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Mutually Unbiased Bases

Let Hd be a finite-dimensional Hilbert space1.
State space of any finite quantum system.

Definition:- Two orthonormal bases A ≡ {|a0〉, |a1〉, ..., |ad−1〉} and
B ≡ {|b0〉, |b1〉, ..., |bd−1〉} in Hd are mutually unbiased if

| 〈ai|bj〉 | =
1√
d
, ∀ i, j = 0, 1, . . . , d− 1.

1Complex inner product space, which is complete.
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Let Hd be a finite-dimensional Hilbert space1.
State space of any finite quantum system.

Definition:- Two orthonormal bases A ≡ {|a0〉, |a1〉, ..., |ad−1〉} and
B ≡ {|b0〉, |b1〉, ..., |bd−1〉} in Hd are mutually unbiased if

| 〈ai|bj〉 | =
1√
d
, ∀ i, j = 0, 1, . . . , d− 1.

Complementary Observables: If a physical system is prepared in an
eigenstate of basis A (say |ai〉), and measured in basis B, the probability of
outcome j is:

p(j||ai〉) := |〈bj |ai〉|2 =
1

d
, ∀j.

All outcomes are equally probable!

1Complex inner product space, which is complete.
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Mutually Unbiased Bases : Examples

Pauli matrices X,Z on C2:

Z =

(
1 0
0 −1

)

; X =

(
0 1
1 0

)

Eigenbases of Z, X :

BZ = {|0〉, |1〉}; BX =
{

|+〉 = |0〉+|1〉√
2

, |−〉 = |0〉−|1〉√
2

}
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A set of k mutually unbiased bases (MUBs): a set of orthonormal bases
{B1,B2, . . . ,Bk} in Hd, where every pair of bases in the set is mutually
unbiased.
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1 0
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BZ = {|0〉, |1〉}; BX =
{

|+〉 = |0〉+|1〉√
2

, |−〉 = |0〉−|1〉√
2

}

A set of k mutually unbiased bases (MUBs): a set of orthonormal bases
{B1,B2, . . . ,Bk} in Hd, where every pair of bases in the set is mutually
unbiased.

A third MUB in C2: eigenbasis of Y

Y =

(
0 −i
i 0

)

, BY =

{ |0〉+ i|1〉√
2

,
|0〉 − i|1〉√

2

}
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MUBs : Existence and Constructions
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A pair of mutually unbiased bases

There exist a pair of MUBs in Cd, for any dimension d.
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Discrete quantum Fourier transform:
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A pair of mutually unbiased bases

There exist a pair of MUBs in Cd, for any dimension d.

Choose any reference basis – {|0〉, |1〉, . . . , |d− 1〉} – Computational Basis

Discrete quantum Fourier transform:

|k̃〉 = 1√
d

d−1∑

j=0

e−i2πjk/d|j〉

The bases {|0〉, |1〉, . . . , |d− 1〉} and {|0̃〉, |1̃〉, . . . , | ˜d− 1〉} are mutually

unbiased:

〈j|k̃〉 = 1√
d
e−i2πjk/d, ∀ j, k = 0, 1, . . . , d− 1.

Define the cyclic operators:

X|j〉 = |(j + 1)modd〉; Z|j〉 = ei2πj/d|j〉, with (X )d = (Z)d = I.

Eigenbases of X and Z are mutually unbiased!
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MUBs in prime dimensions using X and Z

Three MUBs in Cd : eigenbases of {X ,Z,XZ}. (Generalized Pauli
operators)
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Can we construct more MUBs in Cd using higher products (X )m(Z)n?
Yes, when d is prime!
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Can we construct more MUBs in Cd using higher products (X )m(Z)n?
Yes, when d is prime!

Lemma 1: Let B = {|b0〉, |b1〉, . . . , |bd−1〉} be a basis in Cd. If there exists a
unitary operator

V : V |bi〉 = βi|b(i+1)mod d〉, |βi| = 1,

then, the eigenbasis of V is mutually unbiased with the basis B.
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MUBs in prime dimensions using X and Z

Three MUBs in Cd : eigenbases of {X ,Z,XZ}. (Generalized Pauli
operators)

Can we construct more MUBs in Cd using higher products (X )m(Z)n?
Yes, when d is prime!

Lemma 1: Let B = {|b0〉, |b1〉, . . . , |bd−1〉} be a basis in Cd. If there exists a
unitary operator

V : V |bi〉 = βi|b(i+1)mod d〉, |βi| = 1,

then, the eigenbasis of V is mutually unbiased with the basis B.
Proof: Let V |vi〉 = λi|vi〉, i = 0, 1, . . . , d− 1. (|λi| = 1)

|〈vi|bj〉| = |〈vi|V |bj〉| = |〈vi|b(j+1)modd〉|, ∀ i, j.
⇒ |〈vi|b0〉| = |〈vi|b1〉| = . . . = |〈vi|bd−1〉|, ∀i.

