
WITT’S PROOF THAT EVERY FINITE DIVISION RING IS A FIELD

K. N. RAGHAVAN

We present, following the exposition in Chapter 6 of the 4th edition of PROOFS FROM

THE BOOK by Martin Aigner and Günter Ziegler, the proof, due to Witt from the
year 1931, of the following famous theorem, due to Wedderburn from the year 1905:

Every finite division ring is a field. (1)

The proof proper appears finally in §5 after preparations in the earlier sections. It
may be summarized as follows:

Following Weddernburn’s original method of proof, we first write down
the class equation of the multiplicative group D× of non-zero elements
of a finite division ring D (see §3). Suppose that the centre z(D) of D,
which is evidently a finite field, is of cardinality q. Counting vector
space dimensions over z(D) of certain subrings of D containing z(D) al-
lows us to determine the form of the component numbers in this class
equation (see (9)). Then, assuming that the dimension n of D over z(D)

is bigger than one, we arrive at a contradiction. For this, we check, fol-
lowing Witt, divisibility of the component numbers by a special integer,
namely the value at q of the nth cyclotomic polynomial.

1. GROUP ACTIONS

We say that a group G acts on a set X if there exists a map G × X → X, given by
(g, x) 7→ gx satisfying the following axioms: g(hx) = (gh)x for g, h in G and x in X; and
1x = x for x in X (where 1 denotes the identity element of G).

Let X and Y be sets on both of which a group G acts. A map φ : X → Y is said to
commute with the action of G, or simply be a G-map, if φ(gx) = g(φ(x)) for all x in X

and g in G.

1.1. Examples of group actions. Groups almost always naturally arise along with
actions on sets (or other mathematical structures). For instance, the symmetric group
Sn naturally acts on the set {1, . . . , n}, it being defined as the set of bijections from this
set to itself.

This write-up supplements lectures given in December 2016 at a workshop sponsored by NBHM
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emailed to knr.imsc@gmail.com or knr@imsc.res.in. Up-to-date version of this write-up is per-
manently available at http://www.imsc.res.in/∼knr/past/salem1612.pdf.
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1.1.1. Left regular and conjugacy actions. Here are two actions of a group G on
itself:

• G × G → G given by (g, x) 7→ gx (where gx denotes the usual group product);
this is called the left regular action.
• G×G→ G given by (g, x) 7→ gxg−1, called the conjugacy action.

1.1.2. Action on the left coset space. Let G/H denote the set of left cosets of a
subgroup H in a group G. There is a natural action of G on G/H, given by (g, xH) 7→
gxH.

1.1.3. Restriction of an action. If a group G acts on a set X and H is a subgroup of G,
then the restriction to H×X of the action map G×X → X evidently defines an action
of H on X. This is called the restriction to H of the action of G on X.

1.2. Orbits. Let a group G act on a set X. We define an equivalence relation on X by:
x ∼ y for x, y in X if there exists g in G such that gx = y. The resulting equivalence
classes are called orbits. Being equivalence classes, the orbits form a partition of X.

The action of G on X is said to be transitive if the whole of X is a single orbit. We
will presently derive a structure theorem for transitive actions (see §1.4).

The action of Sn on {1, . . . , n}, the left regular action of G on itself, and the action of
G on left cosets are all transitive. In contrast, the conjugacy action is not transitive
(except when G = {1} is the trivial group). The orbits for the conjugacy action are
called the conjugacy classes.

1.3. Lagrange’s theorem. Consider the restriction to a subgropup H of the left reg-
ular action of a finite group G on itself. The orbits for this action are the right cosets
of H. Thus, each orbit has exactly |H| elements, and there are |H\G| orbits—recall
that H\G denotes the set of right cosets of H. Since the orbits form a partition of G,
we conclude that |H| · |H\G| = |G|. In other words:

|H| divides |G| and the number |H\G| of right cosets of H equals |G|/|H| (2)

The group G is also partitioned by the left cosets of H. Since each left coset has H
elements, we conclude:

|H| · |G/H| = |G| and so |G/H| = |G|/|H| (3)

1.4. The structure of an orbit. Let a group G act transitively on a set X. Fix x

in X. Let Gx := {g ∈ G | gx = x} be the stabilizer in G of x. This is a subgroup. It is
readily verified that gGx 7→ gx defines a bijective G-map from G/Gx → X.

