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Introduction



The partition function

I A partition of an integer n > 0 is to express it as a sum of
positive integers. For instance, 2 + 1 + 1 is a partition of the
integer 4.

I As 1 + 2 + 1 and 2 + 1 + 1 are the same partition, one
chooses to write it as a weakly decreasing sequence (2, 1, 1)
to get a unique representative for each partition.

I Let p(n) denote the number of partitions of n. For n = 4, one
has

4 3 1 2 2 2 1 1 1 1 1 1 =⇒ p(4) = 5 .

p(n) is called the partition function.

I What is p(200)? Do we need to enumerate all the partitions
to get the count?



Refining the partition function

I Let p(n|r parts) denote the number of partitions of n with r
parts.

I Similarly, let p(n|l.p. = r) denote the number of partitions of
n with largest part r .

I For instance, (2, 1, 1) is a partition of 4 with 3 parts and
largest part 2.

partition 4 3 1 2 2 2 1 1 1 1 1 1

# of parts 1 2 2 3 4

l.p. 4 3 2 2 1

I Observe that p(4|r parts) = p(4|l.p. = r) for r = 1, 2, 3, 4.

I Euler: This is true for all n. How does one prove such a
statement?



Let’s play a game
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How many?

I Fix the number of pieces and ask how many stable
configurations exist?

I For instance, with four pieces one has

I Depending on your area of specialisation, you will recognise
these to be Young diagrams (drawn Russian style) or directed
compact lattice animals or clusters or tetris blocks.
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From partitions to Young diagrams

I Given a partition, (a1, a2, a3, . . .), draw a Young diagram with
ak -boxes in the k-th row. For instance,

3 1 ←→ ; 2 2 ←→

I It is clear that this map is a bijection. Given a Young diagram,
one can obtain the corresponding partition by counting the
number of boxes in each row.

I There is an involution that acts on Young diagrams called
conjugation. It corresponds to the xy -flip.

(3 1) = ←→ (= 2 1 1)

I Viewed as acting on partitions, we see that it maps a partition
with r -parts to one with largest part r . This is Ferrer’s
bijective proof showing that p(n|r parts) = p(n|l.p. = r).



Higher Dimensional Partitions



Plane partitions

I MacMahon proposed the following generalisation of partitions.
A two-dimensional or plane partition of a non-negative integer
n is a two-dimensional array of non-negative integers ai ,j
(i , j = 1, 2, . . .) such that

∀i , j ai , j ≤ ai+1, j , ai , j ≤ ai , j+1 and
∑
i , j

ai , j = n .

I Let p2(n) denote the number of plane partitions of n.

I For instance, the plane partitions of 4 are

4 3 1 3
1 2 2 2

2 2 1 1 2 1
1

2
1
1

1 1 1 1 1 1 1
1

1 1
1 1

1 1
1
1

1
1
1
1

=⇒ p2(4) = 13

I It is easy to see that p2(n) ≥ p(n) since every partition is
plane partition.
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Ferrers diagrams

I It is clear how to generalise Young diagrams to higher
dimensions replacing cubes in 3D to hypercubes in 4D and so
on. However, visualistion is not possible.

I We replace the squares/cubes/... with integral points in Rd+1
+

– call the points nodes.

I An unrestricted d-dimensional partition of n is a collection of
n points (nodes) in Zd+1

≥0 satisfying the following property: if

the collection contains a node a = (a1, a2, . . . , ad+1)T , then
all nodes x = (x1, x2, . . . , xd+1)T with 0 ≤ xi ≤ ai ∀
i = 1, . . . , d + 1 also belong to it.

I For instance, the following is a one-dimensional partition of 4{(
0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
0
2

)}
or ( 0 1 0 0

0 0 1 2 ) in compressed form ,



Ferrers diagrams

I It is clear how to generalise Young diagrams to higher
dimensions replacing cubes in 3D to hypercubes in 4D and so
on. However, visualistion is not possible.

