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Throughout H, X stand for finite dimensional Hilbert spaces.

1  Spectral theorem for self-adjoint opertors
Let A € B(H) and let {&1,8&9, -+ ,&,} be an orthonormal basis. Write
A = z”: @ij&i-
i=1
Then (a;;) is called the matrix of A w.r.t. the orthonormal basis {£1,82, -+, &, }. Note that
a;j =< A&, & >.

Exercise 1.1 Let A € B(H). Prove that there exists a unique element A* € B(H) such that
for&meH,
<AL >=<E ATy > .

The unique element A* is called the adjoint of A.

Hint: What is the matrix of A* ?

Exercise 1.2 Let A € B(H). Let (ai;) and (oy;) be the matrices associated to A and A*

respectively w.r.t an orthonormal basis {&1, &2, ,&n}. Prove that o; = aj;.
Exercise 1.3 Prove that (AB)* = B*A*, A* = A, (aA+ 3B)* = aA* + B*.

Exercise 1.4 Let W C H be a subspace and let W+ := {n € H :< &,n>=0 for &€ W}
Prove that

1. W+ WL =H and WNW+ = {0}

2. Given x € H, there exists unique € € W and n € W such that x = & + 1.



Definition 1.1 Let A € B(H). The operator A is said to be self-adjoint if A = A*.

Example 1.2 Let W C H be a subspace and W be its orthogonal complement. For x € H,
write x = & +n with € € W and n € W+, Define a map Py : H — H by Py (x) = &. Prove
that

~

. The map Py is linear, Py =id on W and Py =0 on W+,

NS}

. Py is self-adjoint i.e. Py, = Py,

3. Py is an idempotent i.e. PEV = Py, and

4. The image of Py is W.
Definition 1.3 An operator P € B(H) is called a projection if P> = P = P*.
Exercise 1.5 Let P € B(H) be a projection. Let W = Im(P). Prove that

1. W = Ker(1 — P) and Wt = Ker(P),

2. Plw =1id, Plyy. =0, and P = Py .
Proposition 1.4 The map

{ subspaces of H} > W — Py € { set of projections in B(H)}

s a bijection.
Thus we think of projections and subspaces as one and the same.

Exercise 1.6 Let W andV be subspaces of H and let P and @ be the corresponding projections.

Prove that the following are equivalent.
1. W and V are orthogonal i.e. < W,V >=0.
2. PQ =0.

Exercise 1.7 Let Wy, Ws,--- W, be subspaces of H and denote the corresponding projections
by Pi, Ps,---, P,. Prove that the following are equivalent.

1. @2 Wi =H ie. Wi +WoA -+ Wy, =H and < W;, W; >=0.

2. PPj=0andy ; P =1.



Exercise 1.8 Let W C ‘H be a subspace and denote the orthogonal projection onto W by P.
Consider a self-adjoint operator A € B(H). Then the following are equivalent.

e The operator A leaves W invariant i.e. AW C W.
e PAP = AP.

o A commutes with P i.e. AP = PA.

Theorem 1.5 (Spectral theorem) Let A € B(H) be a self-adjoint operator. Then there
ezists an orthonormal basis {&1, &2, , &} and scalars {\1, X2, - -+, An} such that A& = N\j§;.
( That is, the matriz of A is diagonal w.r.t. the orthonormal basis {&1,--+ ,&n}.)

Proof. Let A be an eigen value of A i.e. there exists a non-zero vector & such that A¢ = A¢.
Then A leaves the one-dimensional subspace W := span {¢} invariant. Now apply Exercise
E to conclude that A leaves W+ invariant. By induction, there exists an orthonormal basis
{€9,&5,++ &} of W and scalars Ag, A3, -+, A\, such that A& = ;& for j = 2,3, ,n.
Now set & = & and A\; = A. Since W @ W+ = H, it follows that B := {£1,&,---,&,} is an

orthonormal basis of H and the matrix of A w.r.t. B is diagonal. This completes the proof. O
Definition 1.6 Let A € B(H). Define

o(A):={r e C: A— X\ is not invertible}.
The set o(A) is called the spectrum of A.

Exercise 1.9 Let A € B(H). Prove that the following are equivalent.
1. Xeo(A).
2. There exists & € H such that & # 0 and AE = X\E.
For A € 0(A), let Hy = {{ € H : A& = X

Exercise 1.10 Let A € B(H) and let A\, A, -+, Ay be distinct elements of o(A). If §5 € Hy,
are non-zero vectors then prove that {£1,&2,- -+ ,&,} are linearly independent. Conclude that

o(A) is finite.

