
1. G-sets [s:gsets]
[ss:gsetdef]1.1. First definitions. Let G be a group. A permutation representation of G or

G-set consists of a set X and a group homomorphism ρ from G into the group BijX
of bijections of X.1 We often just say that X is a G-set, the homomorphism ρ being
tacitly understood. Assuming that bijections act on the left,2 we say more precisely
that X is a left G-set and write gx or gx or g · x in place of ρ(g)x. If bijections act
on the right, then X is a right G-set and we write xg or xg or x · g for (x)ρ(g).

Whereas it is common to see action from one side or the other being preferred
exclusively, ambidexterity allows for simpler and more elegant notation. There is,
in any case, the following standard way to convert right actions to left actions
and vice-versa: gx := xg−1 and xg := g−1x. We will show a slight non-exclusive
preference for the left. In particular, we will assume actions to be on the left unless Convention

the contrary is explicitly stated or obviously implied from the context.
Let X be a G-set as above. Since ρ is a group homomorphism, (gh)x = g(hx)

and 1x = x, where 1 denotes the identity element of G. Conversely, if for a set X,
there is a map G × X → X the image of (g, x) under which, denoted gx, satisfies
(gh)x = g(hx) and 1x = x, then X is a left G-set.

A G-morphism or G-map f : X → Y of G-sets is any map such that gfx = fgx
for all g, x. We write MorG(X, Y ) for the space of G-maps from X to Y . The space G-maps

EndG X of G-endomorphisms of X is the centralizer in the semi-group EndX of
all self-maps of X of the image of G in BijX ⊆ EndX.

Any set X can be considered to be a G-set by the trivial action: gx := x. The
power set of a G-set X is naturally a G-set: gS := {gx |x ∈ S}. If X and Y are G- Constructing new

G-sets out of given
onessets, then so is the set Mor(X, Y ) of all maps from X to Y : (gf)(x) := g(f(g−1x)).

The space of functions on X (values being taken in a set Y on which G acts trivially)
is naturally a right G-set: (fg)x = f(gx).

1.1.1. Examples.

• There are several ways in which G acts on itself: by left multiplication which
makes it a left G-set; by right multiplication which makes it a right G-set; by the
conjugation action gx := gxg−1 which makes it a left G-set.
• The set G/H of left cosets of a subgroup H is a G-set: g · xH := gxH.
• The group BijX of bijections of a set X clearly acts on X. Such an action serves to
define the group in the first place and is called the defining representation. Groups
often arise in this way along with their defining representations.

[ss:orb]
1.2. Orbits, stabilizers, and fixed points. Let x be an element of a G-set X.
Its orbit is Gx := {gx | g ∈ G} and stabilizer Gx := {g ∈ G | gx = x}; it is fixed
by G if Gx = G. The set of elements of X fixed by G is denoted XG. The action
of G is transitive if X is a single orbit (of any of its points). A transitive G-set is
sometimes also called a homogeneous space.

An elementary but important observation is the following:

(1.1) Gx ∼= G/Gx as G-sets

1The set X could possibly be empty. In this case too, as when X is a singleton, BijX is the

trivial group {1}. This is analogous to the well-known convention 0! = 1.
2Given self-maps φ and ψ of a set X, we have a choice as to the meaning given to their

composition φψ: either ψ could act first and then φ, or vice-versa. In the first case, we let the

maps act on the left , i.e., we write ψ(x) or just ψx for the image of x under ψ; in the second case,
we write (x)ψ or just xψ.
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In particular:

(1.2) every transitive G-set is of the form G/H for some subgroup H;

(1.3)
the number of elements in an orbit of a finite group
divides the order of the group.

Another equally elementary and important observation is:

(1.4) The orbits form a partition of a G-set.

In particular, when X is finite:

(1.5) |X| = |XG|+
∑

|orbit|

where the sum is over the non-singleton orbits. Taking X to be a finite group acted
upon by itself by conjugation, we get the class equation:class equation

(1.6) |G| = |z(G)|+
∑

|class|

where z(G) denotes the centre of G and the sum is over the non-singleton classes.
Combining (1.5) with (1.3), we get:

(1.7) |X| ≡ |XG| mod p when X is finite and G a p-group.
[ss:gsetapply]

1.3. Some applications. We discuss some applications of the above observations
to finite group theory.

1.3.1. p-groups. Letting X in (1.7) be the p-group itself acted upon by conjugation:

(1.8) The centre of a p-group is non-trivial.

Suppose now that G is a group of order p2. Then G/z(G) is of order 1 or p, and so
cyclic. It follows that G is abelian, for we have the following simple observation:

(1.9) A group which is cyclic modulo a central subgroup is abelian.
[sss:sylow]

1.3.2. Sylow subgroups. Let G be a finite group, p a prime, and pn the highest
exponent of p that divides |G|. A subgroup of G of order pn is called a Sylow
p-subgroup. We first show, by induction on the order of G, that they exist. If [G:H]
is prime to p for a proper subgroup H, then we are done by applying the induction
hypothesis to H. If not, then p divides every term in the sum on the right side
of (1.6). Since p also divides G (there being nothing to prove otherwise), it followsExistence of Sylow

subgroups that p divides |z(G)|. Let N be a subgroup of order p of z(G). By induction, a
p-Sylow of G/N exists, and pulling this back to G gives us a p-Sylow of G.

