
SEPARATION AXIOMS AND METRIZABILITY

K. N. RAGHAVAN

By a neighbourhood of a subset A (in particular of a singleton and therefore of a point) in a topological
space X, we mean a subset of X that contains an open set containing A.1

The Hausdorff property.
(1) The following conditions on a topological space X are equivalent. We say that X is Hausdorff

if they hold.
(H0) Any two distinct points have disjoint neighbourhoods.
(H1) The intersection of closed neighbourhoods of any point consists only of that point.
(H3) The diagonal in X ×X is closed.
(H4) The diagonal in XI for any index set I is closed.

(2) Any subspace of a Hausdorff space is Hausdorff. Any topology that is finer than a Hausdorff
topology is Hausdorff.

(3) Let f : X → Y and g : X → Y be continuous functions of topological spaces. If Y is Hausdorff,
then {x ∈ X | f(x) = g(x)} is closed in X. (Hint: The diagonal in Y × Y is closed and {x ∈ X | f(x) =

g(x)} is the inverse image of the diagonal under the continuous map f × g : X → Y × Y .)
(4) (Principle of extension of identities) Let f : X → Y and g : X → Y be continuous functions of

topological spaces. If Y is Hausdorff and f , g agree on a dense subset of X, then f = g. (Hint:
Use item (3).)

(5) The graph of a map f : X → Y is defined to be the subset {(x, f(x)) ∈ X × Y |x ∈ X}. Let
f : X → Y be a continuous map from a topological space X to a Hausdorff topological space Y .
Then the graph of f is closed. (Hint: The graph is the inverse image of the diagonal under the map
f × id : X × Y → Y × Y .)

(6) If for every pair x and x′ of distinct points in X there exists a continuous map f : X → Y
with Y a Hausdorff topological space and f(x) 6= f(x′), then X is Hausdorff. In particular, if
continuous real valued functions on a spaceX separate points (that is, given two distinct points
there exists a continuous real valued function that takes distinct values on them), then X is
Hausdorff.

(7) Singletons are closed in a Hausdorff space. Thus any finite subset of a Hausdorff space is
closed, and a Hausdorff topology on a finite set is discrete.

(8) If every point of a topological space X has a closed neighbourhood that is Hausdorff (as a
subspace), then X is Hausdorff. Give an example to show that it is possible in a non-Hausdorff
space for every point to have an open neighbourhood that is Hausdorff. (Hint: Consider the
quotient space [−1, 1]/ ∼ where x ∼ −x for x 6= ±1.)

(9) The product of Hausdorff spaces is Hausdorff. Conversely, if a product of non-empty spaces is
Hausdorff, then so is each factor.

An important non-Hausdorff topology. Let X := Cn, where n is a positive integer. Let R :=
C[x1, . . . , xn] be the ring of polynomials in n variables with coefficients in C. Each element f(x1, . . . , xn)
of R may naturally be thought of as a C-valued function on X. For S a subset of R, define V (S) := {x ∈
X | f(x) = 0 ∀f ∈ S}. Observe that:

(1) V (empty set) = V ({0}) = X and V ({1}) = empty set
(2) ∩αV (Sα) = V (∪αSα)
(3) V (S1) ∪ V (S2) = V (S1S2), where S1S2 := {fg | f ∈ S1, g ∈ S2}

1One possible way to define and think of topologies is via neighbourhoods as the fundamental notion (instead of open sets).
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Thus, taking V (S) as S varies over subsets of R to be the closed sets, we get a topology on X. This is
called the Zariski topology.

For f ∈ R, define D(f) = {x ∈ X | f(x) 6= 0}. Observe that:
(1) D(f) = X \ V ({f})
(2) D(f) is the empty set if and only if f = 0
(3) X \ V (S) = ∪f∈SD(f)
(4) D(f) ∩D(g) = D(fg)

Thus the D(f), as f varies over R, form a basis of open sets for the Zariski topology. Using this and
items (2), (4) above, we see that any two non-empty open sets intersect non-trivially, so the Zariski
topology is not Hausdorff. Singletons are closed in the Zariski topology, as can be readily verified.

Regularity.
(1) The following conditions are equivalent for a topological space X. The space X is called regular

if X is Hausdorff and these conditions hold:
(a) The closed neighbourhoods of a point form a fundamental system of neighbourhoods of

that point. (A collection of neighbourhoods of a point is called a fundamental system if every neigh-
bourhood of the point contains a neighbourhood from the collection. For example, the open balls
B(x, 1/n) := {y | d(x, y) < 1/n} of radius 1/n around a point x in a metric space, as n varies over
the positive integers, form a fundamental system of open neighbourhoods of x. The closed balls
B̄(x, 1/n) := {y | d(x, y) ≤ 1/n} form a fundamental system of closed neighbourhoods of x.)