We thus conclude, in case |G| is finite, the following:

X = |G/Gx| = |G|/|Gx|; in particular, |X| is finite and divides |G| (4)
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2. CONJUGACY CLASSES AND THE CLASS EQUATION

Let G be a group. Recall from §1.2 that conjugacy classes of G are the orbits for the
conjugacy action of G on itself. Are there singleton conjugacy classes? Surely the
identity element is in a class by itself. We observe:

An element of G forms a conjugacy class by itself iff it belongs to the centre. (5)

2.1. The class equation. Now suppose thatG is finite. Summing the cardinalities of
each of the conjugacy classes gives |G|. In view of (5), this leads to the class equation:

|G| = |centre of G|+ |C1|+ · · ·+ |Ck| (6)

where C1, . . . , Ck are the non-singleton conjugacy classes of G.

2.2. An application to p-groups. Let G be a finite group. Recall from (4) that the
cardinality of every G-orbit, and therefore of every conjugacy class in G, divides |G|.
This fact can be combined with the class equation to good effect. For instance, using
them we now prove:

The centre of a p-group is non-trivial. (7)

Recall that a p-group is one whose cardinality is a power of the a prime p. Let G be a
p-group. Consider its class equation (6). Since |Ci| > 1 by definition, it follows from (4)
that it is divisible by p. Reading the class equation modulo p, we see that all terms
other than |centre of G| are divisible by p. Thus so is |centre of G|, and (7) is proved.

3. THE CLASS EQUATION FOR UNITS IN A FINITE DIVISION RING

Let D be a finite division ring. By convention, D 6= 0.

3.1. The canonical homomorphism from Z to a ring with identity. For a ring R
with identity, there is a unique ring homomorphism—call it χR—from the ring Z of
integers to R that respects the identity (i.e., such that χR(1) = 1R). The image of χR
is a subring of R and lies in the centre of R. The kernel of χR is an ideal in Z and
so equals jZ for some unique integer j ≥ 0. Note that χR induces an isomorphism of
Z/kernel(χR) onto the image of χR: Z/jZ ' Image(χR) ⊆ R. Note also that j = 1 if
and only if R = 0.

3.2. The canonical homomorphism from Z to D. Let us now consider the kernel
jZ (with j an integer ≥ 0) of χD. Since D is finite, it follows that n 6= 0; since D 6= 0, it
follows that j 6= 1; since Z/jZ ' Image(χD) and the image of χD is an integral domain
(being a subring of D), it follows that j must be a prime. We henceforth write p in
place of j to emphasize this fact.

As observed in §3.1, we have the following inclusions:

Z/pZ ' Image(χD) ⊆ z(D) ⊆ D (8)
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where z(D) denotes the centre of D. Being the centre of a division ring, z(D) is a field:
if x 6= 0 in D commutes with all elements of D, then so does x−1. Being a subset of D,
the centre z(D) is finite.

3.3. Centralizers of elements of D. For an element d of D denote by z(d) the cen-
tralizer {x ∈ D |xd = dx} of d. This is a subring of D containing the centre z(D).

3.4. Cardinalities of z(D), D, and z(d). Any ring containing a field may be consid-
ered as a vector space over that field. By (8), we may consider z(D) as a vector space
over Z/pZ. Being a finite set, z(D) is of finite dimension over Z/pZ, and thus |z(D)| is
a power of the prime p. Henceforth, we write q for |z(D)|.

By (8) again, we may consider D as a vector space over z(D). Being a finite set,
D has finite dimension over z(D), say n. Thus |D| = qn.

From §3.3, we see that z(d) is a vector space over z(D). Being a finite set, z(d) has
finite dimension over z(D), say k(d). Thus |z(d)| = qk(d).

