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An n×n real symmetric matrix A is said to be positive definite if, for every v ∈ Rn, we have
vtAv ≥ 0 and equality holds only if v = 0. Fix notation as follows:

• RSM = real symmetric matrix
• Sn := the set of all n× n real symmetric matrices
• Pn := the set of all n× n real symmetric positive definite matrices
• GLn := the set of all n× n real invertible matrices
• On := the set of all n× n real orthogonal matrices
• Dn := the set of all n× n real diagonal matrices
• D+

n := the set of all elements of Dn with positive diagonal entries
• Un := the set of all n× n real upper triangular matrices with positive diagonal entries
• Ln := the set of all n× n real lower triangular matrices with positive diagonal entries

Observe the following:

• GLn, D+
n , Un, and Ln are all groups with respect to the usual matrix multiplication.

• The transpose map sets up an anti-isomorphism between the groups Un and Ln.
• Un ∩ Ln = D+

n .
• The only element of D+

n that equals is its own inverse is the identity.

1. Spectral theorem for RSMs and positive definiteness

Here are two simple observations:

(1) Dn ∩ Pn = D+
n .

(2) There is an action of the group GLn on Sn, the action map GLn × Sn → Sn being
given by (g, A) 7→ gAgt. The subset Pn of Sn is GLn-invariant.

Recall the spectral theorem for RSMs:

For A in Sn, there exists g in On such that gAgt belongs to Dn.

Combining it with the two observations above, we obtain easily the following:

Theorem 1. A matrix A in Sn belongs to Pn iff ∃ g in On such that gAgt ∈ D+
n .

Corollary 2. A real symmetric matrix A is positive definite if and only if its eigenvalues
(which are all real by the spectral theorem) are all positive.

Corollary 3. detA > 0 for A ∈ Pn.

These are notes for lectures at the NCM sponsored IST at IITGN held in July 2017. Correc-
tions, comments, criticisms, etc. are welcome. Please email them to the author at knr@imsc.res.in or
knr.imsc@gmail.com.

An analogous treatment holds for Hermitian positive definite matrices.
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Remark 4. Theorem 1 could be rephrased as follows: given an inner product B on Rn (in
other words, a positive definite RSM) there exists an orthonormal basis v1, . . . , vn with
respect to the standard inner product such that B(vi, vj) = 0 for 1 ≤ i 6= j ≤ n and
B(vi, vi) > 0 for 1 ≤ i ≤ n.

2. The Gram-Schmidt process and positive definiteness

Let V be a finite dimensional real inner product space and U a subspace of V . Given an
ordered basis u1, . . . , um of U , the Gram-Schmidt process produces an ordered orthonormal
basis u′1, . . . , u′m of U such that

(1) (u′1, . . . , u
′
m) = T (u1, . . . , um) with T in Un

Let us apply this to the following special case. Fix a matrix B in Pn . Choose V to be Rn

with inner product I given by I(u, v) := utBv. Choose U to be the whole space Rn (so that
dimU = m = n) and the ordered basis u1, . . . , um to be the standard basis.

The right hand side of (1) in this special case becomes just T (since u1, . . . , um is the
standard basis of Rn, it follows that (u1, . . . , um) is the n×n identity matrix), and so we get

(2) (u′1, . . . , u
′
m) = T

The fact that u′1, . . . , u′m is an orthonormal basis with respect to the inner product I on Rn

may be expressed as follows (we have written T in place of (u′1, . . . , u
′
m), thanks to (2)):

(3) T t ·B · T = identityn×n

Put Zt = T−1. Observe that Z belongs to Ln. We may rewrite (3) as follows:

(4) B = Z · Zt

We have thus proved the existence part of the following theorem:

Theorem 5. For B ∈ Pn, there exists unique expression B = Z · Zt with Z ∈ Ln.

To prove uniqueness, suppose that Z · Zt = Y · Y t with both Z and Y in Ln. This may
be rewritten as Y −1Z = (Z−1Y )t. Putting W = Z−1Y , we may rewrite this once again as
W−1 = W t. Since Ln is a group and both Z and Y belong to it, it follows that W belongs
to it, and so also W−1. Observe that W t belongs to Un.

Since W−1 = W t, it follows that W t belongs to Un ∩ Ln. But this intersection is pre-
cisely D+

n , and so W t belongs to it. Since elements of D+
n are all symmetric, it follows that

W−1 = W = W t. The only element of D+
n that equals its own inverse is evidently the iden-

tity, so W = identityn×n. This means Z = Y , and the uniqueness assertion in the theorem
is proved.

Corollary 6. The action of the group GLn on Pn is transitive. The stabilizer at the identity

being evidently On, we have Pn ' GLn/On .

Corollary 7. The restriction to Ln of the action of GLn on Pn is simply transitive. We
thus have an identification Ln ' Pn given by Z ↔ Z · Zt.
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3. Positivity of principal minors and positive definiteness

Let A be an n × n matrix. Let i be a subset of cardinality m of {1, 2, . . . , n}. We write
i = {i1, . . . , im} with 1 ≤ i1 < . . . < im ≤ n. Let Ai denote the m × m submatrix of A
whose entry in position (p, q) is Aip,iq . Let the ith principal minor of A, denoted pi(A), be
the determinant of the matrix Ai. For example:

pi(A) =

∣∣∣∣ a11 a13
a31 a33

∣∣∣∣ = a11a33 − a13a31 for i = {1, 3}.

