
A QUICK REVIEW OF SOME LINEAR ALGEBRA

K. N. RAGHAVAN
THE INSTITUTE OF MATHEMATICAL SCIENCES

CONTENTS

Preliminaries 2
Notions associated with a matrix 2
1. Row reduced echelon forms 2
1.1. Elementary row operations 3
1.2. Definition of row reduced echelon forms 3
1.3. Results about matrices in RREF 4
1.4. Rank of a matrix 5
Exercise Set 1 6
2. Invertible matrices 7
2.1. Elementary row matrices and their invertibility 7
2.2. Conditions for invertibility of a square matrix 8
2.3. Computing the inverse by row reduction 8
3. Linear systems of equations 8
3.1. The method of row reduction 9
3.2. The solution of Ax = b in case A is in RREF 9
3.3. A practical procedure to solve linear systems of equations 10
Exercise set 2 11
4. Projections and the line of best fit 12
4.1. Motivation: the line of best fit 12
4.2. Definition of the orthogonal projection to a subspace 12
4.3. A formula for the orthogonal projection 13
4.4. Remarks 13
4.5. Approximate solution to an overdetermined linear system 13
4.6. Illustration 14
4.7. Normal form of a linear system 14
5. The spectral theorem for a real symmetric matrix 14
5.1. Symmetric positive definite and semi-definite matrices 16
6. Singular Value Decomposition (SVD) 16
Exercise Set 3 17
7. Min-max characterisation of the eigenvalues of a RSM 18
7.1. Alternative proof of the spectral theorem 18
7.2. A characterization of the eigenvalues of A 18
7.3. An application: Sylvester’s criterion for positive definiteness 19
Exercise Set 4 19

These are notes of lectures given during 2013–14 at various NBHM sponsored workshops. Corrections,
comments, suggestions for improvement, criticisms, etc. are welcome. Please send them to the author
at knr.imsc@gmail.com or knr@imsc.res.in. An updated version of these notes is available online at
http://www.imsc.res.in/∼knr/past/linalg ed.pdf .

http://www.imsc.res.in/~knr/past/linalg_ed.pdf


PRELIMINARIES

Let F be a field. In what follows, entries of all matrices are supposed to be from F.
Let Fm denote the vector space of m × 1 matrices (“column matrices”). Let ej denote

the m × 1 column matrix with all entries zero except that on row j which is 1. Then ej,
1 ≤ j ≤ m, form an (ordered) basis for Fm, called the standard basis.

Let Fm denote the vector space of 1×mmatrices (“row matrices”). The map Fm×Fm → F
given by (u, v) 7→ vu is bilinear (that is, linear separately in the arguments u and v with the
other fixed) and perfect, that is, vu = 0 for all u means v = 0; and vu = 0 for all v means
u = 0. This map is sometimes called the standard pairing between Fm and Fm.

Notions associated with a matrix. Let A be an m × n matrix. We may think of A as
a linear transformation—also denoted A—from Fn to Fm: the image under the linear
transformation A of an element u in Fn is the matrix product Au. The columns of the
matrix A are in order the images under the linear transformation A of the standard basis
of Fn, so the linear transformation A determines the matrix A.

Column space and column rank, row space and row rank. The column space ofA is the subspace
of Fm spanned by the columns of A. It is also the image of the linear transformation A.
The column rank of A is the dimension of this subspace. The row space of A is the subspace
of Fn spanned by the rows of A. The row rank of A is the dimension of this subspace. The
kernel of the linear transformation A is (as a subspace of Fn) evidently “the perpendicular”
of the row space of A: the perpendicular of a subspace V of Fn is by definition the subspace
{w ∈ Fn | vw = 0 ∀ v ∈ V } in Fn.

Remark 1. We will soon prove (see Corollary 6) that the row rank and column rank of a
matrix are equal. We will then be justified in using the word rank to mean either of them.rank of a matrix

Proposition 2. Let A be an m×n matrix and A′ an m′×n matrix. If their row spaces are the
same, then their column ranks are equal. In fact, a set of columns of A forms a basis for its
column space if and only if the corresponding set of columns of A′ forms a basis for its column
space.