⇒ |〈vi|bj〉|2 =
1

d
, ∀i, j. (

∑

j

|〈vi|bj〉|2 = 1, ∀i.)
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(d+ 1) MUBs in prime dimensions

Consider the operators {X ,Z,XZ,X (Z)2, . . . ,X (Z)d−1} over Cd.
They are unitary and cyclic, i.e., (X (Z)k)d = I for 0 ≤ k ≤ d− 1.
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Lemma 2 : When d is prime, the eigenvectors of X (Z)k are cyclically
shifted under the action of X (Z)l, for all l 6= k ( 0 ≤ l, k ≤ d− 1).
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(d+ 1) MUBs in prime dimensions

Consider the operators {X ,Z,XZ,X (Z)2, . . . ,X (Z)d−1} over Cd.
They are unitary and cyclic, i.e., (X (Z)k)d = I for 0 ≤ k ≤ d− 1.

X (Z)k|j〉 = (ei2πj/d)k|(j + 1)mod d〉.

If |ψ(k)
t 〉, t = 0, 1, . . . , d− 1 denote eigenstates of X (Z)k, for prime d,

X (Z)l|ψ(k)
t 〉 = (ei2π/d)t+k−l|ψ(k)

t+k−l〉.

Lemma 2 : When d is prime, the eigenvectors of X (Z)k are cyclically
shifted under the action of X (Z)l, for all l 6= k ( 0 ≤ l, k ≤ d− 1).

From Lemmas 1 & 2: For any prime d, the set of bases comprising
eigenvectors of {X ,Z,XZ,X (Z)2, . . . ,X (Z)d−1} is a set of d+ 1 MUBs in
Cd.
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d+ 1 MUBs in prime dimensions: Examples

In C2 : the eigenbases of X ,Z,XZ. Identical to the Pauli eigenbases!
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In C2 : the eigenbases of X ,Z,XZ. Identical to the Pauli eigenbases!

In C3 : the eigenbases of {X ,X ,XZ,XZ2} form a set of 4 MUBs.





1 0 0
0 1 0
0 0 1



 ,





0 0 1
1 0 0
0 1 0



 ,





0 0 ω2

1 0 0
0 ω 0



 ,





0 0 ω

1 0 0
0 ω2 0



 ,

where ω = e2πi/3.

Prabha Mandayam (CMI) IMSc July’14 1 July 2014 9 / 29



d+ 1 MUBs in prime dimensions: Examples

In C2 : the eigenbases of X ,Z,XZ. Identical to the Pauli eigenbases!

In C3 : the eigenbases of {X ,X ,XZ,XZ2} form a set of 4 MUBs.





1 0 0
0 1 0
0 0 1



 ,





0 0 1
1 0 0
0 1 0



 ,





0 0 ω2

1 0 0
0 ω 0



 ,





0 0 ω

1 0 0
0 ω2 0



 ,

where ω = e2πi/3.

Composite dimensions: d = pq (p, q > 1)

The operators {X (Z)k} have shorter periods. Eg. (Zp)q = I.
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In C2 : the eigenbases of X ,Z,XZ. Identical to the Pauli eigenbases!

In C3 : the eigenbases of {X ,X ,XZ,XZ2} form a set of 4 MUBs.





1 0 0
0 1 0
0 0 1



 ,





0 0 1
1 0 0
0 1 0



 ,





0 0 ω2

1 0 0
0 ω 0



 ,





0 0 ω

1 0 0
0 ω2 0



 ,

where ω = e2πi/3.

Composite dimensions: d = pq (p, q > 1)

The operators {X (Z)k} have shorter periods. Eg. (Zp)q = I.

Cyclic shift property no longer holds.

Numerical evidence shows, we obtain no more than 3 MUBs using this

approach: the eigenbases of {X ,Z,XZ}.
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MUBs : Role in Quantum Information Processing
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Identifying an unknown quantum state

MUBs form a minimal and optimal set of orthogonal measurements for
quantum state tomography.
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Identifying an unknown quantum state

MUBs form a minimal and optimal set of orthogonal measurements for
quantum state tomography.

To specify a general density matrix ρ ∈ C
d: need d2 − 1 real parameters.

Measurement in one orthonormal basis Bj = {|ψj
0
〉, . . . , |ψj

d−1
〉} yields only

d− 1 independent probabilities:

p(i|Bj)ρ := tr[ρ|ψj
i 〉〈ψj

i |] = 〈ψj
i |ρ|ψj

i 〉, i = 0, . . . , d− 1.
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Identifying an unknown quantum state

MUBs form a minimal and optimal set of orthogonal measurements for
quantum state tomography.

To specify a general density matrix ρ ∈ C
d: need d2 − 1 real parameters.

Measurement in one orthonormal basis Bj = {|ψj
0
〉, . . . , |ψj

d−1
〉} yields only

d− 1 independent probabilities:

p(i|Bj)ρ := tr[ρ|ψj
i 〉〈ψj

i |] = 〈ψj
i |ρ|ψj

i 〉, i = 0, . . . , d− 1.

⇒ Need d+ 1 distinct basis sets to obtain d2 − 1 independent probabilities.

