POSITIVE DEFINITE REAL SYMMETRIC MATRICES

K. N. RAGHAVAN FOR IST AT IITGN, JULY 2017

An $n \times n$ real symmetric matrix A is said to be *positive definite* if, for every $\underline{v} \in \mathbb{R}^n$, we have $\underline{v}^t A \underline{v} \ge 0$ and equality holds only if $\underline{v} = 0$. Fix notation as follows:

- RSM = real symmetric matrix
- $S_n :=$ the set of all $n \times n$ real symmetric matrices
- $\mathcal{P}_n :=$ the set of all $n \times n$ real symmetric positive definite matrices
- $GL_n :=$ the set of all $n \times n$ real invertible matrices
- $\mathcal{O}_n :=$ the set of all $n \times n$ real orthogonal matrices
- $\mathcal{D}_n :=$ the set of all $n \times n$ real diagonal matrices
- \mathcal{D}_n^+ := the set of all elements of \mathcal{D}_n with positive diagonal entries
- $\mathcal{U}_n :=$ the set of all $n \times n$ real upper triangular matrices with positive diagonal entries
- $\mathcal{L}_n :=$ the set of all $n \times n$ real lower triangular matrices with positive diagonal entries Observe the following:
 - GL_n , \mathcal{D}_n^+ , \mathcal{U}_n , and \mathcal{L}_n are all groups with respect to the usual matrix multiplication.
 - The transpose map sets up an anti-isomorphism between the groups \mathcal{U}_n and \mathcal{L}_n .
 - $\mathcal{U}_n \cap \mathcal{L}_n = \mathcal{D}_n^+$.
 - The only element of \mathcal{D}_n^+ that equals is its own inverse is the identity.

1. Spectral theorem for RSMs and positive definiteness

Here are two simple observations:

- (1) $\mathcal{D}_n \cap \mathcal{P}_n = \mathcal{D}_n^+$.
- (2) There is an action of the group GL_n on \mathcal{S}_n , the action map $GL_n \times \mathcal{S}_n \to \mathcal{S}_n$ being given by $(g, A) \mapsto gAg^t$. The subset \mathcal{P}_n of \mathcal{S}_n is GL_n -invariant.

Recall the spectral theorem for RSMs:

```
For A in \mathcal{S}_n, there exists g in \mathcal{O}_n such that gAg^t belongs to \mathcal{D}_n.
```

Combining it with the two observations above, we obtain easily the following:

Theorem 1. A matrix A in S_n belongs to \mathcal{P}_n iff $\exists g \text{ in } \mathcal{O}_n$ such that $gAg^t \in \mathcal{D}_n^+$.

Corollary 2. A real symmetric matrix A is positive definite if and only if its eigenvalues (which are all real by the spectral theorem) are all positive.

Corollary 3. det A > 0 for $A \in \mathcal{P}_n$.

These are notes for lectures at the NCM sponsored IST at IITGN held in July 2017. Corrections, comments, criticisms, etc. are welcome. Please email them to the author at knr@imsc.res.in or knr.imsc@gmail.com.

An analogous treatment holds for Hermitian positive definite matrices.

Remark 4. Theorem 1 could be rephrased as follows: given an inner product B on \mathbb{R}^n (in other words, a positive definite RSM) there exists an orthonormal basis $\underline{v}_1, \ldots, \underline{v}_n$ with respect to the standard inner product such that $B(\underline{v}_i, \underline{v}_j) = 0$ for $1 \leq i \neq j \leq n$ and $B(\underline{v}_i, \underline{v}_i) > 0$ for $1 \leq i \leq n$.

2. The Gram-Schmidt process and positive definiteness

Let V be a finite dimensional real inner product space and U a subspace of V. Given an ordered basis $\underline{u}_1, \ldots, \underline{u}_m$ of U, the Gram-Schmidt process produces an ordered orthonormal basis $\underline{u}'_1, \ldots, \underline{u}'_m$ of U such that

(1)
$$(\underline{u}'_1, \dots, \underline{u}'_m) = T(\underline{u}_1, \dots, \underline{u}_m)$$
 with T in \mathcal{U}_n

Let us apply this to the following special case. Fix a matrix B in \mathcal{P}_n . Choose V to be \mathbb{R}^n with inner product I given by $I(\underline{u}, \underline{v}) := \underline{u}^t B \underline{v}$. Choose U to be the whole space \mathbb{R}^n (so that $\dim U = m = n$) and the ordered basis $\underline{u}_1, \ldots, \underline{u}_m$ to be the standard basis.