I We replace the squares/cubes/... with integral points in Rd+1
+

– call the points nodes.

I An unrestricted d-dimensional partition of n is a collection of
n points (nodes) in Zd+1

≥0 satisfying the following property: if

the collection contains a node a = (a1, a2, . . . , ad+1)T , then
all nodes x = (x1, x2, . . . , xd+1)T with 0 ≤ xi ≤ ai ∀
i = 1, . . . , d + 1 also belong to it.

I The same collection of nodes can be viewed as a Ferrers
diagram or a Young diagram.

x2

x1

or



Where do these higher-dimensional partitions appear

Higher-dimensional partitions appear in several different areas of
physics, mathematics and computer science. I list a few

I The infinite state Potts model in (d + 1) dimensions gets
related to d-dimensional partitions in the high temp. limit;

I in the study of directed compact lattice animals;

I in the counting of BPS states in string theory and
supersymmetric field theory.

I Bounded plane partitions appear as a domino tilings of
hexagon or a dimer configurations or as perfect matchings of
a bipartite graph.



Tilings

Projections of tilings from D = 3, 5, 7 to two-dimensions1. The
D = 3 is the projection of the Young diagram for plane partitions
to the plane leading to rhombus tilings of a hexagon. The other
two examples corresponds to tiling with different kinds of tiles.

1Figure from Widom et. al. J. Stat. Phys. 120, 837 (2005).



Generating Functions and their applications



Generating Functions

I Define the generating function of partitions as (with p(0) ≡ 1)

P(q) :=
∞∑
n=0

p(n) qn .

I

P(q) =
1∏∞

m=1(1− qm)
. Euler

I We illustrate how Euler’s formula works for p(4)



Generating Functions

I Define the generating function of partitions as (with p(0) ≡ 1)

P(q) :=
∞∑
n=0

p(n) qn .

I

P(q) =
1∏∞

m=1(1− qm)
. Euler

I We illustrate how Euler’s formula works for p(4)



Generating Functions

I Define the generating function of partitions as (with p(0) ≡ 1)

P(q) :=
∞∑
n=0

p(n) qn .

I

P(q) =
1∏∞

m=1(1− qm)
. Euler

I We illustrate how Euler’s formula works for p(4)

P(q) =(1 + q + q1+1 + q1+1+1 + q1+1+1+1 + O(q5))

× (1 + q2 + q2+2 + O(q6))

× (1 + q3 + O(q6))

× (1 + q4 + O(q8))× (1 + O(q5))



Generating Functions

I Define the generating function of partitions as (with p(0) ≡ 1)

P(q) :=
∞∑
n=0

p(n) qn .

I

P(q) =
1∏∞

m=1(1− qm)
. Euler

I We illustrate how Euler’s formula works for p(4)

P(q) =(1 + q1 + q1+1 + q1+1+1 + q1+1+1+1 + O(q5))

× (1 + q2 + q2+2 + O(q6))

× (1 + q3 + O(q6))

× (1 + q4 + O(q8))× (1 + O(q5))



Generating Functions

I Define the generating function of partitions as (with p(0) ≡ 1)

P(q) :=
∞∑
n=0

p(n) qn .

I

P(q) =
1∏∞

m=1(1− qm)
. Euler

I We illustrate how Euler’s formula works for p(4)

P(q) =(1 + q + q1+1 + q1+1+1 + q1+1+1+1 + O(q5))

× (1 + q2 + q2+2 + O(q6))

× (1 + q3 + O(q6))

× (1 + q4 + O(q8))× (1 + O(q5))



Generating Functions

I Define the generating function of partitions as (with p(0) ≡ 1)

P(q) :=
∞∑
n=0

p(n) qn .