Mutual unbiasedness implies that statistical errors are minimized when
measuring finite samples.
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Incompatibility and Complementarity - I

MUBs are the measurement bases that are most incompatible, as quantified
by entropic uncertainty relations.
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the ith outcome is
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Incompatibility and Complementarity - I

MUBs are the measurement bases that are most incompatible, as quantified
by entropic uncertainty relations.

When measuring state |φ〉 ∈ Cd in the measurement basis Bj, probability of
the ith outcome is

p(i | Bj)|φ〉 := |〈ψj
i |φ〉|2.

Let H(Bj||φ〉) be the entropy of the distribution p(i | Bj)|φ〉.
An entropic uncertainty relation (EUR) for the set of bases {B1, . . . ,BL} is:

1

L

L∑

j=1

H(Bj||φ〉) ≥ cB1,...,BL , ∀|φ〉

Lower bound cB1,...,BL captures the mutual incompatibility of the set
{B1, . . . ,BL}.
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Incompatibility and Complementarity - II

Example : Massen and Uffink bound :-
For measurement bases A = {|a1〉, ..., |ad〉} and B = {|b1〉, ..., |bd〉} in Cd,

1

2
(H(A||ψ〉) +H(B||ψ〉)) ≥ − log c(A,B)

where c(A,B) := max | 〈a|b〉 |, ∀ |a〉 ∈ A, |b〉 ∈ B.
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where c(A,B) := max | 〈a|b〉 |, ∀ |a〉 ∈ A, |b〉 ∈ B.

Maximum value of RHS is attained when | 〈a|b〉 | = 1√
d
, ∀|a〉, |b〉 : Strongest

possible uncertainty relation is satisfied when the bases are mutually

unbiased .
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Maximum value of RHS is attained when | 〈a|b〉 | = 1√
d
, ∀|a〉, |b〉 : Strongest

possible uncertainty relation is satisfied when the bases are mutually

unbiased .

For measurements involving more than 2 bases, to obtain strong uncertainty
relations, the bases must be mutually unbiased -
MUBs are a necessary condition to achieve maximal incompatibility with
multiple bases.
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Example : Massen and Uffink bound :-
For measurement bases A = {|a1〉, ..., |ad〉} and B = {|b1〉, ..., |bd〉} in Cd,

1

2
(H(A||ψ〉) +H(B||ψ〉)) ≥ − log c(A,B)

where c(A,B) := max | 〈a|b〉 |, ∀ |a〉 ∈ A, |b〉 ∈ B.

Maximum value of RHS is attained when | 〈a|b〉 | = 1√
d
, ∀|a〉, |b〉 : Strongest

possible uncertainty relation is satisfied when the bases are mutually

unbiased .

For measurements involving more than 2 bases, to obtain strong uncertainty
relations, the bases must be mutually unbiased -
MUBs are a necessary condition to achieve maximal incompatibility with
multiple bases.

Security of quantum cryptographic protocols relies on this property of MUBs.
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MUBs in Quantum Cryptography

Quantum Key Distribution –
The participants (A and B) want to generate a secret key about which an
eavesdropper (E) cannot obtain significant information.
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MUBs in Quantum Cryptography

Quantum Key Distribution –
The participants (A and B) want to generate a secret key about which an
eavesdropper (E) cannot obtain significant information.

Example of a protocol using states in C2 (qubits):

Key: n-bit string X = x1x2 . . . xn, xi ∈ {0, 1}.
A encodes each bit xi in an eigenstate of one a pair of complementary bases,

{|0〉, |1〉} or {|+〉, |−〉} in C
2 :

xi → |xi〉 or xi → (|xi〉+ |x̄i〉)/
√
2.

Then, sends the encoded state to B.
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Then, sends the encoded state to B.

B has access to the basis information, E does not. By guessing randomly, E
can typically access only half the key.
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MUBs in Quantum Cryptography

Quantum Key Distribution –
The participants (A and B) want to generate a secret key about which an
eavesdropper (E) cannot obtain significant information.

Example of a protocol using states in C2 (qubits):

Key: n-bit string X = x1x2 . . . xn, xi ∈ {0, 1}.
A encodes each bit xi in an eigenstate of one a pair of complementary bases,

{|0〉, |1〉} or {|+〉, |−〉} in C
2 :

xi → |xi〉 or xi → (|xi〉+ |x̄i〉)/
√
2.

Then, sends the encoded state to B.

B has access to the basis information, E does not. By guessing randomly, E
can typically access only half the key.

Amount of information E has about the key is a measure of incompatibility of
the set of bases used by A.
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The case of prime-power dimensions
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The Weyl-Heisenberg Group

Weyl-Heisenberg group Hd : Finite non-abelian group generated by the
cyclic shift operator X and the phase operator Z. They satisfy the Weyl
commutation rule:

XZ = ei2π/dZX .
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The Weyl-Heisenberg Group

Weyl-Heisenberg group Hd : Finite non-abelian group generated by the
cyclic shift operator X and the phase operator Z. They satisfy the Weyl
commutation rule:

XZ = ei2π/dZX .