PROOF: The solution space of Ax = 0 is the perpendicular to the row space of A (as
observed above). The same thing holds also for A′, and since the row spaces of A and
A′ are equal, the solution spaces of Ax = 0 and A′x = 0 are equal. This means that any
linear dependence relation among the columns of A is also one among the corresponding
columns of A′ and vice versa. In particular, if a particular set of columns of A forms a
basis for its column space, then the corresponding set of columns of A′ forms a basis for its
column space, and vice versa. 2

1. ROW REDUCED ECHELON FORMS

This section is technical, elementary, and fundamental. The definitions involve arbitrary
choices and are admittedly contrived. Nevertheless Lemma 5 is the lynchpin of §1-3, which
are in turn basic to all that follows.
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1.1. Elementary row operations. The following simple operations on the rows of a m×n
matrix are called elementary:

• interchanging two rows
• multiplying a row by a non-zero scalar
• adding a multiple of one row to another

Every elementary row operation is reversible by means of an elementary row operation:
interchanging two specific rows is inverse to itself; multiplying a specific row by the recip-
rocal of a non-zero scalar is inverse to mulitplication of that row by that scalar; adding −c
times row i to row j is inverse to adding c times row i to row j.

1.1.1. ER-equivalence. Two m× n matrices are called ER-equivalent if one can be obtained
from the other by a sequence of elementary row operations: ER stands for “elementary
row”. That this is an equivalence relation is clear from what has been said above.

Since the resulting rows after an elementary row operation are all linear combinations
of the original rows, and every elementary row operation is reversible by means of an
elementary row operation, we have:

Proposition 3. ER-equivalent matrices have the same row space.

The converse of the above is also true as proved a little later in this section: see Corollary 6.
Whenever there is an equivalence relation, it is natural to look for what are called sec-

tions. What this amounts to in our present case is:
Identify a special class of matrices such that there is one and only one
special matrix in every row ER-equivalence class.

The row reduced echelon forms defined below are precisely such a special class of matrices:
see item (iv) of Lemma 5 below.

1.2. Definition of row reduced echelon forms. An m × n matrix is said to be in row
reduced echelon form (RREF) if the following conditions are satisfied

• The leading entry of any non-zero row—that is, the first non-zero entry from the
left on the row—is 1.
• The column number in which the leading entry of a row appears is a strictly in-

creasing function of the row number.1 This should be interpreted to mean in par-
ticular that zero rows appear only after all non-zero rows.
• If a column contains a leading entry of a row, then all its other entries are zero.

Remark 4. (1) A submatrix of a matrix in RREF consisting of the first so many rows or
the first so many columns is also in RREF.

(2) IfE is a matrix in RREF with r non-zero rows, then its transposeEt is ER-equivalent
to the matrix with top left r × r block being the identity matrix and zero for the
rest of the entries.

1 It is instructive to note that in military parlance echelon means a formation of troops, ships, aircraft, or
vehicles in parallel rows with the end of each row projecting further than the one in front.

3



1.3. Results about matrices in RREF. The following technical lemma about matrices in
RREF is fundamental to the sequel.

Lemma 5. (i) The non-zero rows of a matrix in RREF form a basis for its row space.
(ii) Those columns of a matrix E in RREF in which the leading entries of the non-zero

rows appear form a basis of the column space of E.
(iii) If two matrices of the same size both in RREF have the same row space, then they are

equal.
(iv) Every matrix is ER-equivalent to a unique matrix in RREF.

PROOF: Let us first fix some useful notation. Let E be an m × n matrix in RREF, let R1,
. . . , Rr be in order its non-zero rows, and let `1, . . . , `r be the respective column numbers
in which the leading entries of the rows R1, . . . , Rr occur. Then, by the second condition
in the definition of RREFs, we have `1 < . . . < `r.

Suppose that R is a row matrix of size 1 × n in the row space of E. Then R is uniquely
a linear combination of the non-zero rows of E as follows:

R = R(`1)R1 + · · ·+R(`r)Rr where R(`j) is the entry on column `j of R (1)

Indeed the only contribution to R(`j) is from Rj, the entry in that column of every other
Ri being zero.

This proves (i). Moreover we conclude from (1) that

if the leading entry of R occurs in column c, then c must equal some `j (2)

In fact, c equals `j where j is least such that R(`j) is non-zero.
Now let E ′ be another matrix of size m × n in RREF whose row space is the same as

that of E. Fix notation for E ′ analogous to that for E (see above): R′1, . . . , R′r′ be the
non-zero rows of E ′ and `′1, . . . , `′r′ be the column numbers in which the leading entries of
the respective rows. Since E and E ′ have the same row space, every row of either of them
is in the span of the rows of the other. Applying (2), we conclude that r = r′ and `j = `′j
for 1 ≤ j ≤ r. Now, applying (1) with R′j in place of R, we get

R′j = R′j(`1)R1 + · · ·+R′j(`r)Rr = R′j(`
′
1)R1 + · · ·+R′j(`

′
r)Rr = R′j(`

′
j)Rj = Rj

Thus (iii) is proved.
Now suppose that C is a column matrix of size m × 1 in the column space of E. Then

C is uniquely a linear combination of the columns C`1, . . . , C`r of E as follows:

C = C(1)C`1 + · · ·+ C(r)C`r where C(j) is the entry on row j of C (3)

Indeed the only contribution to C(j) is from C`j , the entry in row j of every other C`i being
zero. This proves (ii).