The following exercise shows that o(A) is non-empty.



Exercise 1.11 Let £ € H be a non-zero vector. Consider the set of vectors {£, A&, A%E, -+ | }.
Since H is finite dimenstonal, conclude that there exists a polynomial p with complex co-

efficients such that p(A)€ = 0. Now factorise p as

p(@) = (z = M)(@ = A2) -+ (& = An).
Use induction to show that there exists i such that A\; € o(A).
Proposition 1.7 For A € B(H), 0(A) is non-empty and finite.

Exercise 1.12 If the matriz of A w.r.t an orthonormal basis is diag(Ai, A2, -+, A\y) what is

o(A) ¢

Exercise 1.13 If A is self-adjoint, prove that o(A) C R.

Hint: Diagonalise A and use the fact that the matrices for A and A* are equal.

Exercise 1.14 Let A be self-adjoint and A\, pp € o(A). If X # p then Hy and H,, are orthogonal.
Hint: Let £ € Hy and n € H, be given. Consider the inner product < A{,n >=<§, An >. O

Theorem 1.8 (Spectral theorem - A reformulation) Let A € B(H) be self-adjoint. Then
H = @®rco(a)Ha- Denote the orthogonal projection onto Hy by Py. We have

1. If X% p then P\P, =0,

2. Z P, =1, and
A€o (A)

3. A= Z AP,.
Ao (A)

Also note that for A € o(A),

(A—p)
P, = .
A H \
pea(A)—{A}
Proposition 1.9 (Simultaneous diagonalisation) Let A, B € B(H) be self-adjoint such
that AB = BA. Then there exists an orthonormal basis B := {£1,&2,- -+ ,&n} such that the

matrices of A and B w.r.t. B are diagonal.

Proof. Write H = @)cs(a)Ha. Since A and B commute, B leaves H, = ker(A — \) invariant.

Now diagonalise B on each H, and complete the proof. 0.



Exercise 1.15 Extend Fxercise to any finite (or even infinite) number of self-adjoint op-

erators.
Definition 1.10 Let A € B(H). The operator A is called normal if A*A = AA*.

Theorem 1.11 (Spectral theorem for normal operators) Let A be a normal operator on
H. Then there exists an orthonormal basis {&1,&2, -+ , &} and scalars {1, Aa, -, A\p} such
that Af] = )\jfj-

Proof. Let B := # and C := AE;“*. Note that B and C' are self-adjoint and A = B + iC.

Also observe that BC' = CB. Now apply Proposition to complete the proof. O

2 Finite dimensional x-algebras

Definition 2.1 An algebra A over C
1. is a vector space over C,

2. has an associative multiplicative structure m : A x A — A. We write m(a,b) as ab for

a,b € A. Associativity means (ab)c = a(bc).
Also the mutliplication is compatible with the vector space structure. More precisely, we have
a(b+c) =ab+ ac

(a+ b)c = ac+ bc
(Aa)b = A(ab) = a(Ab)

We say A is unital if there exists an element e € A such that ae = ea = a. (If such an element

exists then it is unique. ) We call e the multiplicative identity of A and denote it by 1.
Remark 2.2 An algebra A is called commutative if ab = ba for a,b € A.

Definition 2.3 Let A be an algebra. By a x-structure on A, we mean a map x : A — A, (we

denote xa by a* ), satisfying the following.

1. * is an involution i.e. (a*)* = a.

2. x is antimultiplicative i.e. (ab)* = b*a*.

8. x is conjugate linear i.c. (a +b)* = a* +b* and (Ma)* = \a*.



An algebra A together with a x-structure is called a *-algebra.
Example 2.4 Let H be a finite dimensional Hilbert space. Then B(H) is a x-algebra.

Example 2.5 The matriz algebra M, (C) is a x-algebra. The multiplication is just the matriz
multiplication. The x-structure is defined as follows:
If A = (a;j) then A* = (o) where oy; = ay;.

Exercise 2.1 Consider the set of n x n matrices. Fori,j =1,2,---,n, let e;; be the matriz

whose (i,§)™" entry is 1 and the rest of the entries are 0. Prove the following.