Each element of Hd can be uniquely represented ( upto a phase) as
Um,n = (X )m(Z)n, 0 ≤ m,n ≤ d− 1 . Um′,n′ and Um,n commute iff
mn′ − nm′ = 0mod d.
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Each element of Hd can be uniquely represented ( upto a phase) as
Um,n = (X )m(Z)n, 0 ≤ m,n ≤ d− 1 . Um′,n′ and Um,n commute iff
mn′ − nm′ = 0mod d.

Hd is a group of unitary operators, closed under multiplication:
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The Weyl-Heisenberg Group

Weyl-Heisenberg group Hd : Finite non-abelian group generated by the
cyclic shift operator X and the phase operator Z. They satisfy the Weyl
commutation rule:

XZ = ei2π/dZX .

Each element of Hd can be uniquely represented ( upto a phase) as
Um,n = (X )m(Z)n, 0 ≤ m,n ≤ d− 1 . Um′,n′ and Um,n commute iff
mn′ − nm′ = 0mod d.

Hd is a group of unitary operators, closed under multiplication:

Um,nUm′,n′ = U(m+m′)mod d,(n+n′)mod d.

The elements of Hd are pairwise trace orthogonal:

tr[(XmZn)(Xm′Zn′

)] = δmm′δnn′ .

The operators {Um,n} form a ON basis for the space of d× d complex
matrices Md(C).
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Unitary Operator Basis and MUBs - I

There are at most d pairwise orthogonal commuting unitary matrices in
Md(C).
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Unitary Operator Basis and MUBs - I

There are at most d pairwise orthogonal commuting unitary matrices in
Md(C).

Let S be a set of d2 mutually orthogonal unitary operators acting on Cd

(unitary basis for the space of d× d matrices).
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Unitary Operator Basis and MUBs - I

There are at most d pairwise orthogonal commuting unitary matrices in
Md(C).

Let S be a set of d2 mutually orthogonal unitary operators acting on Cd

(unitary basis for the space of d× d matrices).

Suppose there exists a partitioning of S \ {I} into Mutually Disjoint Maximal
Commuting Classes: {C1, C2, . . . , CL} where, Cj ⊂ S \ {I} of size |Cj| = d− 1
are such that
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Unitary Operator Basis and MUBs - I

There are at most d pairwise orthogonal commuting unitary matrices in
Md(C).

Let S be a set of d2 mutually orthogonal unitary operators acting on Cd

(unitary basis for the space of d× d matrices).

Suppose there exists a partitioning of S \ {I} into Mutually Disjoint Maximal
Commuting Classes: {C1, C2, . . . , CL} where, Cj ⊂ S \ {I} of size |Cj| = d− 1
are such that

(a) the elements of Cj commute for all 1 ≤ j ≤ L, and,

(b) Cj ∩ Ck = ∅ for all j 6= k.
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Unitary Operator Basis and MUBs - I

There are at most d pairwise orthogonal commuting unitary matrices in
Md(C).

Let S be a set of d2 mutually orthogonal unitary operators acting on Cd

(unitary basis for the space of d× d matrices).

Suppose there exists a partitioning of S \ {I} into Mutually Disjoint Maximal
Commuting Classes: {C1, C2, . . . , CL} where, Cj ⊂ S \ {I} of size |Cj| = d− 1
are such that

(a) the elements of Cj commute for all 1 ≤ j ≤ L, and,

(b) Cj ∩ Ck = ∅ for all j 6= k.

Theorem 1: The common eigenbases of each of {C1, C2, . . . , CL} form a set
of L mutually unbiased bases.
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Proof of Theorem 1

Consider a maximal commuting class Cj (1 ≤ j ≤ d+ 1) :

Cj = {Uj,0, Uj,1, Uj,2, . . . , Uj,d−1}, (Uj,0 = I)

Let Bj = {|ψj
i 〉, i = 0, 1, . . . , d− 1} be the associated basis.
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Consider a maximal commuting class Cj (1 ≤ j ≤ d+ 1) :

Cj = {Uj,0, Uj,1, Uj,2, . . . , Uj,d−1}, (Uj,0 = I)

Let Bj = {|ψj
i 〉, i = 0, 1, . . . , d− 1} be the associated basis.

Orthogonality of the unitaries implies, for every pair j 6= k,

tr[U †
j,sUk,t] = d δs,0δt,0, ∀0 ≤ s, t ≤ d− 1.
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Cj = {Uj,0, Uj,1, Uj,2, . . . , Uj,d−1}, (Uj,0 = I)

Let Bj = {|ψj
i 〉, i = 0, 1, . . . , d− 1} be the associated basis.

Orthogonality of the unitaries implies, for every pair j 6= k,

tr[U †
j,sUk,t] = d δs,0δt,0, ∀0 ≤ s, t ≤ d− 1.

Since Uj,s =
∑d−1

i=0 λ
j,s
i |ψj

i 〉〈ψ
j
i |, this implies,

d−1∑

i=0

d−1∑

l=0

λ
j,s
i λ

k,t
l |〈ψj

i |ψk
l 〉|2 = d δs,0 δt,0, ∀0 ≤ s, t ≤ d− 1.
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Cj = {Uj,0, Uj,1, Uj,2, . . . , Uj,d−1}, (Uj,0 = I)

Let Bj = {|ψj
i 〉, i = 0, 1, . . . , d− 1} be the associated basis.