Let P be a Sylow p-subgroup and H any p-subgroup. Consider the set X of G-
conjugates of P , as a H-set (by conjugation). Apply (1.7). Since |X| = [G:N(P )] is
coprime to p, we conclude that XH is non-empty. Which means that H normalizes
some conjugate Q of P . But then QH is a p-subgroup containing Q, so QH = Q
and H ⊆ Q. We’ve proved:

(1.10) Any p-subgroup can be conjugated into any Sylow p-subgroup.

In particular:Conjugacy of Sylow
p-subgroups

Any two Sylow p-subgroups are conjugate. A Sylow p-subgroup is
normal if and only if it is the only Sylow p-subgroup. A Sylow p-
subgroup is the unique such one in its normalizer. The normalizer
of a Sylow p-subgroup is its own normalizer.
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Consider the set X of all Sylow p-subgroups to be a P -set (under conjugation)
and apply (1.7). Since P cannot normalize any other Sylow p-subgroup Q (if it did,
QP would be a p-subgroup strictly containing P , a contradiction), it follows that
XP = {P}. We conclude: The number of

Sylow p-subgroups

(1.11)
The number of Sylow p-subgroups is congruent to 1 modulo p.
(It divides |G| since the Sylow p-subgroups form an orbit of G.)

1.4. Complements and exercises. In the following, G is a group, H a subgroup,
N a normal subgroup, X and Y are G-sets, and S is a subset of X. When an action
of G on an element or subset of G is implied, it is the conjugation action.

The action of G on X is faithful if the only element of G that fixes every point
of X is the identity; or, equilvalently, the kernel of the defining homomorphism
ρ : G → BijX is trivial. Clearly Ker ρ = ∩x∈XGx.

The pointwise stabiliser of S is the subgroup GS := {g ∈ G | gs = s ∀ s ∈ S} and
(global) stabiliser the subgroup stabG S := {g ∈ G | gS = S}. We call S a G-subset
if stabG S = G.

1.4.1. Mor(X, Y )G = MorG(X, Y ).

1.4.2. By restricting the action to H, we may consider X as a H-set.

1.4.3. If K is a group and π : K → G a group homomorphism, we can pull back
the action on X to K: kx := πkx.

1.4.4. S is a stabG S-set in the obvious way. Being the kernel of the induced map
stabG S → BijS, the pointwise stabiliser GS is normal in stabG S.

[sss:xn]
1.4.5. The set XN of fixed points of N is a G-subset.

1.4.6. GgS = gGS and stabG
gS = gstabG S. Taking S = {x}, we see that elements

that are in the same G-orbit have conjugate stabilisers.

1.4.7. If G/H ∼= G/K for a subgroup K of G, then H and K are conjugate.

1.4.8. Assume that G acts transitively on X and let x be an element of X.
• Ker ρ = ∩z∈XGz = ∩g∈GGgx = ∩g∈G

gGx, the largest normal subgroup
of G contained in the stabiliser Gx.

• H too acts transitively on X if and only if HGx = G (here HGx := {hz |h ∈
H, z ∈ Gx}).

• Let K a subgroup of the stabiliser Gx of x. Then the action of the normal-
izer NG K on XK (see 1.4.5) is transitive if and only if the only G-conjugates
of K contained in Gx are the Gx-conjuagtes of K. Observe that the latter
condition is satisfied when Gx is finite and K is a Sylow p-subgroup of Gx.

1.4.9. Prove without using the results of §1.3 Cauchy’s theorem: a finite group
whose order is divisible by a prime p contains an element of order p.

1.4.10. Let X be finite and p be a prime. Suppose that for every x in X, there is a
p-subgroup Px of G which fixes x but no other point. Then the action is transitive
and |X| ≡ 1 mod p. Observe that this proves (1.10) and (1.11) once the existence
of Sylow p-subgroups is known.
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[ex:nnprime]
1.4.11. Assume G finite. If there is only one Sylow p-subgroup of G for every
prime p, then G is a direct product of its Sylow p-subgroups. (Hint: Observe that
if N and N ′ are normal subgroups with N ∩N ′ = {1} then NN ′ ∼= N ×N ′.)

1.4.12. (Frattini argument) Let P be a Sylow p-subgroup of a finite normal sub-
group N . Then N NG P = G. (Hint: See the second item in 1.4.8.) Slightly
more generally, but still by the same argument, we have the following. Let E be
a subset of a finite normal subgroup of N . Then N NG E = G if and only if every
G-conjugate of E is also an N -conjugate of E. Here NG E := {g ∈ G |Eg = E}.

1.4.13. Suppose that |G| = pnm, where p is a prime, (m, p) = 1, and p > m. Then
there is a unique Sylow p-subgroup in G. This subgroup is also normal.

1.4.14. Suppose that |G| = pq2 with p and q being distinct primes. Then one of
the following holds:

• p > q and there is a normal Sylow p-subgroup.
• q > p and there is a normal Sylow q-subgroup.
• |G| = 12 and there is a normal Sylow 2-subgroup.

1.4.15. Let Fq be the finite field of q elements where q is a power of a prime p.
Let G be the group GLn(Fq) of invertible n × n matrices with entries in Fq. The
subgroup of unipotent upper triangular matrices (i.e., upper triangular matrices
that have all their diagonal entries equal to 1) is a Sylow p-subgroup of G. Its
normalizer is the subgroup of all invertible upper triangular matrices.