€ijerl = 0jkeil

* _— ..
€ij = €ji

Also show that {e;;} is a basis for M, (C). ( Here iy =1 if k=1 and diy =0 if K #1. )

Example 2.6 Let X be a non-empty set. Let C(X) := {f : X — C}. Then C(X) is a
x-algebra. The multiplication is pointwise multiplication and the x-structure is the complex

conjugation i.e.

Prove that C(X) is finite dimensional if and only if X is finite. Ezhibit a basis for C(X). Also

note that C(X) is commutative.

Example 2.7 (Group algebras) Let G be a finite group. Let
ClG] :={f:G— C}.

For f,g € C|G], let f x g € C[G] be defined by

(f*g)(s) =Y f(t)g(t™"s).

teG

The involution is defined as: For f € C[G], let

f(s) = f(s71).

Then C[G] is *-algebra and is called the group algebra of G.



For g € G, let 64 € C[G] be given by

5.0 = {o if g#h

1 if g=h

Prove that §; = 6,1 and 8y x 5 = 64 Also note that {6, : g € G} forms a basis for C[G].
Thus C[G] = {3_ e ag0q : ag € C}.
The multiplication on C[G] is inherited from the group multiplication and the involution is

from the group inversion.
Exercise 2.2 Is C[G] unital ? If so, what is the multiplicative identity ?

Exercise 2.3 Prove that C[G] is commutative if and only if G is abelian.

3 Representation of x-algebras

Definition 3.1 Let A be a *-algebra. A representation of A on a Hilbert space H is a map
m: A— B(H) such that

e The map m is linear,

o 7 preserves multiplication i.e. m(ab) = w(a)w(b), and

o 7 preserves involution i.e. w(a*) = (w(a))*.
If A is unital then 7 is called unital if w(1) = 1. The representation w is called faithful if ©
s injective.

Definition 3.2 Let (m1,H1) and (w2, Ha) be representations of A. We say they are unitarily
equivalent if there exists a unitary operator U : H1 — Ha such that Umy(a)U* = ma(a) for

every a € A.

Regular representation of a group: Let G be a finite group and consider the group

algebra C[G]. Consider the vector space
2(G):={f:G— C}.
For ¢,v € £2(GQ), let < ¢, 1) >:= Z ?(g9)1(g). Show that <, > is an inner product. For g € G,

geG
let €, € £2(@) be defined by

0 if g#h
h) =
() {1 if g=h



Show that {e, : g € G} is an orthonormal basis for ¢?(G).
For g € G, let U, be the unitary on ¢*(G) be defined by Uy(ep,) = €4, Observe that

U,Up = Uy
Us = Uy

Now let 7 : C[G] — B(£?(G)) be defined by
F(Z agéy) = Z agUy.
geG geG

Show that 7 is a faithful, unital x-representation and is called the regular representation of the
group G.

GNS construction: For A be a unital x-algebra. For a € A, let L, : A — A be defined
by Lq(b) = ab. Then for every a € A, L, is linear. Denote the set of linear maps on A by
L(A).

Note that the map A 5> a — L, € L(A) is linear, multiplicative and unital. Assume that
there exists an inner product structure on A such that the above map is a *-representation.
What does it mean ? Let <, > be an inner product on A such that a — L, is a x-representation.
Let 7: A — C be defined by 7(a) :=< L4(1),1 >.

Note that

<a,b>=<L4(1),Ly(1) >
=< LyL,(1),1 >
=< Lp+o(1),1 >
=71(b%a)

Thus the inner product is completely determined by the linear functional 7. We can turn this

process around.

Definition 3.3 Let A be a unital x-algebra and let 7 : A — C be a linear functional.
1. The functional T is said to be positive if T(a*a) > 0 for a € A.
2. The functional T is called unital if 7(1) = 1.
3. The functional T is called faithful if T(a*a) = 0 then a = 0.

A positive, unital, linear functional on A is called o state.



Let A be a unital x-algebra and let 7 be a faithful state on A. Define an inner product on
A by
< a,b>:=r71(b"a).

Verify that <, > is an inner product and A 3 a — L, € L(.A) is a unital *-representation. The

representation thus obtained is called the GNS representation associated to the state 7.

Example 3.4 Let G be a finite group. Consider the linear functional T : C[G] — C defined by

T(Z agg) = de.

geG

Verify that T is a state and is faithful. Prove that the GNS representation associated to T is

unitarily equivalent to the regular representation.

