
STURM’S METHOD FOR THE NUMBER OF
REAL ROOTS OF A REAL POLYNOMIAL

K. N. RAGHAVAN

Let p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be a non-zero polynomial of degree n ≥ 0

with real coefficients (i.e., n denotes a non-negative integer, the coefficients ai are all
real, and the leading coefficient an is non-zero). We describe a method, due to Sturm,
dating from the 1820s, to determine the number of real roots of such a polynomial in
any given interval on the real line. If the coefficients of the given polynomial and the
end points of the given interval are rational, then the required calculations can all be
carried out over the rational field.

Sturm’s method and others related to it are explained and commented upon in
many places, e.g., on wikipedia, but due diligence is advised when using these re-
sources. In particular, one should be sensitive to variations in terminology.

Reduction of the problem to the case when p(x) admits no repeated root. To
solve our problem of determining the number of real roots of p(x) in a given interval,
we may assume without loss of generality that p(x) has no repreated roots. Indeed,
letting g(x) be the g.c.d. of the given polynomial p(x) and its derivative p′(x), we ob-
serve that p(x)/g(x) has no repeated roots: in fact, each root of p(x) whether simple
or repeated appears as a root of p(x)/g(x) precisely once. If we are interested only
in the roots of p(x) without regard to their multiplicity, we may thus replace p(x) by
p(x)/g(x) and proceed. If, on the other hand, we are interested in counting roots with
multiplicity, then we can put the information for p(x)/g(x) together with that for g(x)
to obtain the required information for p(x): since g(x) has smaller degree than p(x),
we may suppose that we can handle it (by an inductive argument).

The canonical sequence. We define a finite sequence of polynomials starting with
the given non-zero polynomial p(x). (We allow p(x) to have repeated roots in this
subsection.) Put p0(x) = p(x). If p(x) is a constant polynomial, then the sequence stops
right here. Othewise the derivative p′(x) of p(x) is non-zero, and we put p1(x) = p′(x).
For i ≥ 2, we define polynomials pi(x) inductively as follows. They are, up to sign, the
(non-zero) remainders that occur in Euclid’s algorithm for determing the gcd of p(x)
and p′(x). If pi−1(x) divides pi−2(x), then pi(x) is not defined and the sequence stops
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at pi−1(x). Otherwise, define:

pi(x) = −rem(pi−2(x), pi−1(x)) (1)

where, for polynomials a(x) and b(x) 6= 0, we denote by rem(a(x), b(x)) the remainder
when a(x) is divided by b(x).

Observe that p′(x) has degree less than p(x) (in fact, it has degree precisely one
less), and that pi(x), if defined, has smaller degree than pi−1(x). Thus the sequence
defined above stops in less than n steps (where n is the degree of p(x)):

p(x) = p0(x), p1(x) = p′(x), p2(x), . . . , pm(x) m ≤ n = deg p(x) (2)

The sequence (2) is called the canonical sequence associated to the polynomial p(x).
The last term pm(x) of the sequence is, up to sign, the gcd of p(x) and p′(x). It divides
all the terms of the sequence.

Sturm sequences. The canonical sequence defined above has many good properties—
see (4) and (7) below—that we want to exploit to extract information about the roots
of p(x). The definition we now give of Sturm sequences is an attempt to isolate the
relevant properties and exclude irrelevant ones.

Suppose we have a (non-empty) finite sequence of polynomials:

p0(x), p1(x), . . . , pm(x) (3)

where the initial term p0(x) is not identically zero. Such a sequence is called a Sturm
sequence associated to p0(x) if it has the following properties (a)–(d):

(a) The last term pm(x) of the sequence is either always positive or always negative
on the real line.