Orthogonality of the unitaries implies, for every pair j 6= k,

tr[U †
j,sUk,t] = d δs,0δt,0, ∀0 ≤ s, t ≤ d− 1.

Since Uj,s =
∑d−1

i=0 λ
j,s
i |ψj

i 〉〈ψ
j
i |, this implies,

d−1∑

i=0

d−1∑

l=0

λ
j,s
i λ

k,t
l |〈ψj

i |ψk
l 〉|2 = d δs,0 δt,0, ∀0 ≤ s, t ≤ d− 1.

Inverting this system of equations, for every j 6= k,

|〈ψj
i |ψk

l 〉|2 =
1

d
, ∀ 0 ≤ i, l ≤ d.
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Proof of Theorem 1

Consider a maximal commuting class Cj (1 ≤ j ≤ d+ 1) :

Cj = {Uj,0, Uj,1, Uj,2, . . . , Uj,d−1}, (Uj,0 = I)

Let Bj = {|ψj
i 〉, i = 0, 1, . . . , d− 1} be the associated basis.

Orthogonality of the unitaries implies, for every pair j 6= k,

tr[U †
j,sUk,t] = d δs,0δt,0, ∀0 ≤ s, t ≤ d− 1.

Since Uj,s =
∑d−1

i=0 λ
j,s
i |ψj

i 〉〈ψ
j
i |, this implies,

d−1∑

i=0

d−1∑

l=0

λ
j,s
i λ

k,t
l |〈ψj

i |ψk
l 〉|2 = d δs,0 δt,0, ∀0 ≤ s, t ≤ d− 1.

Inverting this system of equations, for every j 6= k,

|〈ψj
i |ψk

l 〉|2 =
1

d
, ∀ 0 ≤ i, l ≤ d.

{B1,B2, . . . ,BL} is thus a set of L MUBs in C
d.
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Unitary Operator Bases and MUBs - II

Conversely, let {B1,B2, . . . ,BL} be a set of L MUBs in Cd. Then, there
exists a set of L(d− 1) mutually orthogonal unitary operators that can be
partitioned into L mutually disjoint maximal commuting classes.
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Unitary Operator Bases and MUBs - II

Conversely, let {B1,B2, . . . ,BL} be a set of L MUBs in Cd. Then, there
exists a set of L(d− 1) mutually orthogonal unitary operators that can be
partitioned into L mutually disjoint maximal commuting classes.

Proof: Let Bj ≡ {|ψj
0〉, |ψj

1, . . . , |ψj
d−1〉}. Then,

|〈ψj
i |ψk

l 〉|2 =
1

d
, ∀ j 6= k, ∀ 0 ≤ i, l ≤ d− 1.
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Unitary Operator Bases and MUBs - II

Conversely, let {B1,B2, . . . ,BL} be a set of L MUBs in Cd. Then, there
exists a set of L(d− 1) mutually orthogonal unitary operators that can be
partitioned into L mutually disjoint maximal commuting classes.

Proof: Let Bj ≡ {|ψj
0〉, |ψj

1, . . . , |ψj
d−1〉}. Then,

|〈ψj
i |ψk

l 〉|2 =
1

d
, ∀ j 6= k, ∀ 0 ≤ i, l ≤ d− 1.

Construct the unitaries

Uj,s =

d−1∑

l=0

e2πisl/d|ψj
l 〉〈ψ

j
l |, ∀ 0 ≤ s ≤ d− 1, 1 ≤ j ≤ L.

Clearly, Uj,s and Uj,t commute for every j.
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Unitary Operator Bases and MUBs - II

Conversely, let {B1,B2, . . . ,BL} be a set of L MUBs in Cd. Then, there
exists a set of L(d− 1) mutually orthogonal unitary operators that can be
partitioned into L mutually disjoint maximal commuting classes.

Proof: Let Bj ≡ {|ψj
0〉, |ψj

1, . . . , |ψj
d−1〉}. Then,

|〈ψj
i |ψk

l 〉|2 =
1

d
, ∀ j 6= k, ∀ 0 ≤ i, l ≤ d− 1.

Construct the unitaries

Uj,s =

d−1∑

l=0

e2πisl/d|ψj
l 〉〈ψ

j
l |, ∀ 0 ≤ s ≤ d− 1, 1 ≤ j ≤ L.

Clearly, Uj,s and Uj,t commute for every j.

These unitaries are indeed mutually orthogonal:

tr[U †
j,sUk,t] =

d−1∑

l,m=0

e2πi(tl−sm)/d|〈ψj
l |ψk

m〉|2

⇒ tr[U †
j,sUj,t] = d δs,t , tr[U †

j,sUk,t] = 0, j 6= k, (s, t) 6= (0, 0).
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Unitary operator basis and MUBs - III

Corollary : The cardinality of a set of MUBs in Cd cannot be more than
d+ 1.
Let N(d) be the maximal number of MUBs in d-dimensions, then,
N(d) ≤ d+ 1.
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Unitary operator basis and MUBs - III

Corollary : The cardinality of a set of MUBs in Cd cannot be more than
d+ 1.
Let N(d) be the maximal number of MUBs in d-dimensions, then,
N(d) ≤ d+ 1.