3.5. The class equation for D×. The set D× of non-zero elements of D forms a finite
group under multiplication. We write the class equation for D×.

We have |D×| = |D| − 1 = qn − 1. The centre of D× is just z(D) \ {0} and so its
cardinality is |z(D)| − 1 = q − 1.

Now suppose d belongs to a non-singleton conjugacy class of D×. Then by (4), the
cardinality of that class equals |D×|/|z×(d)| where z×(d) denotes the centralizer {c ∈
D× | cd = dc} in D× of d. But z×(d) = z(d) \ {0}, and so |z×(d)| = |z(d)| − 1 = qk(d) − 1,
where k(d) denotes the dimension of z(d) as a vector space over z(D). We conclude that
the conjugacy class of d has cardinality (qn − 1)/(qk(d) − 1). Note that k(d) < n since
the class is not a singleton by assumption.

Now choose representatives d1, . . . , d` for all non-singleton conjugacy classes in D×.
Denote by k1, . . . , k` the dimensions over z(D) of the centralizers z(d1), . . . , z(d`). The
class equation for D× now reads as follows:

qn − 1 = (q − 1) +
qn − 1

qk1 − 1
+ · · ·+ qn − 1

qk` − 1
(9)

We now observe that ki divides n for each i, 1 ≤ i ≤ `. This follows by invoking the
following with q in place of s, and n in place of m, and ki in place of k:

Let s ≥ 2 be an integer. Let 1 ≤ k ≤ m be integers.
Then sk − 1 divides sm − 1 if and only if k divides m.

For a proof of this claim, let a and r be integers such that m = ak + r and 0 ≤ r < k.
The polynomial xm − 1 can be written

xm − 1 = (xk − 1)(x(a−1)k+r + x(a−2)k+r + · · ·+ xk+r + xr) + (xr − 1) (10)

In particular, sm − 1 ≡ sr − 1 (mod sk − 1). Since s ≥ 2, we have 0 ≤ sr − 1 < sk − 1,
so that sr − 1 is the remainder when sm − 1 is divided by sk − 1. Thus sk − 1 divides
sm − 1 if and only if sr − 1 = 0 or r = 0, which holds if and only if k divides m.
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4. EULER TOTIENT FUNCTION AND CYCLOTOMIC POLYNOMIALS

Let n be a positive integer. Put [n] := {1, . . . , n}. For d a factor of n, put

[n]d := {k ∈ [n] | (k, n) = d} (11)

where (k, n) denotes the g.c.d. of k and n. Evidently, for each k in [n], the g.c.d. (k, n)

equals d for some factor of n (including 1 and n). Thus we have a partition of [n] as
follows into disjoint subsets:

[n] =
⊔
d|n

[n]d (12)

4.1. Euler totient function. The function n 7→ |[n]1| on positive integers is called
the Euler totient function and denoted by φ. In other words, φ(n) is by definition the
number of positive integers that are at most n and coprime to n.

Let d and n be positive integers such that d|n. Multiplication by d sets up a bijection
between [n]d and [n/d]1:

[n/d]1 ' [n]d by k 7→ dk (13)
By taking cardinalities of both sides of (12), we obtain, in view of (13):

n =
∑
e|n

φ(e) (14)

4.2. nth roots of unity. A complex number z is called an nth root of unity if zn = 1, or,
equivalently if z is a root of the equation xn− 1 = 0. Being of degree n, the polynomial
xn − 1 can have at most n distinct complex roots. On the other hand, e2πik/n, k in [n],
are n distinct nth roots of unity. Thus these are all the nth roots of unity and we have:

xn − 1 =
∏
k∈[n]

(x− e2πik/n) (15)

4.3. Primitive nth roots of unity. For k in [n] such that (k, n) = 1, the nth root of
unity e2πik/n is primitive, i.e., it is not anmth root of unity for any integerm less than n:
indeed, (e2πik/n)m = 1 only if km/n is an integer, which in turn is only if m is a multiple
of n (since (k, n) = 1 by assumption).