I

P(q) =
1∏∞

m=1(1− qm)
. Euler

I We illustrate how Euler’s formula works for p(4)

P(q) =(1 + q + q1+1 + q1+1+1 + q1+1+1+1 + O(q5))

× (1 + q2 + q2+2 + O(q6))

× (1 + q3 + O(q6))

× (1 + q4 + O(q8))× (1 + O(q5))



Generating Functions

I Define the generating function of partitions as (with p(0) ≡ 1)

P(q) :=
∞∑
n=0

p(n) qn .

I

P(q) =
1∏∞

m=1(1− qm)
. Euler

I We illustrate how Euler’s formula works for p(4)

P(q) =(1 + q + q1+1 + q1+1+1 + q1+1+1+1 + O(q5))

× (1 + q2 + q2+2 + O(q6))

× (1 + q3 + O(q6))

× (1 + q4 + O(q8))× (1 + O(q5))



Generating Functions – more examples

I The generating function of partitions whose parts ≤ M is

1∏M
m=1(1− qm)

I The generating function of partitions of n whose parts arise
from a set S of positive integers is

1 +
∞∑
n=1

n∑
r=1

p(n|parts ∈ S) qn =
1∏

m∈S(1− qm)

I A two-variable generalisation

1 +
∞∑
n=1

n∑
r=1

p(n|r parts) qntr =
1∏∞

m=1(1− t qm)



Towards a practical formula for p(n) - I

I Let p(n|distinct parts) denote the number of partitions of n
with distinct parts. Then, one has

1 +
∞∑
n=1

p(n|distinct parts) qn =
∞∏

m=1

(1 + qm) .

I

1 +
∞∑
n=1

(p(n|even dist. parts)− p(n|odd dist. parts)) qn

=
∞∏

m=1

(1− qm)

This is the inverse of the generating function of partitions!



Towards a practical formula for p(n) - II

Theorem (Euler’s Pentagonal Theorem)

(p(n|even dist. parts)− p(n|odd dist. parts)) = e(n)

where e(n) =

{
(−1)j for n = j(3j−1)

2 , j ∈ Z
0 otherwise .

e(n) 6= 0 when n is a generalised pentagonal numbers. We get(
1 +

∞∑
m=1

e(m) qm

)
×
∞∑
n=0

p(n) qn = 1

leading to

p(n) = −
n−1∑
m=1

e(m) p(n −m) ,

which provides an efficient algorithm to compute p(n) recursively.



The formula and its use

I The first few generalised pentagonal numbers are
1, 2, 5, 7, 12, 15, . . . (sequence A001318 in OEIS)

p(n) = p(n − 1) + p(n − 2)− p(n − 5)− p(n − 7) + . . .

I Major Percy MacMahon used the above formula and
tabulated the first two hundred numbers and determined that

p(200) = 3972999029388 ∼ 3.973× 1012 .

Recall that this was before the advent of computers.

I Turns out one can compute p(n) in time proportional to n3/2.
Can one do better?

I What is p(1020)? Needless to say this is out of computational
reach using the above formula even today. However, the
answer is known!

See George Andrews and Kimmo Eriksson, Integer Partitions, Cambridge

University Press (2004).



Generating Function for Plane Partitions
I Define the generating function for a d-dimensional partition as

Pd(q) = 1 +
∑
n=1

pd(n) qn .

I MacMahon conjectured and eventually2 proved that the
generating function for plane partitions is given by

P2(q) =
∞∏

m=1

(1− qm)−m .

I One can use the above formula to obtain a nice recursive
formula for the plane partition function

p2(n) =
1

n

n−1∑
k=1

σ2(k) p2(n − k) .

However, there appears to be no analog of the pentagonal
recursive formula that we saw for the partition function.

220 years later! No elementary proof is known till today.



Counting of BPS states (black hole microstates)

I The generating function of electrically charged 1
2 -BPS states

in the het. string compactified on a six-torus is given by
(12q

2
e := n − 1)

∞∑
n=−1

d(n)qn =
16

q
∏∞

n=1(1− qn)24
=

16

η(τ)24
.