(b) No two consecutive pi(x) are simultaneouly zero for x a real number.
(c) Suppose that α is a real root of pi(x), for some i with 0 < i < m. Then pi−1(α)

and pi+1(α) have opposite signs (note that neither is zero by (b) above).
(d) At any real root α of p0(x), the graph of p(x) “crosses” the x-axis at α, or, in other

words, the values of p(x) close to α and on either side of α it are of opposite
sign.1 Furthermore, depending upon whether p1(α) is +ve or −ve—observe
that it is not zero by (b)—the movement of p(x) across α is from −ve to +ve or
vice-versa.

We now prove:
the canonical sequence associated to a polynomial without repeated real roots
is a Sturm sequence. (4)

PROOF: Let p0(x), . . . , pm(x) be the canonical sequence associated to a polynomial p(x)
without repeated real roots. We need to show that this sequence satisfies conditions
(a)–(d) in the definition above.

1The graph of p(x) is allowed to be tangential to the x-axis at α, like that of x3 at 0, although this
does not happen in the case when α is not a repeated root of p(x).
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The last term pm(x) being the gcd of p(x) and p′(x), it follows from our assumption
about p(x) that pm(x) has no real root and so is constant in sign. This proves (a).

It follows from (1) that consecutive terms of the sequence (2) are related thus:

pi−1(x) = q(x)pi(x)− pi+1(x) (5)

where q(x) is the quotient when pi−1(x) is divided by pi(x). Thus, if α is a root of two
consecutive polynomials, then it is a common root of all the polynomials. But this is
not possible if α is real because of our assumption on p(x) (by definition p1(x) is the
derivative of p0(x) and as such has no real root in common with p0(x)). This proves (b).

We now prove (c). It follows from (b) that neither pi−1(α) nor pi−1(α) is zero. Putting
x = α in (5), we see that pi−1(α) = −pi+1(α).

We now prove (d). If α is a real root of p(x), then it is a simple root, and so the graph
of p(x) crosses—in fact, “cuts”—the x-axis at α. Since p1(x) is the derivative of p(x),
the rest follows from properties of the derivative. 2

Another example of a Sturm sequence. Let p(x) be a real polynomial of degree d
with d distinct real roots. Then of course p(x) and its derivative p′(x) have no common
roots. Let α1, . . . , αd be the roots of p(x) arranged increasingly. By Rolle’s theorem, the
derivative p′(x) has a root strictly between αi and αi+1 for every i, 1 ≤ i < d. Since p′(x)
has degree d − 1, it follows that all roots of p′(x) are real and distinct. If β1, . . . , βd−1
be the roots of p′(x) arranged increasingly, then we have the “interlacing property”:
αi < βi < αi+1 for all i, 1 ≤ i < d.

At a root β of p′(x), the value p′′(β) of the double derivative is positive or negative
accordingly as p(β) is negative or positive. It is now clear that p(x), p(1)(x), p(2)(x), . . . ,
p(d)(x) is a Sturm sequence: here p(i)(x) denotes the ith derivative of p(x).

More examples of Sturm sequences. The constant polynomials 2, 0, and −1, for
example, form a Sturm sequence, as can be readily checked. In particular, Sturm
sequences could contain identically vanishing polynomials. For future use, let us
record:

If we remove identically zero polynomials from a Sturm sequence
the result is also a Sturm sequence. (6)

For the proof, observe that the neighbors in a Sturm sequence of an identically zero
polynomial are non-zero constants (of opposite sign, but that is irrelevant for now).
Thus every non-constant polynomial in the resulting sequence has the same neigh-
bors as in the original. This proves (b), (c), and (d). The first and last terms of the
original sequence being non-zero by definition, they continue to be the first and last
terms of the resulting sequence. In particular, (a) holds. 2

The following statement too will be used in the sequel:
If we divide all terms in the canonical sequence of a non-zero polynomial p(x)
by its last term pm(x), the result is a Sturm sequence for p(x)/pm(x). (7)
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For the proof, put p̃i(x) := pi(x)/pm(x). Property (a) holds since p̃m(x) = 1. From the
construction of the canonical sequence, we have (see (5) above):

pi−1(x) = pi(x)q(x)− pi+1(x), so p̃i−1(x) = p̃i(x)q(x)− p̃i+1(x) for 1 < i < m (8)

where q(x) is the quotient when pi−1(x) is divided by pi(x). This shows that if two
consecutive p̃i(x) had a common root, then that root would be shared by all p̃i(x), but
that is absurd since p̃m(x) = 1. Thus (b) is proved.