Example: In C
4 = C

2 ⊗ C
2, consider the unitary basis of Pauli operators

{Ui ⊗ Uj}, where, Ui ∈ {I, X, Y, Z}.
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Unitary operator basis and MUBs - III

Corollary : The cardinality of a set of MUBs in Cd cannot be more than
d+ 1.
Let N(d) be the maximal number of MUBs in d-dimensions, then,
N(d) ≤ d+ 1.

Example: In C
4 = C

2 ⊗ C
2, consider the unitary basis of Pauli operators

{Ui ⊗ Uj}, where, Ui ∈ {I, X, Y, Z}.

S1 = {Y ⊗ I, I⊗ Y, Y ⊗ Y }
S2 = {Y ⊗ Z,Z ⊗X,X ⊗ Y }
S3 = {Z ⊗ I, I⊗ Z,Z ⊗ Z}
S4 = {X ⊗ I, I⊗X,X ⊗X}
S5 = {X ⊗ Z,Z ⊗ Y, Y ⊗X}.

Common eigenbases of S1,S2, . . . ,S5 form a set of 5 MUBs in C4.
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Unitary operator basis and MUBs - III

Corollary : The cardinality of a set of MUBs in Cd cannot be more than
d+ 1.
Let N(d) be the maximal number of MUBs in d-dimensions, then,
N(d) ≤ d+ 1.

Example: In C
4 = C

2 ⊗ C
2, consider the unitary basis of Pauli operators

{Ui ⊗ Uj}, where, Ui ∈ {I, X, Y, Z}.

S1 = {Y ⊗ I, I⊗ Y, Y ⊗ Y }
S2 = {Y ⊗ Z,Z ⊗X,X ⊗ Y }
S3 = {Z ⊗ I, I⊗ Z,Z ⊗ Z}
S4 = {X ⊗ I, I⊗X,X ⊗X}
S5 = {X ⊗ Z,Z ⊗ Y, Y ⊗X}.

Common eigenbases of S1,S2, . . . ,S5 form a set of 5 MUBs in C4.

This partitioning is not unique!
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MUBs in prime-power dimensions

In prime-power dimensions d = pn, explicit construction of N(d) = d+ 1
MUBs is known using the operators of the Weyl-Heisenberg group.
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MUBs in prime-power dimensions

In prime-power dimensions d = pn, explicit construction of N(d) = d+ 1
MUBs is known using the operators of the Weyl-Heisenberg group.

Decompose the Hilbert space as Cd = C
p ⊗ C

p . . .⊗ C
p

︸ ︷︷ ︸

n times

.

Consider tensor products of X and Z acting on Cp.
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MUBs is known using the operators of the Weyl-Heisenberg group.

Decompose the Hilbert space as Cd = C
p ⊗ C

p . . .⊗ C
p

︸ ︷︷ ︸

n times

.

Consider tensor products of X and Z acting on Cp.

Unitary basis of operators: S = {U1 ⊗ U2 ⊗ . . .⊗ Un}, where,
Ui = (X )ki (Z)li , 0 ≤ ki, li ≤ p− 1.
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MUBs in prime-power dimensions

In prime-power dimensions d = pn, explicit construction of N(d) = d+ 1
MUBs is known using the operators of the Weyl-Heisenberg group.

Decompose the Hilbert space as Cd = C
p ⊗ C

p . . .⊗ C
p

︸ ︷︷ ︸

n times

.

Consider tensor products of X and Z acting on Cp.

Unitary basis of operators: S = {U1 ⊗ U2 ⊗ . . .⊗ Un}, where,
Ui = (X )ki (Z)li , 0 ≤ ki, li ≤ p− 1.

Each operator is represented by a vector of length 2n over the finite field
Fp: (k1, . . . , kn|l1, . . . , ln).
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MUBs in prime-power dimensions

In prime-power dimensions d = pn, explicit construction of N(d) = d+ 1
MUBs is known using the operators of the Weyl-Heisenberg group.

Decompose the Hilbert space as Cd = C
p ⊗ C

p . . .⊗ C
p

︸ ︷︷ ︸

n times

.

Consider tensor products of X and Z acting on Cp.

Unitary basis of operators: S = {U1 ⊗ U2 ⊗ . . .⊗ Un}, where,
Ui = (X )ki (Z)li , 0 ≤ ki, li ≤ p− 1.

Each operator is represented by a vector of length 2n over the finite field
Fp: (k1, . . . , kn|l1, . . . , ln).

There exists a partitioning of S into d+ 1 mutually disjoint maximal
commuting classes Ci.
A partitioning of d2 elements of the Weyl-Heisenberg group into d+ 1
Abelian subgroups.
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Composite Dimensions: Unextendible MUBs
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MUBs in composite dimensions

In composite dimensions, smaller sets of MUBs have been constructed.
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MUBs in composite dimensions

In composite dimensions, smaller sets of MUBs have been constructed.