The right hand side of (1) in this special case becomes just T (since $\underline{u}_1, \ldots, \underline{u}_m$ is the standard basis of \mathbb{R}^n , it follows that $(\underline{u}_1, \ldots, \underline{u}_m)$ is the $n \times n$ identity matrix), and so we get

(2)
$$(\underline{u}'_1, \dots, \underline{u}'_m) = T$$

The fact that $\underline{u}'_1, \ldots, \underline{u}'_m$ is an orthonormal basis with respect to the inner product I on \mathbb{R}^n may be expressed as follows (we have written T in place of $(\underline{u}'_1, \ldots, \underline{u}'_m)$, thanks to (2)):

(3)
$$T^t \cdot B \cdot T = \text{identity}_{n \times n}$$

Put $Z^t = T^{-1}$. Observe that Z belongs to \mathcal{L}_n . We may rewrite (3) as follows:

$$(4) B = Z \cdot Z^{*}$$

We have thus proved the existence part of the following theorem:

Theorem 5. For $B \in \mathcal{P}_n$, there exists unique expression $B = Z \cdot Z^t$ with $Z \in \mathcal{L}_n$.

To prove uniqueness, suppose that $Z \cdot Z^t = Y \cdot Y^t$ with both Z and Y in \mathcal{L}_n . This may be rewritten as $Y^{-1}Z = (Z^{-1}Y)^t$. Putting $W = Z^{-1}Y$, we may rewrite this once again as $W^{-1} = W^t$. Since \mathcal{L}_n is a group and both Z and Y belong to it, it follows that W belongs to it, and so also W^{-1} . Observe that W^t belongs to \mathcal{U}_n .

Since $W^{-1} = W^t$, it follows that W^t belongs to $\mathcal{U}_n \cap \mathcal{L}_n$. But this intersection is precisely \mathcal{D}_n^+ , and so W^t belongs to it. Since elements of \mathcal{D}_n^+ are all symmetric, it follows that $W^{-1} = W = W^t$. The only element of \mathcal{D}_n^+ that equals its own inverse is evidently the identity, so $W = \text{identity}_{n \times n}$. This means Z = Y, and the uniqueness assertion in the theorem is proved.

Corollary 6. The action of the group GL_n on \mathcal{P}_n is transitive. The stabilizer at the identity being evidently \mathcal{O}_n , we have $\mathcal{P}_n \simeq GL_n/\mathcal{O}_n$.

Corollary 7. The restriction to \mathcal{L}_n of the action of GL_n on \mathcal{P}_n is simply transitive. We thus have an identification $\mathcal{L}_n \simeq \mathcal{P}_n$ given by $Z \leftrightarrow Z \cdot Z^t$.

3. Positivity of principal minors and positive definiteness

Let A be an $n \times n$ matrix. Let \underline{i} be a subset of cardinality m of $\{1, 2, \ldots, n\}$. We write $\underline{i} = \{i_1, \ldots, i_m\}$ with $1 \leq i_1 < \ldots < i_m \leq n$. Let $A_{\underline{i}}$ denote the $m \times m$ submatrix of A whose entry in position (p,q) is A_{i_p,i_q} . Let the i^{th} principal minor of A, denoted $p_{\underline{i}}(A)$, be the determinant of the matrix $A_{\underline{i}}$. For example:

$$p_{\underline{i}}(A) = \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} = a_{11}a_{33} - a_{13}a_{31} \quad \text{for } \underline{i} = \{1, 3\}.$$

Proposition 8. For A in \mathcal{P}_n , we have $p_{\underline{i}}(A) > 0$ for all $\underline{i} \subseteq \{1, 2, \ldots, n\}$.

PROOF: Consider the inner product on \mathbb{R}^n defined by $A: (\underline{u}, \underline{v})_A := \underline{u}^t A \underline{v}$. Let $W_{\underline{i}}$ be the subspace of \mathbb{R}^n spanned by $\{e_{i_1}, \ldots, e_{i_m}\}$ (where $\underline{i} = \{i_1, \ldots, i_m\}$ with $1 \leq i_1 < \ldots < i_m \leq n$). The restriction to $W_{\underline{i}}$ of $(,)_A$ is an inner product (and so positive definite). Observe that $A_{\underline{i}}$ is the matrix of this restriction with respect to the basis e_{i_1}, \ldots, e_{i_m} of $W_{\underline{i}}$. The result now follows from Corollary 3.

In fact, we can say more. Let $\underline{u}_1, \ldots, \underline{u}_m$ be any set of linearly independent vectors in \mathbb{R}^n . Consider the $m \times m$ matrix B whose entry in position (i, j) is given by $\underline{u}_i^t A \underline{u}_j$. Then B is symmetric positive definite, for it is the matrix of the restriction to the span of $\underline{u}_1, \ldots, \underline{u}_m$ of $(,)_A$ (which is defined as in the proof of the proposition above) with respect to $\underline{u}_1, \ldots, \underline{u}_m$. In particular det B > 0 by Corollary 3.

Theorem 9. A matrix A in
$$\mathcal{S}_n$$
 belongs to \mathcal{P}_n iff $p_{\underline{i}}(A) > 0$ for $\underline{i} = \{1, \ldots, j\} \forall 1 \le j \le n$.

