technical results from
Aizenman-Elgart-Naboko-Shenker-Stolz [3] that we use, the first two from
Chapter 3 of their paper. These are:

The boundedness of
∫
‖D1(A + x)−1D1‖sg(x)dx for a compactly

supported bounded g , Hilbert-Schmidt Dj s and a dissipative operator
A.

The above statement implying E‖ux(Hω − z)−1uy‖s <∞, the bound
uniform in Re(z) in a bounded set. Note that the bound does not
depent on which part of the spectrum Re(z) is in.

Exponential fractional moment bounds for i.i.d single site random
potentials.

Using these we can show that replacing the potential at finitely many
points does not significantly change the exponential decay bounds on
fractional moments.
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