(b) Given a point x and a closed set C in X with x 6∈ C, there exists a neighbourhood U of x
such that the closure of U does not intersect C (or, equivalently, there exist disjoint open
sets V and W with x ∈ V and C ⊆W .)

(2) Subspaces of regular spaces are regular. If every point of a topological space has a closed
regular neighbourhood, then the space is regular.

(3) A product of regular spaces is regular. Conversely, if a product of non-empty spaces is regular,
then so is each factor.

Completely regular or Tychonoff spaces. A topological space X is called completely regular, or
Tychonoff , or T3 1

2
if it is Hausdorff and the following condition holds: given a closed set C of X and a

point x not in C, there exists a continuous function f : X → [0, 1] such that f(x) = 0 and f(C) = 1.
(1) Subspaces of completely regular spaces are completely regular. A product of completely regular

spaces is completely regular. If a product of non-empty topological spaces is completely regular,
then so is each factor.

(2) Completely regular spaces are regular.
(3) Show that a metric space is completely regular by explicitly constructing a continuous [0, 1]-

valued function that separates a given closed set from a given point not in it.

Product topology.
(1) Let Xα, with α in some index set I, be a collection of topological spaces. For a map f from a

topological space Y to
∏
αXα (with the product topology) to be continuous it is necessary and

sufficient that pα ◦ f be continuous for every α, where pα are the projections.
(2) A subspace of a countable product of second countable spaces is second countable.

Embedding in cubes. The product space [0, 1]I , where I is an arbitrary index set, is called a cube.
Every cube is a compact Hausdorff space (compactness follows from Tychonoff ’s theorem).

(1) Let X be a topological space and F a collection of continuous functions (possibly not all such
functions) from X to the compact interval [0, 1]. Let ϕ : X → [0, 1]F be the natural map defined
by (ϕ(x))(f) := f(x) (recall that [0, 1]F can be interpreted as the set of functions from F to
[0, 1]). Then:
(a) ϕ is a continuous function. (This is clear since the projection to any factor of the product gives a

continuous function from X to [0, 1] by construction.)
(b) ϕ is an injection if F separates points of X.
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(c) ϕ from X to ϕX is an open map if F separates points from closed sets. (Hint: Let U be open
in X and u in U . Let g ∈ F with g(u) = a, g(X \ U) = b, and a 6= b. Let pg : [0, 1]F → [0, 1] be the
projection to the “g-component” (this is just “evaluation at g”). Then ϕX∩p−1

g W , where W is an open
in [0, 1] containing a and not b, is an open set in ϕX containing u and contained in ϕU .)

(2) A topological space is completely regular if and only if it is the subspace of a compact Hausdorff
space. Indeed a completely regular space can be realized as the subspace of a cube by item (1)
above: choose F to be the collection of all continuous [0, 1]-valued functions.

Normality. A topological space is called normal if it is Hausdorff and the following condition holds:
given two disjoint closed sets A and B, there exist disjoint neighbourhoods U and V respectively of A
and B.

Some sufficient conditions for normality.
(1) A compact Hausdorff space is regular, even normal.
(2) A metric space is normal. (Hint: Let E and F be disjoint closed sets of a metric space X. Put U =

∪e∈EB(e, d(e,F )
2

), where d(e, F ) := inf{d(e, f) | f ∈ F}, and B(e, d(e,F )
2

) is the open ball of radius d(e,F )
2

around e. Similarly put V = ∪f∈FB(f, d(f,E)
2

). Then U and V are open neighbourhoods of E and F

respectively. Moreover, U and V are disjoint, for the balls B(e, d(e,F )
2

) and B(f, d(f,E)
2

) are disjoint for any
pair of points e in E and f in F , because if z belongs to their intersection, then d(e, f) ≤ d(e, z) + d(z, f) <
d(e,F )

2
+ d(f,E)

2
≤ max {d(e, F ), d(f,E)}, a contradiction.)

(3) Show by example that for two disjoint closed sets A and B in a metric space d(A,B) could be 0.
(4) A Lindelöf regular space is normal. (Recall that a topological space is called Lindelöf if every

open cover has a countable sub cover.) (Hint: Let A and B be closed sets. For a in A, let Ua be an
open set containing A such that Ua does not intersect B. Then {Ua}a∈A ∪ {X \ A} is an open cover of X.
By Lindelöfness of X, we can find a countable subcover {Un}n≥1 of the cover {Ua}a∈A of A. Similarly we
can find a countable cover {Vn}n≥1 of B such that each Vn is disjoint from A. Now set U ′n = Un \ ∪j≤nVj

and V ′n = Vn \ ∪j≤nUj . Then U = ∪n≥1U
′
n and V = ∪n≥1V

′
n are disjoint open neighbourhoods of A and B.)