I The generating function of Donaldson-Thomas (or
Gopakumar-Vafa) invariants on the non-commut. conifold is
given by (q ∼ e−gs ; t – Kähler modulus) [Szendroi,Young]

∞∏
n=1

(1− qn)−n(1− e−tqn)−n(1− e+tqn)−n

Note the appearance of the Euler and MacMahon generating functions.



Generating Functions for d > 2?

I Define the generating function for a d-dimensional partition as

Pd(q) = 1 +
∑
n=1

pd(n) qn .

I MacMahon also conjectured formulae for the generating
function for solid and other higher dimensional partitions. Let

Md(q) :=
∞∏

m=1

(1− qm)−(n+d−2
d−1 ) = 1 +

∞∑
n=1

md(n) qn .

It was shown in 1967 by Atkin et. al. that this fails i.e.,
md(n) 6= pd(n) for d > 2 and n ≥ 6.

I It appears that there is no simple formula for the generating
function.



History of Higher Dimensional Partitions

After MacMahon, the first serious computation of higher
dimensional partitions, due to Atkin, Bratley, MacDonald and
McKay, appeared in 1967. Here is a report by Birch on this paper
in his memoir on Atkin:
I cannot resist mention [1967d], on m-dimensional partitions. At the time

the authors complained that no one seemed to know anything about

them except in the first two cases (ordinary partitions corresponding to

the case m=2, and the case m=3 more often known as plane partitions);

and very little seems to have been discovered since; there is a note on the

subject in [1971d]. In the words of the third author, the paper landed like

a lead balloon; but they look genuinely interesting.

Stanley in his 1971 doctoral thesis writes:
The case r = 2 has a well-developed theory – here 2-dimensional

partitions are known as plane partitions. See 21 and the survey article by

Stanley[34] for results on plane partitions. For r ≥ 3, almost nothing is

known and Proposition 11.1 casts only a faint glimmer of light on a vast

darkness.



Enumerating higher dimensional partitions
I One can attempt to carry out exact enumerations. There are

two algorithms, one due to Bratley and McKay (1967) and
another one due to Knuth (1970).

I Knuth’s algorithm enumerates the number of topological
sequences in a partially ordered set. Choosing the set is Nd ,
the number of topological sequences of a given index can be
used to obtain the number of d-dimensional partitions. He
enumerated the first 28 numbers that were extended to 50 by
Mustonen and Rajesh in 2002.

I In 2010, a undergraduate student at IITM, Srivatsan, created
a non-trivial (parallel) extension of Knuth’s algorithm. This
has enabled us3 to extend the exact enumeration to obtain
the number of solid partitions of 72 (after half a million CPU
hours)

p3(72) = 3464274974065172792 ∼ 3.464× 1018 .

Adding more numbers is not easy but you can help.
3http://boltzmann.wikidot.com/the-partitions-project

http://boltzmann.wikidot.com/the-partitions-project


The asymptotics of higher dimensional partitions
I It was shown by Bhatia et. al. (1997) that

lim
n→∞

n−d/(d+1) log pd(n)→ Cd , a constant.

I It is know that C1 = 2(ζ(2))1/2 and C2 = 3
2(2ζ(3))1/3 – these

are derived from the generating function.
I Mustonen and Rajesh estimated the constant for solid

partitions C3 using Monte Carlo simulations and obtained
C3 = 1.78± 0.01, a value that is compatible with the
asymptotic values for m3(n). One has

lim
n→∞

n−3/4 log m3(n)→ 4
3(3ζ(4))1/4 ∼ 1.7898 .

They conjectured that the MacMahon numbers capture the
leading asymptotic behaviour of solid partitions.

I Recent work4 show that C3 = 1.822± 0.001 which,
disappointly, disproves the conjecture. There appears to be no
glimmer of light!