If p̃i(α) = 0 for some real number α, then, from the second equation in (8) above,
we have p̃i−1(α) = −p̃i+1(α), so p̃i−1(α) and pi+1(α) have opposite sign. (That neither is
zero follows from (b).) Thus (c) is proved.

We now prove (d). Since p(x)/pm(x) has no multiple roots, it follows from (4) above
that (d) holds if we put p0(x) = p(x)/pm(x) and p1(x) = (p/pm)

′(x). It is therefore
enough to show that, for any root α of p(x) of multiplicity e (note that the roots of
p(x)/pm(x) are precisely those of p(x) except that none of them is repeated), we have
(p′/pm)(α) = e(p/pm)

′(α).
Put p(x) = (x − α)eq(x) with q(α) 6= 0 and e ≥ 1. Then pm(x) = (x − α)e−1r(x)

with r(α) 6= 0. We get (p′/pm)(x) = eq(x)/r(x) + (x − α)q′(x)/r(x) and so (p′/pm)(α) =

eq(α)/r(α). Also (p/pm)(x) = (x − α)q(x)/r(x), so that (p/pm)
′(α) = q(α)/r(α). This

finishes the proof of (7). 2

The proof of the following observation is obvious:
If a polynomial in a Sturm sequence is nowhere vanishing on the real line, then
we may omit the rest of the sequence to obtain a shorter Sturm sequence. 2

(9)

The “sign-change-number” function σ. Let p0(x), . . . , pm(x) be an arbitrary se-
quence of polynomials (no conditions as Sturmness are imposed upon it). Given a real
number α, we record sequentially whether pi(α) is +ve, −ve, or zero. We define σ(α) to
be the number of sign changes in this sequence, ignoring the zeros. The dependence
of σ on the sequence is suppressed in notation.

For example, from the sequence

x3, x2 − 1, x− 4, 10

we obtain the following sequence when α = 1:

+, 0, −, +

And so σ(1) = 2.
We define σ(∞) and σ(−∞) in a similar way, by taking limits instead of values. The

signs of the limits of the polynomials in the above sequence at −∞ and∞ respectively
are:

−, +, −, + +, +, +, +

And so σ(−∞) = 3 and σ(∞) = 0.
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Sturm’s theorem (first version: for Sturm sequences). Let p(x) be a non-zero
polynomial with real coefficients. The number of distinct real roots (counted without
multiplicity) of p(x) in an interval (a, b] of the real line (where we allow a = −∞ or
b =∞ or both) is given by σ(a)−σ(b), the difference in the sign-change-number function
at the end points a and b, with respect to any Sturm sequence associated to the given
polynomial p(x). 2

Proof of the first version of Sturm’s theorem. We first prune the Sturm sequence
by deleting all the identically zero polynomials that it may contain: this does not
affect σ(x), for zeros are ignored in the calculation of σ; neither is the Sturmness of
the sequence destroyed (see (6) above). We now track what happens to σ(x) as xmoves
from left to right across the real line. It is evident that, for σ(x) to change, we must
cross a zero—call it α—of one of the polynomials pi(x) in the Sturm sequence. We
focus on a neighborhood of α where none of the polynomials in the sequence attains a
zero except possibly at α.

The theorem follows once we prove the following claim: as we move across α from
left to right, σ(x) drops by 1 if α is a root of p(x) and does not change otherwise: see
the picture below.