Proposition 8. For A in Pn, we have pi(A) > 0 for all i ⊆ {1, 2, . . . , n}.

Proof: Consider the inner product on Rn defined by A: (u, v)A := utAv. Let Wi be the sub-
space of Rn spanned by {ei1 , . . . , eim} (where i = {i1, . . . , im} with 1 ≤ i1 < . . . < im ≤ n).
The restriction to Wi of ( , )A is an inner product (and so positive definite). Observe that
Ai is the matrix of this restriction with respect to the basis ei1 , . . . , eim of Wi. The result
now follows from Corollary 3. 2

In fact, we can say more. Let u1, . . . , um be any set of linearly independent vectors in Rn.
Consider the m ×m matrix B whose entry in position (i, j) is given by ut

iAuj. Then B is
symmetric positive definite, for it is the matrix of the restriction to the span of u1, . . . , um

of ( , )A (which is defined as in the proof of the proposition above) with respect to u1, . . . ,
um. In particular detB > 0 by Corollary 3.

Theorem 9. A matrix A in Sn belongs to Pn iff pi(A) > 0 for i = {1, . . . , j} ∀ 1 ≤ j ≤ n.

Proof: The only if part follows from the proposition above. For the if part, proceed by
induction on n. The case n = 1 being clear, we assume n ≥ 2. By induction, the n−1×n−1
top left corner of A is positive definite. By the spectral theorem, there exists orthogonal g
of size n− 1× n− 1 such that conjugating A by the matrix diag(g, 1) we may assume that
the n − 1 × n − 1 top left corner of A is diagonal with positive entries, say a1, . . . , an−1.
Let v1, . . . , vn−1, v be the entries in the last row of A; they are also the entries in the last
column of A.

The determinant of A is

a1 · · · an−1v −
n−1∑
i=1

v2i
ai
a1 · · · an−1

Since it is positive (by hypothesis) and so also a1, . . . an−1, we get v >
∑n−1

i=1
v2i
ai

.

If xt = (x1, . . . , xn) is a general vector in Rn, then, as an easy calculation shows, we have

xtAx = vx2
n +

n−1∑
i=1

(
aix

2
i + 2vixixn

)
Since v >

∑n−1
i=1

v2i
ai

, we have

xtAx ≥
n−1∑
i=1

(
aix

2
i + 2vixixn +

v2i x
2
n

ai

)
=

n−1∑
i=1

(
√
aixi +

vixn√
ai

)2

≥ 0
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The first inequality is strict except when xn = 0. Assuming xn = 0, the second inequality is
strict, except when xi, 1 ≤ i ≤ n− 1 are all zero, in other words except when x = 0, and we
are done. 2

Exercises

(1) Let A be a real n× n symmetric positive definite matrix. Show from first principles
that any real eigenvalue of A must be positive.

(2) Apply the Gram-Schmidt process to the ordered basis (1, 1, 1)t, (1, 2, 3)t, (1, 4, 9)t

of R3 to produce an orthonormal basis of R3 with respect to the standard inner
product.

(3) Given below is a 3× 3 real symmetric matrix. Is it positive definite? If it is, write it
as ZZt, where Z is a 3 × 3 real lower triangular matrix with positive entries on the
diagonal:  1 1 1

1 2 2
1 2 3


(4) Let A be a 2 × 2 invertible real matrix. When can we write A as LU , with L real

lower triangular and U real upper triangular 2× 2 matrices? Generalize to 3× 3 and
n× n matrices.

(5) Let A be an n×n real symmetric matrix. It is called positive semi-definite if vtAv ≥ 0
for all v in Rn. Denote by P0

n the set of all n×n real symmetric positive semi-definite
matrices.
(a) Observe that the action of GLn on Sn preserves P0

n. In fact, if A is positive
semi-definite, then so is the m × m matrix BtAB, where B is any m × n real
matrix.

(b) Show that A belongs to P0
n if and only if its eigenvalues (which are all real by

the spectral theorem) are all non-negative.
(c) Show that the principal minors of A are all non-negative for A in P0

n. Observe
that it follows in particular that the principal submatrices of a positive semi-
definite matrix are themselves positive semi-definite.

(d) Prove or disprove the semi-definite analogue of the statement in Theorem 9:
If pi(A) ≥ 0 for all i = {1, . . . , j} for all j, 1 ≤ j ≤ n, then A is positive
semi-definite.

(e) Every element of P0
n has a unique kth root in P0

n, for every positive integer k.
(6) Find a positive definite real symmetric matrix 3 × 3 matrix A such that A2 is the

matrix in item (3) above.
(7) Prove or disprove: every positive definite real symmetric n×n matrix can be written

uniquely as Z ·Zt for some real upper triangular n×n matrix Z with positive diagonal
entries.
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