4Destainville and SG, 2014 http://arxiv.org/abs/1406.5605.

http://arxiv.org/abs/1406.5605


The Hardy-Ramanujan-Rademacher formula



The HRR formula

I On can invert the generating function P(q)

p(n) =
1

2πi

∫
Cρ

dq
P(q)

qn+1
,

where Cρ is a circle of radius ρ < 1 centered at the origin in
the q-plane.

I P(q) has poles on the unit circle at all primitive roots of unity
i..e, at q = exp(2πh/k) for k = 1, 2, . . . and h ∈ [1, . . . , k − 1]
with (h, k) = 1.

I The “strength” of the pole decreases with increasing k and
the the contribution to p(n) is largest for k = 1. A simple
saddle point computation shows that the k = 1 term gives

p(n) ∼ 1
4
√
3n

e
π
√

2n
3

which gives p(200) ∼ 4.10025× 1012.



The Hardy-Ramanujan-Rademacher formula

In 1917, Hardy and Ramanujan computed the contributions from
the k-roots of unity and obtained an asymptotic formula. The
formula was improved (in 1936) to a convergent one by
Rademacher leading to the HRR formula.

p(n) ∼
N(n)∑
k=1

k−1∑
h=1

(h,k)=1

e−2πinh/k × 2π
k ( π6k )3/2 eπis(h,k)

× dk(n)−3/2I3/2 (dk(n)) + O(1) ,

where s(h, k) =
∑k−1

m=1((mk ))((mh
k )) is the Dedekind sum and

dk(n) = π
k

√
2
3

(
n − 1

24

)
and N(n) ∼ n1/2.

Here is what Hardy had to say: At this point we might have stopped

had it not been for Major MacMahon’s love of computation. MacMahon

was a practised and enthusiastic table of p(n) up to n = 200.



p(200) using the HRR formula

. . . we naturally took this value as a test for our asymptotic formula. We

expected a good result, with an error of perhaps one or two figures, but

we had never dared to hope for such a result as we found.5

1 +3, 972, 998, 993, 185.896
2 +36, 282.978
3 −87.555
4 +5.147
5 +1.424
6 +0.071
7 +0.000
8 +0.043

p(200) 3, 972, 999, 029, 388.004

The error on adding eight terms was only 0.004! The formula
(pre-Rademacher’s improvement) was asymptotic and exact.

5Table taken from G. Andrews, Integer Partitions, Cambridge Univ. Press.



p(1020) using the HRR formula

I We saw that the time needed to compute p(n) via the
recursion relation grew as O(n3/2).

I Fredrik Johannsen showed that it was possible to implement
the HRR formula such that the time grew as
O(n1/2 log4+o(1) n).

I On March 2, 2014, he announced the computation of p(1020)
using the HRR formula. He found a 11,140,086,260 digit
number! (http://fredrikj.net/blog/2014/03/
new-partition-function-record/)

1838176508344882643646 . . . . . . . . . 21126231756788091448

It took four and a half days on a system with a Xeon E5-2650
CPU and 256 GB of RAM!

http://fredrikj.net/blog/2014/03/new-partition-function-record/
http://fredrikj.net/blog/2014/03/new-partition-function-record/


A HRR formula for plane partitions

I Building on the work of Almkvist(1998), with Naveen
Prabhakar, I obtained an asymptotic formula for plane
partitions. [SG-NP, 2013]

I A new function, we call it the Almkvist function, appears and
can be written in terms of the gen. hypergeom. function 0F2.

p2(n) ∼
[N(n)]∑
k=1

k−1∑
h=1

(h,k)=1

e−2πinh/k ck

k

(
a
k

) 1
2
+ k

24 eCh,k×

×
[M∗(n,k)]∑

m=0

b
(m)
h,k ( a

k3 )
m
2 A

(
( a
k3 )

1
2 n
∣∣∣−k12 −m

)
+O

(
e−29.47

n1/3

k
+2.01 n2/3

k

)

with N(n) ∼ (2.95n1/3 − 1.47 log n + 6.4), a = ζ(3), c = eζ
′(−1),

M∗(n, k) ∼ 29.47n1/3/k , Ch,k = k
2

∑k−1
j=1 B2(j/k) log |2 sin(πjh/k)|

is a generalised Dedekind sum.

http://arxiv.org/abs/1311.7227


A HRR formula for plane partitions

The formula is exact for n < 6425 and illustrate below for n = 750.