We now prove the claim. Suppose that α is a root (possibly repeated) of one of the
pi(x) for i > 0. Then i < m (by property (a)) and pi−1(α), pi+1(α) are non-zero and have
opposite signs (by property (c)). This means that, in the neighborhood of α that we are
focusing on, the polynomials pi−1(x) and pi+1(x) have no roots, and so do not change
sign. Thus no matter what the behaviour of pi(x) is in this neighborhood, it has no
effect on σ(x).

- x

6

σ(x)

- x

6

σ(x)

r
α

s
c

α root of p(x)

r
α

α not a root of p(x)

s

Now suppose that p0(α) = p(α) = 0. Then p1(α) 6= 0 because of (b). By (d), the signs
of p0(x), p1(x) change across α either from +, − to −, − or from −, + to +, +. In either
case there is a drop by 1 of σ(x) at α. 2

2As the proof shows, it is sufficient for the sequence to be Sturm “over the interval (a, b]”, i.e., the
properties (a)–(d) in the definition above of a Sturm sequence hold in (a, b].
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Sturm’s theorem (second version: for the canonical sequence). Let p(x) be
a non-zero polynomial with real coefficients. The number of real roots of p(x) in an
interval (a, b] of the real line, where we allow a = −∞ or b = ∞ (or both) and the
roots are counted without multiplicity, is given by σ(a) − σ(b), the difference in the
sign-change-number function at the end points a and b, with respect to the canonical
sequence associated to the given polynomial p(x), provided that neither a nor b is a
repeated root of p(x) (they could be simple roots).

Proof of the second version of Sturm’s theorem. Let p0(x), . . . , pm(x) be the
canonical sequence associated to p(x). Put p̃i(x) := pi(x)/pm(x) and consider the se-
quence p̃0(x), . . . , p̃m(x). The latter sequence is a Sturm sequence by (7). Since pm(x)
is the g.c.d. of p(x) and its derivative p′(x), it follows that p̃0(x) has no repeated root,
and so, by the first version of Sturm’s theorem, the number of roots of p̃0(x) in the
interval (a, b] is given by σ(a) − σ(b), where σ is calculated with respect to the Sturm
sequence p̃i(x) above.

The roots of p(x) and those of p̃0(x) are identical except for multiplicity, so σ(a)−σ(b)
as in the previous paragraph also equals the number of distinct roots of p(x) in the
interval (a, b].

Finally, we observe that σ(a) (and similarly σ(b)) is the same whether calculated for
the sequence pi(x) or for the sequence p̃i(x). Indeed, pm(a) 6= 0, for a is not a repeated
root of p(x); and the sequence p0(a), . . . , pm(a) differs term-by-term from the sequence
p̃0(a), . . . , p̃m(a) exactly by the non-zero factor pm(a). 2

COMPLEMENTS

A consequence of the proof. We have:
Suppose that properties (a)–(c) in the definition of a Sturm sequence hold
for a sequence p0(x), . . . , pm(x) of real polynomials (with m ≥ 0). Then
they hold also for any sequence of the form pi(x), pi+1(x), . . . , pm(x) ob-
tained by omitting some number of initial terms. Further, in any interval
(a, b] of the real line (where we allow a = −∞ or b =∞ or both), the num-
ber of distinct real roots of pi(x) (i.e., counted without multiplicity) is at
least σ(a)− σ(b)− i, where σ(x) is the sign-change-number function with
respect to the sequence p0(x), . . . , pm(x).

It is evident that the first assertion holds. For the second, we first prove it for the case
i = 0. If p0(x) is identically zero or if σ(a) − σ(b) ≤ 0, then there is nothing to prove.
Otherwise, we follow the proof of the first version of Sturm’s theorem. We observe
σ(x) as x moves from left to right from a to b on the real line. The total decrease in
σ(x) over this range is σ(a)−σ(b). We have σ(a) ≤ σ(a′) for a′ close to a and to its right.
The decrease in σ(x) can occur only when x crosses a root of p0(x). Moreover at each
such root α, the decrease is at most 1. More precisely, here are all the possibilities for
σ(x) as it crosses α: it could decrease by 1 at α, it could increase by 1 just to the right
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of α, it could stay the same across α, or it could drop momentarily by 1 at α and come
back up to its previous value. Thus there must exist at least σ(a)− σ(b) distinct roots
of p0(x) in (a, b].