PROOF: The only if part follows from the proposition above. For the if part, proceed by induction on n. The case n = 1 being clear, we assume $n \ge 2$. By induction, the $n - 1 \times n - 1$ top left corner of A is positive definite. By the spectral theorem, there exists orthogonal g of size $n - 1 \times n - 1$ such that conjugating A by the matrix diag(g, 1) we may assume that the $n - 1 \times n - 1$ top left corner of A is diagonal with positive entries, say a_1, \ldots, a_{n-1} . Let v_1, \ldots, v_{n-1}, v be the entries in the last row of A; they are also the entries in the last column of A.

The determinant of A is

$$a_1 \cdots a_{n-1} v - \sum_{i=1}^{n-1} \frac{v_i^2}{a_i} a_1 \cdots a_{n-1}$$

Since it is positive (by hypothesis) and so also $a_1, \ldots a_{n-1}$, we get $v > \sum_{i=1}^{n-1} \frac{v_i^2}{a_i}$.

If $\underline{x}^t = (x_1, \ldots, x_n)$ is a general vector in \mathbb{R}^n , then, as an easy calculation shows, we have

$$\underline{x}^{t}A\underline{x} = vx_{n}^{2} + \sum_{i=1}^{n-1} \left(a_{i}x_{i}^{2} + 2v_{i}x_{i}x_{n}\right)$$

Since $v > \sum_{i=1}^{n-1} \frac{v_i^2}{a_i}$, we have

$$\underline{x}^{t} A \underline{x} \ge \sum_{i=1}^{n-1} \left(a_{i} x_{i}^{2} + 2v_{i} x_{i} x_{n} + \frac{v_{i}^{2} x_{n}^{2}}{a_{i}} \right) = \sum_{i=1}^{n-1} \left(\sqrt{a_{i}} x_{i} + \frac{v_{i} x_{n}}{\sqrt{a_{i}}} \right)^{2} \ge 0$$

The first inequality is strict except when $x_n = 0$. Assuming $x_n = 0$, the second inequality is strict, except when x_i , $1 \le i \le n-1$ are all zero, in other words except when $\underline{x} = 0$, and we are done.

EXERCISES

- (1) Let A be a real $n \times n$ symmetric positive definite matrix. Show from first principles that any real eigenvalue of A must be positive.
- (2) Apply the Gram-Schmidt process to the ordered basis $(1,1,1)^t$, $(1,2,3)^t$, $(1,4,9)^t$ of \mathbb{R}^3 to produce an orthonormal basis of \mathbb{R}^3 with respect to the standard inner product.
- (3) Given below is a 3×3 real symmetric matrix. Is it positive definite? If it is, write it as ZZ^t , where Z is a 3 \times 3 real lower triangular matrix with positive entries on the diagonal:

$$\left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array}\right)$$

- (4) Let A be a 2×2 invertible real matrix. When can we write A as LU, with L real lower triangular and U real upper triangular 2×2 matrices? Generalize to 3×3 and $n \times n$ matrices.
- (5) Let A be an $n \times n$ real symmetric matrix. It is called *positive semi-definite* if $v^t A v \ge 0$ for all \underline{v} in \mathbb{R}^n . Denote by \mathcal{P}_n^0 the set of all $n \times n$ real symmetric positive semi-definite matrices.
 - (a) Observe that the action of GL_n on \mathcal{S}_n preserves \mathcal{P}_n^0 . In fact, if A is positive semi-definite, then so is the $m \times m$ matrix $B^t A B$, where B is any $m \times n$ real matrix.
 - (b) Show that A belongs to \mathcal{P}_n^0 if and only if its eigenvalues (which are all real by the spectral theorem) are all non-negative.
 - (c) Show that the principal minors of A are all non-negative for A in \mathcal{P}_n^0 . Observe that it follows in particular that the principal submatrices of a positive semidefinite matrix are themselves positive semi-definite.
 - (d) Prove or disprove the semi-definite analogue of the statement in Theorem 9: If $p_i(A) \ge 0$ for all $\underline{i} = \{1, \ldots, j\}$ for all $j, 1 \le j \le n$, then A is positive semi-definite.
- (e) Every element of \mathcal{P}_n^0 has a unique k^{th} root in \mathcal{P}_n^0 , for every positive integer k. (6) Find a positive definite real symmetric matrix 3×3 matrix A such that A^2 is the matrix in item (3) above.
- (7) Prove or disprove: every positive definite real symmetric $n \times n$ matrix can be written uniquely as $Z \cdot Z^t$ for some real upper triangular $n \times n$ matrix Z with positive diagonal entries.

THE INSTITUTE OF MATHEMATICAL SCIENCES *E-mail address*: knr@imsc.res.in, knr.imsc@gmail.com