For (iv), let A be an arbitrary m × n matrix. Let us first prove the uniqueness part.
Suppose that E and E ′ are matrices in RREF that are ER-equivalent to A. Then by Propo-
sition 3, the row spaces of E and E ′ are the same. Now, by (iii) above, E = E ′.

To prove the existence part of (iv), we describe an algorithm to bring A into RREF by
performing ER operations on it. The procedure is inductive and has a stepwise description
as follows:

• Proceed by induction on the number of columns in A. Scan the first column of A.
Suppose it is zero. If A has a single column, then just return it: there is nothing to
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do. If A has more than one column, then, letting A′ be the matrix of A with first
column deleted, we know by induction the conclusion for A′. The same operations
will do also for A: the first column remains zero throughout the process.
• Now suppose that the first column of A has a non-zero entry, say e in row r. Inter-

change rows 1 and r so as to bring that entry to the first row. Multiply row 1 by 1/e
so as to make the entry now in position (1, 1) equal to 1. Add suitable multiples of
the first row to other rows so that all other entries in the first column are zero.
• If A has a single column, stop at this point. If it has more than one column,

let A′ be the submatrix of A (in its present form) obtained by deleting the first
row and first column. By induction, A′ can be brought to RREF by elementary
row operations. Perform this sequence of operations on A. The first column of A
remains unchanged throughout (the entry in position (1, 1) is 1 and the remaining
entries are all 0) and the resulting matrix is in RREF from the second row onwards.
• Finally add suitable multiples of the non-zero second, third, . . . rows to the first

so as to ensure vanishing of the entry in the first row of every column containing
a leading entry of a non-zero row (second onwards). The resulting matrix is in
RREF. 2

1.4. Rank of a matrix.

Corollary 6. (1) The row rank and column rank of a matrix are equal.
(2) Two matrices of the same size are ER-equivalent if and only if they have the same row

space.
(3) The transpose of a matrix has the same rank as the matrix.

PROOF: (1) Let A be an arbitrary matrix and E a matrix in RREF that is ER-equivalent to
A. Such an E exists by (iv) of the lemma. By Proposition 3, A and E have the same row
space. So A and E have the same row rank. Moreover, by Proposition 2, they have the
same column rank. Finally, by (i) and (ii) of the lemma, the row rank and column rank
of E are equal.
(2) Let A and A′ be matrices of the same size. If they are ER-equivalent, then they have
the same row space by Proposition 3. For the converse, let E and E ′ be matrices in RREF
ER-equivalent to A and A′ respectively. Such matrices exist by (iv) of the lemma. Since A
and A′ have the same row space by hypothesis, it follows from Proposition 3 that E and E ′

have the same row space. By (iii) of the lemma, E = E ′. It follows that A and A′ are
ER-equivalent.
(3) The row space of the transpose of a m× n matrix is isomorphic to the column space of
the matrix via (the restriction of) the standard isomorphism v 7→ vt from Fm to Fm. 2
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EXERCISE SET 1

These exercises are taken from Gilbert Strang’s book Introduction to Linear Algebra, South
Asian Edition.

(1) For each of the following matrices, find their RREFs. What are their ranks? Here c
denotes a variable scalar.
1 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 −1


 0 0 0

0 0 3
2 4 6

  1 1 2 2
2 2 4 4
1 c 2 2

 (
1− c 2

0 2− c

)

(2) Find the RREFs and ranks of the following 3× 4 matrices:
(a) when all entries are 1.
(b) when the entry in position (i, j) is i+ j − 1.
(c) when the entry in position (i, j) is (−1)i+j.