Definition 3.5 (Direct sum of representations) Let (m1,H1) and (w2, Hz2) be two repre-

sentations of A. The direct sum is the representation (w1 @ mo, H1 ® Ha).

Let A be a x algebra and (m,H) be a representation. A subspace W C H is called an
invariant subspace if for every a € A, m(a)WW C W. If W is invariant then (7|, W) is again a

representation.

Exercise 3.1 Let (m,H) be a representation of A and W C H be a subspace. Denote the

orthogonal projection onto W by P. Prove that the following are equivalent.
1. The subspace W is an invariant subspace.
2. Fora € A, m(a)P = Pr(a).

Conclude that if W is invariant then W+ is invariant.

Exercise 3.2 Let (m,H) be a representation of A and W C H be an invariant subspace. Prove

that (m,H) is unitarily equivalent to (m, W) @ (m, W+).

Definition 3.6 Let (w,H) be a representation of A. We say that 7 is irreducible if the only

wvariant subspaces are 0 and H.
Example 3.7 Prove that the canonical representation of M, (C) on C" is irreducible.

Proposition 3.8 Let (m,H) be a representation of A. Prove that 7 is unitarily equivalent to

a direct sum of irreducible representations.

Hint: Use Ex. B.21 O



4 Double commutant theorem
Let (m,H1) and (w2, H2) be *-representations of A. Define
La(Hi,Ho) :={T € B(H1,H2) : Tmi(a) = ma(a)T for a € A}.

Observe that if T' € L 4(H1,Hza) then T € L 4(Ha,H1). Also observe that if T' € L£L4(H1, Ha)
and S € LA(Hz,Hs3) then ST € L 4(H1,Hs).

Exercise 4.1 If (w,H) is a representation of A, show that
LAH,H):={T € B(H): Tr(a) =n(a)T foraec A}
1s a unital *-algebra.
Definition 4.1 Let S C B(H). Define its commutant, denoted S, by
S :={T €B(H):Ts=sT forseS}.

Prove that 8’ is a linear subspace of B(H), contains the identity operator 1y and is closed
under multiplication. Also show that if S is %-closed then S is %-closed. Thus S is a *-algebra
if S is x-closed.

Note that for a representation (m,H) of A, £L4(H,H) is the commutant 7(A)".

Exercise 4.2 Let (m;, H;)_, be representations of A. Consider the direct sum representation
(7T = @?:17@',7'[ = @?:17‘[1‘) Of A. Show that EA(H) = {(3?1]) L Tij S ﬁA(H],HZ)}

Lemma 4.2 Let A be a unital x-algebra and 7 : A — B(H) be a unital *-representation. Let
T =7®7®---7. Then
—_—

n times

1. m(A) = My (n(A)), and

0 0
2 m(A) = { 0 O ren(A))}
0 0 x

Theorem 4.3 (von Neumann’s double commutant theorem) Let A be a unital x-algebra

and let 7 : A — B(H) be a unital x-representation. Then w(A)" = 7(A).

10



Proof. Clearly w(A) C 7(A)". Let 2 € n(A)" be given.

Step 1: Let £ € H and W := {m(a)¢ : a € A}. Denote the orthogonal projection onto W
by P. Since 7 is unital, £ € W i.e. P = £. Note that W is an invariant subspace for A and
hence P € 7(A)". Now Pzt = xP¢ = z€. Thus z€ € W.

Thus we have shown that for every £ € H, there exists a € A such that x§ = 7(a)é.

Step 2: Let {&1,&2,- -+ ,&n} be an orthonormal basis. Let

Th=mdhrd---Dm,
e e

n times

Hi=HOHD---DH,

n times

E=DPLD - D&,

Apply Step 1 and Lemma to show that there exists a € 7(A) such that z§; = 7(a)¢; for
i=1,2,---,n. Thus z € 7(A). This completes the proof. O

Exercise 4.3 Let A be a x-subalgebra of B(H). Show that A is the linear span of projections
in A.

Hint: First observe that A is the linear span of self-adjoint elements in A. Now use spectral

theorem ([1.8]).

Proposition 4.4 (Schur’s lemma) Let (7, ) be an irreducible representation of A. Then
m(A) = Cly.