Using Mutually Orthogonal Latin Squares in square dimensions (d = s2), we
can obtain

√
d+ 1 MUBs.
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MUBs in composite dimensions

In composite dimensions, smaller sets of MUBs have been constructed.

Using Mutually Orthogonal Latin Squares in square dimensions (d = s2), we
can obtain

√
d+ 1 MUBs.

Lower bound on N(d) for any d = pr11 p
r2
2 . . . prmm :

N(d) ≥ min {N(pr11 ), N(pr22 ), . . . , N(prmm )}
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MUBs in composite dimensions

In composite dimensions, smaller sets of MUBs have been constructed.

Using Mutually Orthogonal Latin Squares in square dimensions (d = s2), we
can obtain

√
d+ 1 MUBs.

Lower bound on N(d) for any d = pr11 p
r2
2 . . . prmm :

N(d) ≥ min {N(pr11 ), N(pr22 ), . . . , N(prmm )}

Proof: Let L = minmN(prmm ). Choose L MUBs {B1,m,B2,m, . . . ,BL,m} for
each Cprm

m . Then,

{Bj,1 ⊗ . . .⊗ Bj,m : j = 1, . . . , L}

is a set of L MUBs in Cd.
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MUBs in composite dimensions

In composite dimensions, smaller sets of MUBs have been constructed.

Using Mutually Orthogonal Latin Squares in square dimensions (d = s2), we
can obtain

√
d+ 1 MUBs.

Lower bound on N(d) for any d = pr11 p
r2
2 . . . prmm :

N(d) ≥ min {N(pr11 ), N(pr22 ), . . . , N(prmm )}

Proof: Let L = minmN(prmm ). Choose L MUBs {B1,m,B2,m, . . . ,BL,m} for
each Cprm

m . Then,

{Bj,1 ⊗ . . .⊗ Bj,m : j = 1, . . . , L}

is a set of L MUBs in Cd.

Simple consequence: N(d) ≥ 3 for any d ≥ 2. Eigenbases of {X ,Z,XZ} .
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MUBs in composite dimensions

In composite dimensions, smaller sets of MUBs have been constructed.

Using Mutually Orthogonal Latin Squares in square dimensions (d = s2), we
can obtain

√
d+ 1 MUBs.

Lower bound on N(d) for any d = pr11 p
r2
2 . . . prmm :

N(d) ≥ min {N(pr11 ), N(pr22 ), . . . , N(prmm )}

Proof: Let L = minmN(prmm ). Choose L MUBs {B1,m,B2,m, . . . ,BL,m} for
each Cprm

m . Then,

{Bj,1 ⊗ . . .⊗ Bj,m : j = 1, . . . , L}

is a set of L MUBs in Cd.

Simple consequence: N(d) ≥ 3 for any d ≥ 2. Eigenbases of {X ,Z,XZ} .

Question of whether a maximal set of MUBs exists in non-prime-power
dimensions still remains unresolved.
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Maximal set of MUBs in d = 6?

Triples of MUBs have been constructed using:

Abelian subgroups of the Weyl-Heisenberg group
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Abelian subgroups of the Weyl-Heisenberg group

Mutually unbiased Hadamard matrices
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Maximal set of MUBs in d = 6?

Triples of MUBs have been constructed using:

Abelian subgroups of the Weyl-Heisenberg group

Mutually unbiased Hadamard matrices

Complex Hadamard matrix H on C
d: a rescaled d× d unitary matrix,

|Hi,j | =
1√
d
, i, j = 0, 1, . . . , d− 1, H†H = d I.
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Maximal set of MUBs in d = 6?

Triples of MUBs have been constructed using:

Abelian subgroups of the Weyl-Heisenberg group

Mutually unbiased Hadamard matrices

Complex Hadamard matrix H on C
d: a rescaled d× d unitary matrix,

|Hi,j | =
1√
d
, i, j = 0, 1, . . . , d− 1, H†H = d I.

Two Hadamard matrices H1, H2 are mutually unbiased if H†
1H2 is also

Hadamard.
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Maximal set of MUBs in d = 6?

Triples of MUBs have been constructed using:

Abelian subgroups of the Weyl-Heisenberg group

Mutually unbiased Hadamard matrices

Complex Hadamard matrix H on C
d: a rescaled d× d unitary matrix,

|Hi,j | =
1√
d
, i, j = 0, 1, . . . , d− 1, H†H = d I.

Two Hadamard matrices H1, H2 are mutually unbiased if H†
1H2 is also

Hadamard.
A set of N Hadamard matrices ⇔ A set of N + 1 MUBs!
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Maximal set of MUBs in d = 6?

Triples of MUBs have been constructed using:

Abelian subgroups of the Weyl-Heisenberg group

Mutually unbiased Hadamard matrices

Complex Hadamard matrix H on C
d: a rescaled d× d unitary matrix,

|Hi,j | =
1√
d
, i, j = 0, 1, . . . , d− 1, H†H = d I.

Two Hadamard matrices H1, H2 are mutually unbiased if H†
1H2 is also

Hadamard.
A set of N Hadamard matrices ⇔ A set of N + 1 MUBs!