(5) A second countable space is Lindelöf. Thus, by the previous item, a regular second countable
space is normal.

Abundance of continuous functions on a normal space: Urysohn’s lemma. Urysohn showed
that there are enough continuous functions on any normal space to separate disjoint closed subsets:
Urysohn’s Lemma: given two disjoint closed sets A and B in a normal space X, there exists a continu-
ous function f : X → [0, 1] with f(A) = 0 and f(B) = 1.

This lemma holds the key to several basic results in the theory, such as his metrization theorem (see
below). It follows from it that normal spaces are completely regular. Its proof may be achieved in the
following steps:

(1) Let X be a topological space and let D be a dense subset of the non-negative real numbers.
Suppose that we have a collection of open sets Ud of X indexed by d in D such that
(a) Ud = X for d > 1 in D, and
(b) Ud ⊆ Ue for d < e in D.

Define f : X → [0, 1] by f(x) = inf{d ∈ D |x ∈ Ud}. Then:
• For s ∈ [0, 1], we have f−1[0, s] = ∩d∈D,d>sUd and f−1[0, s) = ∪d∈D,d<sUd.
• f is continuous.

(2) Now let X be normal, and A, B be disjoint closed sets in X. Choose D to be the set of non-
negative dyadic rationals. An arbitrary element of d 6= 0 in D has the form (2m + 1)/2n. We
choose open sets Ud in X indexed by d ∈ D by an induction on n. Put Ud = X for d > 1 in D
and U1 = X \ B. Let U0 be an open set containing A whose closure does not meet B. Now for
a general d, write it as (2m + 1)/2n and take Ud to be an open set such that U2m/2n ⊆ Ud ⊆
Ud ⊆ U(2m+2)/2n . Then the conditions (1a) and (1b) of the previous item are met. Now the f as
defined in the previous item is continuous with f(A) = 0 and f(B) = 1.
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Metrics.
(1) Let X be a metric space with distance function d. Define the truncation d′ of d on X by

d′(x, x′) := min{d(x, x′), 1} for x, x′ in X. The truncation d′ is also a metric. Moreover the
topology defined by d′ is the same as that defined by d.

(2) Let {Xn}n≥1, be a countable collection of metric spaces. Then the product space
∏
n≥1Xn is

metrizable. Indeed, letting d′n be the truncation (as defined in item (1) above) of the metric dn
on Xn, we set d((xn), (x′n)) :=

∑
n≥1 d

′
n(xn, x

′
n)/2

n. Then d is a metric on
∏
n≥1Xn whose under-

lying topology is the product topology.
(3) A topological space is called separable if it has a countable dense subset. A second countable

space is separable. (Hint: Choose one point from each member of a countable basis. The resulting
countable collection of points is dense.) A separable metric space is second countable. (Hint: Suppose
that E is a countable dense set of a metric space. Then {B(e, 1

n
) | e ∈ E,n positive integer} is a countable

collection of open sets. It is also a basis: given an element u in an open set U , let n be large enough so
that B(u, 1

n
) ⊆ U and choose e ∈ E such that e ∈ B(u, 1

2n
); then u ∈ B(e, 1

2n
) ⊆ B(u, 1

n
) ⊆ U .)

Urysohn’s metrization theorem (characterization of separable metric spaces). The following
are equivalent for a topological space X:

(1) It is regular and second countable.
(2) It is a subspace of the product of a countable number of copies of the compact interval [0, 1].
(3) It is a separable metric space.

Hint: (1)⇒(2): By item (5) under Sufficient conditions for normality, the space is normal. Now use the result
under Embedding in cubes with F being the countable collection as below. Let U be a countable basis. Consider
the countable set Z := {(U, V ) |U, V ∈ U with U ⊆ V }. For each (U, V ) ∈ Z , choose by Urysohn a continuous
[0, 1]-valued function fU,V with fU,V (U) = 0 and f(X \ V ) = 1. Let F := {fU,V | (U, V ) ∈ Z }. To observe that F
separates a point x from a closed set C with x 6∈ C, find (U, V ) ∈ Z with x ∈ U and V ⊆ X \B.

(2)⇒(3): Let X ⊆ [0, 1]countable. A countable product of metric spaces can be given a metric that induces the
product topology (item (2) under Metrics). A subspace of a metric space being a metric space, it is clear that X is
a metric space. A subspace of a countable product of second countable spaces is second countable (item (2) under
Product topology), so X is secound countable and so a separable metric space (item (3) under Metrics).

(3)⇒(1): This is easy. Metric spaces are regular: given C closed and x 6∈ C, first observe that d(x,C) > 0;
then ∪c∈CB(c, d(x,C)

2
) is an open neighbourhood of C which is disjoint from the neighbourhood B(x, d(x,C)

2
) of x.

Separable metric spaces are second countable (item (3) under Metrics).
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