For k in [n] put d = (k, n). Then k/d and n/d are coprime integers and e2πik/n = e2πi
k/d
n/d

is a primitive dth root of unity.
Thus e2πik/n, k in [n]1, are all the primitive nth roots of unity.

4.4. Cyclotomic polynomials. We define the nth cyclotomic polynomial to be:

Φn(x) :=
∏

k∈[n], (k,n)=1

(x− e2πik/n) (16)
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Evidently every dth root of unity for d|n is an nth root of unity. And, as observed in §4.3,
every nth root of unity is a primitive dth root of unity for a unique factor d of n. Thus

xn − 1 =
∏
d|n

∏
k∈[n]d

(x− e2πi
k/d
n/d ) =

∏
d|n

Φn/d(x) and so xn − 1 =
∏
e|n

Φe(x) (17)

We may rewrite (17) as follows:

Φn(x) =
xn − 1∏

e|n, e6=n Φe(x)
(18)

By an induction on n, we conclude from (18) the following:

Φn(x) is a monic polynomial with integer coefficients and constant term ±1 (19)

For use in the next section, we rewrite (17) one more time. Suppose that k is a
proper factor of n. Then, on the one hand, xk − 1 divides xn − 1 (see (10). And, on the
other, we may partition the factors e of n into two sets: those that divide k and those
that do not. We thus get:

xn − 1 =
∏
e|n

Φe(x) =

∏
e|k

Φe(x)

Φn(x)
∏

e|n,e-k,e6=n

Φe(x) (20)

The first of the three factors in the right hand side of the above is xk − 1 by (17), and
so we get:

xn − 1

xk − 1
= Φn(x) ·

∏
e|n,e-k,e6=n

Φe(x) (21)

4.5. Conclusions. Suppose x is an integer. Then, from (19) it follows that Φn(x) is
an integer; from (17) that Φn(x) divides xn−1; from (21) that Φn(x) divides the integer
(xn − 1)/(xk − 1) for k a proper factor of n.

5. THE PROOF PROPER

We are finally ready to prove Wedderburn’s theorem that every finite division ring is
a field. We proceed by contradiction. Suppose that D is a finite division ring that is
not a field. We fix notation as in §3. There exists a non-singleton conjugacy class in
the group D×, which means that n ≥ 2 and ` ≥ 1 in the class equation (9).

Consider the conclusions in §4.5 (with q being substituted for x). We see first of all
that Φn(q) is an integer. Next we consider the divisibility by this integer of each of the
terms in (9). From the second and third conclusions in §4.5, we see that Φn(q) divides
qn− 1 and in fact each of the terms (qn− 1)/(qk1 − 1), . . . , (qn− 1)/(qk` − 1). Thus Φn(q)

must also divide the only remaining term in (9), namely q − 1.
This means in particular that |Φn(q)| ≤ |q − 1|. But, as we show below, |Φn(q)| >
|q − 1|, which leads to a contradiction, and the proof is finished.
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5.1. Proof that |Φn(q)| > |q − 1|. From the definition (16) of Φn(x), we see that
|Φn(q)| =

∏
k∈[n]1 |q − e

2πik/n|. Since n ≥ 2, we have k < n for k ∈ [n]1, so that e2πik/n 6= 1.
We claim the following:

|q − e2πik/n| > |q − 1| for each 1 ≤ k < n (22)

Assuming the claim, we see immediately that |Φn(q)| > |q − 1|φ(n). Since φ(n) ≥ 1 and
|q − 1| ≥ 1 (since q ≥ 2), we conclude that |Φn(q)| > |q − 1|.

As to the claim (22), it is obvious pictorially: since q is an integer ≥ 2, it is clear that
the unique point in the unit circle on the complex plane closest to q is 1.

Here is an analytic proof, at any rate: Put e2πik/n = a+ b
√
−1 (where a and b are real

with a < 1). We have

|q − (a+ b
√
−1)|2 = (q − a)2 + b2 = q2 − 2aq + a2 + b2

= q2 − 2aq + 1 since a2 + b2 = 1

> q2 − 2q + 1 since a < 1

= |q − 1|2

and the claim (22) is proved.
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