All known triples of MUBs in d = 6 are unextendible to a maximal set!
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Unextendible Sets of MUBs

Definition [Unextendibility]: A set of MUBs {B1,B2, . . . ,Bm} in Cd is
unextendible if there does not exist another basis in Cd that is unbiased with
respect to {Bj, j = 1, . . . ,m}.
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Definition [Unextendibility]: A set of MUBs {B1,B2, . . . ,Bm} in Cd is
unextendible if there does not exist another basis in Cd that is unbiased with
respect to {Bj, j = 1, . . . ,m}.

Example: In d = 6, the eigenbases of X ,Z and XZ are an unextendible set
of 3 MUBs.
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Definition [Unextendibility]: A set of MUBs {B1,B2, . . . ,Bm} in Cd is
unextendible if there does not exist another basis in Cd that is unbiased with
respect to {Bj, j = 1, . . . ,m}.

Example: In d = 6, the eigenbases of X ,Z and XZ are an unextendible set
of 3 MUBs.

⇒ Cannot be extended to obtain a complete set of 7 MUBs in d = 6!
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Unextendible Sets of MUBs

Definition [Unextendibility]: A set of MUBs {B1,B2, . . . ,Bm} in Cd is
unextendible if there does not exist another basis in Cd that is unbiased with
respect to {Bj, j = 1, . . . ,m}.

Example: In d = 6, the eigenbases of X ,Z and XZ are an unextendible set
of 3 MUBs.

⇒ Cannot be extended to obtain a complete set of 7 MUBs in d = 6!

Definition [Strongly Unextendiblity]: {B1,B2, . . . ,Bm} is strongly
unextendible if there does not exist another vector that is unbiased with
respect to Bj, j = 1, . . . ,m.

Eigenbases of X ,Z and XZ in d = 6 are strongly unextendible.
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Unextendible sets of Pauli Classes

Definition [Unextendible Classes]: A set of L mutually disjoint maximal
commuting classes {C1, C2, . . . , CL} of Pauli operators in d = 2n is
unextendible if another maximal commuting class cannot be formed out of
the remaining operators in Pn \ {I ∪L

i=1 Ci}.
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Example: a set of 3 unextendible maximal commuting Pauli classes in d = 4.

C1 = {Y ⊗ Y, I⊗ Y, Y ⊗ I},
C2 = {Y ⊗ Z,Z ⊗X,X ⊗ Y },
C3 = {X ⊗ I, I⊗ Z,X ⊗ Z}
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Unextendible sets of Pauli Classes

Definition [Unextendible Classes]: A set of L mutually disjoint maximal
commuting classes {C1, C2, . . . , CL} of Pauli operators in d = 2n is
unextendible if another maximal commuting class cannot be formed out of
the remaining operators in Pn \ {I ∪L

i=1 Ci}.

Example: a set of 3 unextendible maximal commuting Pauli classes in d = 4.

C1 = {Y ⊗ Y, I⊗ Y, Y ⊗ I},
C2 = {Y ⊗ Z,Z ⊗X,X ⊗ Y },
C3 = {X ⊗ I, I⊗ Z,X ⊗ Z}

Cannot find one more class of 3 commuting operators from the remaining 6
Pauli operators.

Weakly Unextendible Sets: The common eigenbases of an unextendible set
of Pauli classes form a weakly unextendible set of MUBs:
There does not exist another MUB that can be realized as a common
eigenbasis of a maximal commuting class CL+1 ⊂ Pn \ {I}.
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Unextendible Sets in d = 2n

Given any two maximal commuting Pauli classes C1 and C2 in d = 4, there
always exists a third class C′

3, of commuting Paulis such that {C1, C2, C′
3}

constitute an unextendible set of three maximal commuting Pauli classes in
d = 4.
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3}

constitute an unextendible set of three maximal commuting Pauli classes in
d = 4.

In d = 8, the number of maximal commuting Pauli classes in an unextendible
set is exactly 5. ⇒ A weakly unextendible set of 5 MUBs in d = 8.
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constitute an unextendible set of three maximal commuting Pauli classes in
d = 4.

In d = 8, the number of maximal commuting Pauli classes in an unextendible
set is exactly 5. ⇒ A weakly unextendible set of 5 MUBs in d = 8.

Numerical evidence: Specific examples of unextendible sets of Pauli classes
in d = 4, 8 lead to strongly unextendible MUBs.
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Unextendible Sets in d = 2n

Given any two maximal commuting Pauli classes C1 and C2 in d = 4, there
always exists a third class C′

3, of commuting Paulis such that {C1, C2, C′
3}

constitute an unextendible set of three maximal commuting Pauli classes in
d = 4.

In d = 8, the number of maximal commuting Pauli classes in an unextendible
set is exactly 5. ⇒ A weakly unextendible set of 5 MUBs in d = 8.

Numerical evidence: Specific examples of unextendible sets of Pauli classes
in d = 4, 8 lead to strongly unextendible MUBs.

In d = 2n: we conjecture the existence of unextendible sets of d
2 + 1 maximal

commuting Pauli classes.
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Thank You!
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