Proof. It is enough to show that if p € w(A)" is a non-zero projection then p = 1. Now use Ex.

and use the fact that 7 is irreducible to conclude that p = 1. O

Proposition 4.5 (Schur’s lemma) Let (m1,H1) and (w2, Hz) be irreducible representations

of A. If LA(H1,H2) # 0 then m and mo are unitarily equivalent.

Proof. Suppose that £4(#H1,H2) be non-zero and let T' € L 4(#Hi1,H2) be non-zero. Then
T*T # 0 and T*T € m1(A)’. By Prop. [4.4] there exists A > 0 ( Justify!) such that T*T = A.
Let U = % Observe that U € L4(H1,H2) and U is unitary. This completes the proof. 0

5 Structure of finite dimensional C*-algebras

Definition 5.1 Let A be a unital finite dimensional x-algebra. The algebra A is called a C*-
algebra if there exists a faithful representation m: A — B(H).

11



Exercise 5.1 Let A be a finite dimensional C*-algebra. Prove that there exists a unital faithful

representation of A.

Hint: Let m : A — B(H) be a faithful representation and let P = m(1). Note that P is a

projection and I'm(P) is invariant under 7. Now complete the proof. O
Exercise 5.2 Prove that all the x-algebras we have considered so far are in fact C*-algebras.
Let (A;)?_, be x-algebras. The direct sum
e 1 A; = {(ar,a2, -+ ,a,) :a; € A;}
is a *-algebra with the multiplication and *-operation given by

(CL17CL27"' aan)(bl7b27"' abn) — (CL]_b]_,CLQbQ,‘ o 7anbn)a

(ah ag, - - van)* = (CLT, a’2‘, T ,CL:;).
Exercise 5.3 Show that if (A;)}_, are C*-algebras then the direct sum &}, A; is a C*-algebra.
Now we can state our main theorem.

Theorem 5.2 Let A be a finite dimensional C*-algebra. Then A is isomorphic to a direct

sum of matrix algebras i.e. there exists positive integers my, ma,--- ,m, such that
A= My, (C)® My, (C)® -+ & My, (C).
Moreover if
My (C) @ My, (C) @ - -+ & My, (C) =2 M, (C) ® My, (C) ® -+ - & My, (C)
then v = s and there exists a permutation o of {1,2,--- ,r} such that n; = my;).

Proof. Let m : A — B(H) be a unital faithful representation. Split 7 into irreducible

representations. Convince yourself that there exists inequivalent (i.e. not unitarily equivalent)

irreducible representations w1, ma, - -+ ,m, and positive integers di,do, - - - ,d, such that
~ _d d
Tt EBWfEB---@ﬂ'fT.

Now note that the unital representation p := m ®mo®- - - B, is faithful. Let H; be the Hilbert

space on which 7; acts and set m; := dim(H;).

12



Now use Ex. 4.2l and Schur’s lemma to conclude that

A1y, 0 e 0
, 0 Aoly
oA ={| 2 )\ie(C}.
0 0 s Al
Now show that
I 0 0
" 0 Z2
p(A) = { x; € B('HZ)}
0 0 - =z

Use Theorem [£.3] to conclude that

11

A= p(A) = p(A) = My, (C) © M, (C) @ - -+ © M, (C)
Do the following exercises to show uniqueness. a
Definition 5.3 Let A be a x-algebra. The center of A denoted Z(A) is defined as
Z(A):={z€ A: za=az forac A}
The center Z(A) is a commutative C*-algebra.

Definition 5.4 If p € A is a projection, the cutdown of A by p is the x-algebra pAp defined

as

pAp = {pap:a € A}
Exercise 5.4 Show that Z(M,(C)) = C.
Exercise 5.5 Show that Z(A1 & Az) = Z( A1) & Z(As).
Exercise 5.6 Let A= M, (C) & M;,,(C) & --- & My, (C). Fori=1,2,---,r, let

zi = (0,0,--- \1// - ,0).
ithplace
Note that z; is a projection and z; € Z(A). Prove that {z; : i = 1,2,--- ,r} forms a basis for
Z(A). Also note that if i # j then z;z; = 0. Prove that r = dim(Z(A)) and m? = dim(z;Az;).
Let {e; : i =1,2,--- ,r} be a set of mutually orthogonal central projections. Assume that
they form a basis for Z(A). Prove that {e; :i=1,2,--- ;r} ={%z:i=1,2,--- ,r}.

The central projections {z;}I'_, are called the minimal central projections of A.

Exercise 5.7 Complete the proof of Theorem[5.3

13
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