Let σi(x) denote the sign-change-number function for pi(x), . . . , pm(x). Then, clearly,
σ0(x) = σ(x). Since the properties (a)–(c) hold for pi(x), . . . , pm(x), and since σi(a) −
σi(b) ≥ σ0(a) − σ0(b) − i, the general case of the second assertion follows by applying
the special case i = 0 to pi(x), . . . , pm(x).

Interlacing of roots p0(x) and p1(x). Let p0(x), p1(x), . . . , pm(x) be a Sturm sequence.
Between consecutive real roots α and α′ of p0(x) (when the real roots are ordered in-
creasingly), there exists a real root of p1(x): this follows from property (d) by applying
to p1(x) the intermediate value theorem. In particular, if the number of real roots of
p1(x) is one less than the number of roots of p0(x), then the roots are interlaced: that
is, if α1, . . . , αr+1 are the real roots of p0(x) arranged increasingly and β1, . . . , βr those
of p1(x) arranged also increasingly, then αi < βi < αi+1 for all 1 ≤ i ≤ r.

Interlacing of roots. Let p0(x), . . . , pm(x) be a Sturm sequence. Suppose that p0(x)
has d distinct real roots (counted without multiplicity). Then of course m ≥ d. Indeed,
on the one hand, d = σ(−∞) − σ(∞) by the first verstion of Sturm’s theorem, and on
the other, clearly, m ≥ σ(−∞) ≥ σ(−∞)− σ(∞).

Now let us suppose that m = d. Then σ(−∞) = m = d and σ(∞) = 0. (To say
σ(∞) = 0 is the same as to say that the leading coefficients of p0(x), . . . , pm(x) are
all of the same sign.) Further, letting σi(x) denote the sign-change-number function
for the sequence pi(x), . . . , pm(x), we have σi(∞) = 0 and σi(−∞) = d − i: the first
equality is clear since σi(∞) ≤ σ(∞), and the second follows since the limits at −∞ of
the sequence p0(x), . . . , pm(x) must strictly alternate in sign (for, that is the only way
in which σ(−∞) = m).

The sequences pi(x), . . . , pm(x) (for i, 1 ≤ i ≤ m) clearly inherit properties (a)–(c)
in the definition of Sturm sequence. It follows from the result in the subsection “A
consequence of the proof” that the number of distinct real roots of pi(x) is at least
d− i.

Now suppose that the number of distinct real roots of each pi(x) is exactly d− i (as
for example, by some condition limiting their degrees). Then we claim:

pi(x), . . . , pm(x) is a Sturm sequence for each i, 0 ≤ i ≤ m

We need only show that property (d) holds. As xmoves from the far left to the far right
on the x-axis, the function σi(x) drops by d− i in value. The value of this function can
only change at roots of pi(x) and at each of these it decreases by at most 1: see the
proof of the result in the subsection “A consequence of the proof”. Since there are only
d− i roots, it follows that it drops for good by exactly 1 at each of these roots.

This forces (d). Indeed, if pi(x) does not cross the x-axis at one of its roots α, then
σi(x) is either constant across α or momentarily goes down by 1 at α before coming
back up to its previous value, neither of which is possible. Suppose that pi(x) changes
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over from +ve to −ve at α and that pi+1(α) is +ve. Then σi(x) increases by 1 at α,
which is not possible. Thus pi+1(α) is −ve in this case. A similar argument shows that
pi+1(α) is +ve if pi(x) changes over from being −ve to +ve across α.