1 2545743024358645039521920749024859571789657217789975418420497702709720.300
2 1169353378721087578836884133296412.054
3 1308038187203153215044.287
4 −766248063769796.487
5 249747729385.715
6 258376791.876
7 −3577528.999
8 −1684.466
9 −13708.658
10 1766.734
11 −274.759
12 −61.857
13 −6.938
14 0.409
15 2.541
16 −0.138
17 −0.447

Total 2545743024358645039521920749024859572959010596512371034678586927966061.167
Exact 2545743024358645039521920749024859572959010596512371034678586927966061.000

The current implementation of this formula in mathematica takes
about 75s for p2(6425) (on an Intel i5 2.6GHz processor) and is
faster than using the following recursive formula:
p2(n) = 1

n

∑n−1
k=1 σ2(k)p2(n − k) .



Organising partitions by symmetry



Conjugation in higher-dimensional partitions

I The analog of conjugation is now the permutation group Sd+1

– it permutes the (d + 1) axes in the corresponding Ferrers’s
diagram.

I We can organise the FD’s by the action of Sd+1.

I For instance, all plane partitions of 4 can be written as

4

1
1
1
1

1 1 1 1 2 1
1

1 1
1 1 2 2 2

2

3 1 3
1 2 1 1

2
1
1

1 1 1
1

1 1
1
1

I The dim of cosets of S3/H for H = S3, S2,S1 are resp. 1, 3, 6.

I We call a plane partition, totally symmetric, if it is S3

invariant. [c.f. Arvind’s talk]



Conjugation in higher-dimensional partitions

I The analog of conjugation is now the permutation group Sd+1

– it permutes the (d + 1) axes in the corresponding Ferrers’s
diagram.

I We can organise the FD’s by the action of Sd+1.
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1
1
1
1

1 1 1 1 2 1
1

1 1
1 1 2 2 2

2

3 1 3
1 2 1 1

2
1
1

1 1 1
1

1 1
1
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I The dim of cosets of S3/H for H = S3, S2,S1 are resp. 1, 3, 6.

I Consider all subgroups of S3, there is one more class
corresponding to C3, the cyclic group. The first non-trivial
example of a plane partition invariant under C3 but not S3

occurs at n = 13. Construct this plane partition!



I An important simplification occurs if we treat partitions in all
dimensions on the same footing.

I Consider the FD for the partition of 2 in 1/2/3 dimensions.

( 0
0
1
0 )

(
0
0
0

1
0
0

) (
0
0
0
0

1
0
0
0

)
The nodes lie in the one-dimensional hyperplane xi = 0 for
i = 2, 3, . . .. In other words, the only non-zero coordinate is
x1.

I Def: The intrinsic dimension of an FD is defined to be the
minimal dimension of hyperplane that contains all its nodes.

I All partitions of 2 have intrinsic dimension r = 1.

I A d-dimensional partition with intrinsic dimension (id) r is
invariant under Sd+1−r . i.e., the permutation of the axes of
the orthogonal to the minimal hyperplane of dimension r .



The binomial transform

I What is the number of d-dimensional partitions of 2?

pd(2) =

(
d + 1

1

)
1 = (d + 1).

I An FD of id r has the action of Sr – the permutation of the
axes of the minimal hyperplane. Let H denote the subgroup
of Sr that acts trivially on the FD.

I The number of distinct FD’s obtained by the action of Sd+1

on a FD is given by coset Sd+1/(Sd+1−r × H).

I The number of coset elements is

(d+1)!
(d+1−r)!×dim(H) =

(
d + 1

r

)
× r !

dim(H)
:=

(
d + 1

r

)
×weight .



The binomial transform

I We say that a d-dimensional FD is strict if its intrinsic
dimension is (d + 1) and not something smaller.

I Now consider, all strict FDs with n nodes and id r . Define

an,r := number of strict FDs with id r and n nodes .

I Note that anr = 0 when r ≥ n. It is a lower-triangular matrix.

I This leads to an interesting formula pd(n).

pd(n) =
n−1∑
r=0

(
d + 1

r

)
anr . Binomial Transform

I An example:

pd(3) =
(d+1

1

)
w
( )

+
(d+1

2

)
w

( )
=

(d+1
1

)
1 +

(d+1
2

)
1 =⇒ a3,1 = a3,2 = 1 .



Properties of the matrix A

I an0 = δn,1 – this follows since there is precisely one FD with
id = 0: . It has n = 1.

I ar+1,r = 1 for all n ≥ 1 – again there is only one FD of size
(r + 1) and id r .

I an,r = 0 when r ≤ n. It is impossible to construct a FD of id r
with fewer than r + 1 nodes.

I This implies that the (n − 1) non-zero numbers in an,r
determine partitions of n in all dimensions. [Atkin et. al. (1967)]

A = (an,r ) =


1
0 1
0 1 1
0 1 3 1
0 1 5 6 1
0 1 9 18 10 1
0 1 13 44 49 15 1
0 1 20 97 172 110 21 1
0 1 28 195 512 550 216 28 1
0 1 40 377 1370 2195 1486 385 36 1
0 1 54 694 3396 7603 7886 3514 638 45 1


The above matrix can be directly enumerated using the
Bratley-McKay algorithm.



Yet another transform

I Define F = (fn,x), as a transform of the matrix A.

am+r+1,r =
r∑

x=0

m∑
p=x

(
r

x

)((r−x
2

)
m − p

)
fp+x+1, x .

I The main result is that the n-th row of F has only [(n − 1)/2]
independent numbers. [SG, 2012]

I We illustrate the gain by explicitly displaying the first eleven
rows of the A and F -matrices.

A =


1

0 1

0 1 1

0 1 3 1

0 1 5 6 1

0 1 9 18 10 1

0 1 13 44 49 15 1

0 1 20 97 172 110 21 1

0 1 28 195 512 550 216 28 1

0 1 40 377 1370 2195 1486 385 36 1

0 1 54 694 3396 7603 7886 3514 638 45 1

 , F =


1

0

0 1

0 1

0 1 3

0 1 7

0 1 11 16

0 1 18 58

0 1 26 135 125

0 1 38 293 618

0 1 52 574 1927 1296

 .

Exercise: Write a program to directly enumerate F !

http://arxiv.org/abs/1203.4419


The smallest plane partition that is cyclically symmetric
but not totally symmetric

3 3 1
2 1 1
2

=
(

0
0
0

0
0
1

0
0
2

0
1
0

0
1
1

0
1
2

0
2
0

1
0
0

1
0
1

1
1
0

1
2
0

2
0
0

2
0
1

)

3
3

1

2

1
1

2

3
3

1

2 1
1

2

3

3

1

2

1

1

2

The plane partition and its C3 images – it is easy to see that they
are indeed the same.



Thank you!

Strongly Recommended: D. Bressoud, Proofs and Confirmations.

p100(26) = 221940176681253164870444848441840

http://boltzmann.wikidot.com/the-partitions-project

Can you help this project? Contributions can be in the form of
code, algorithms or theoretical insights. If you are an
undergraduate student and wish to contribute to this project, send
an email to solidpartitions at gmail.com.

http://boltzmann.wikidot.com/the-partitions-project 
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