The preceding arguments clearly apply to the canonical sequence of a real polyno-
mial p(x) of degree d with d distinct real roots and so we have:

Let p(x) be a real polynomial of degree d with d distinct real roots. Let
p0(x), . . . , pm(x) be the canonical sequence associated to p(x). Then
(1) m = d

(2) The signs of the leading coefficients of pi(x) are all the same.
(3) pi(x) has degree d− i and d− i distinct real roots.
(4) pi(x), . . . , pm(x) is a Sturm sequence, for any i, 0 ≤ i ≤ m.
(5) The roots of pi(x) and pi+1(x) are interlaced for 0 ≤ i < m.

Descartes’s rule of signs. Let p(x) be a non-zero polynomial with real coefficients.
We list the signs of the non-zero coefficients in order and count the number of changes
in the resulting sequence. For example, for x6−3x4+3X3+X2−1, we get the sequence
+−++−, which has three changes. The rule states the following:

The number of positive real roots counted with multiplicity of a real poly-
nomial with non-zero constant term has the same parirty as the number
of sign changes in the coefficients and is less (by an even number) than
that number.

For the proof, proceed by induction on the degree of the polynomial. If the polynomial
has degree zero, or, in other words, if it is a non-zero constant, then of course it has
no sign changes and no roots, so the rule holds.

Now suppose that the polynomial is of degree at least one. We may assume that
the polynomial is monic by dividing it by its leading coefficient: the non-zeroness of
the constant term, the roots (and in particular the number of positive roots) and the
number of sign changes are all preserved under this operation. Now the limit of p(x)
as x goes to infinity is infinity. By a continuity argument, it follows that p(x) has
an even or odd number of positive roots accordingly as its constant term is positive
or negative. On the other hand, it is also evident that the number of sign changes
is positive or negative accordingly as the constant term is positive or negative. This
proves the parity part of the rule.

For the latter part, there is nothing to prove if p(x) has no positive real roots. So let
us assume that it has a positive real root α. Write p(x) = (x − α)q(x). By induction,
the rule holds for q(x): i.e., the number of its positive roots is an even number less
than the number of its sign changes. Since p(x) evidently has one positive root more
than q(x), it follows that the rule holds for p(x) as well, provided that we can show
that the number of sign changes in p(x) is an odd number more than the number of
those in q(x). We now prove this last assertion, which is the main part of the proof.
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In the following calculation, we keep track of the signs in the multiplication of q(x)
by x− α to produce p(x). We have assumed that the constant term of q(x) is positive,
but a similar argument should work if it were negative.

x · q(x) : + + . . .+ − − . . .− + + . . .+ − − . . . . . . . . . + + . . .+

−α · q(x) : − . . .− − + . . .+ + − . . .− − + . . . . . . . . . + − . . .− −

p(x) : + ? . . . ? − ? . . . ? + ? . . . ? − ? . . . . . . . . . + ? . . . ? −

In the first two rows, the boxed terms mark areas of constant sign: in the first row,
they are the first terms after a sign has changed or first arisen; in the second row,
they are the last terms of a given sign before the sign changes or forever vanishes.
The two rows have the same number of boxes and the same number of sign changes.
And the number of sign changes is one less than the number of boxes.

In the last row, the number of boxes is one more than in either the first or second
row. The question marks in between the boxes indicate the possibility that those
terms that could go any which way: they could be positive or negative or zero. At any
rate, the number of sign changes between boxed terms in the third row is one or some
other odd number.

Suppose that the number of sign changes in q(x) is c. Then the number of boxes in
either of the first two rows is c+ 1, the number of boxes in the third row is c+ 2, and,
finally, the number of sign changes in the third row is a sum of c + 1 odd numbers,
which is easily seen to be an odd number more than c. 2

THE INSTITUTE OF MATHEMATICAL SCIENCES, CHENNAI

E-mail address: knr@imsc.res.in

9