(3) If R be the RREF of a matrix A, what are the RREFs of the following block matrices:(
A A

) (
A A
A 0

)
(4) Fill out the following matrices so that they have rank 1: 1 2 4

2
4

  9
1
2 6 −3

 (
a b
c

)
(5) Express the following matrices as the sum of two rank one matrices: 1 1 0

1 1 4
1 1 8

 (
2 2
2 3

)
(6) Write each of following rank 1 matrices as the product of a column matrix and a

row matrix:  3 6 6
1 2 2
4 8 8

 (
2 2 6 4
−1 −1 −3 −2

)
(7) True or false?: If a matrix is the product of a column matrix and a row matrix then

its rank is at most one.
(8) Prove that every m× n matrix of rank r can be written as the product of an m× r

and an r × n matrix.
(9) Suppose we allow elementary column operations on a matrix in addition to ele-

mentary row operations. What is the row-and-column reduced form of an m × n
matrix of rank r?

(10) Describe all 2 × 3 matrices A1 and A2 such that R1 + R2 is the RREF of A1 + A2

(where R1 and R2 are the RREFs of A1 and A2 respectively).
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2. INVERTIBLE MATRICES

An m × n matrix A is said to have a left inverse (respectively, right inverse) if there exists
an n ×m matrix L (respectively, n ×m matrix R) such that LA (respectively, AR) is the
identity n×n matrix (respectively, identity m×m matrix). If A and A′ have respective left
(respectively, right) inverses L and L′, then AA′ has a left (respecitvely, right) inverse L′L.
If A has a left inverse L, then L has A for a right inverse.

Suppose that a matrix A has both a left inverse L and a right inverse R. Then

L = L · 1 = L · AR = LA ·R = 1 ·R = R.

In particular, L and R are uniquely determined, and (being equal) commonly denoted by
A−1. We say in this case that A is invertible (or that it is a unit) and that A−1 is its inverse.
If A is invertible, so is A−1 and its inverse is A. The product AB of invertible matrices is
invertible with inverse B−1A−1.

Proposition 7. Let A be an m× n matrix and E the matrix in RREF that is ER-equivalent to
it (see Theorem 5 (iv)).

(1) If A has a left inverse, then m ≥ n and the first n rows of E form the identity matrix.
(2) If A has a right inverse, then n ≥ m.
(3) If A is invertible, then m = n and E is the identity matrix.

PROOF: (1) Let L be a left inverse of A. Since the rows of the product LA are linear
combinations of the rows of A, the row space of LA is contained in the row space of A.
But LA being the identity, its row space is Fn, so A has full possible row space Fn. Since E
is ER-equivalent to A, they have the same row space (Proposition 3). Since the non-zero
rows of E form a basis for its row space (Theorem 5 (i)) which is of dimension n, it follows
that E has exactly n non-zero rows, and so in particular m ≥ n. Moreover, since any zero
row of E appears below all non-zero rows (see the second condition in the definition of
RREF), the first n rows of E are its non-zero ones. If En be the submatrix of E consisting
of its first n rows, then En and the n× n identity matrix are matrices of the same size both
in RREF and with a common row space. By Theorem 5 (iii), En is the identity matrix.

(2) Let R be a right inverse of A. The columns of AR being linear combinations of the
columns of A, it follows that the column space of A is the full space Fm. But it is spanned
by the n columns of A, so n ≥ m. Alternatively, one could observe that At has a left inverse
and just invoke (1).

(3) follows from (1) and (2). 2

2.1. Elementary row matrices and their invertibility. To every elemetary row operation
(see §1.1) on m × n matrices there is (as we will presently observe) a corresponding
elementary row matrix E of size m × m: performing the row operation (on any matrix)
corresponds precisely to multiplying on the left byE. The matrixE is uniquely determined,
as follows from the following elementary observation:

for m, n, and p positive integers, and A, A′ a m× n matrices,
if AB = A′B for every n× p matrix B, then A = A′.

(4)

Letting I denote the m × m identity matrix and Eij the m × m matrix all of whose en-
tries are zero except the one at the spot (i, j), the elementary row matrices corresponding
respectively to the three elementary row operations listed in §1.1 are:
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• Eji + Eij +
∑

k 6=i,k 6=j Ekk where the interchange is of rows i and j
• I + (c− 1)Eii if row i is being multiplied by c 6= 0
• I + cEij where c times row i is being added to row j

Proposition 8. Elementary row matrices and their products are invertible.

PROOF: It suffices to prove that every elementary row matrix in invertible. Let E be such
a matrix. As observed in §1.1, every elementary row operation can be reversed by another
elementary row operation. So there is an elementary matrix E ′ such that E ′EB = B for
every m × n matrix B. By (4), this means that E ′E is the identity matrix, in other words
that E ′ is a left inverse for E. Since E ′ is itself an elementary row matrix and thus a left
inverse, say E ′′, it has both a left inverse and a right inverse (namely, E ′′ and E). We
conclude that E ′′ = E. Thus E ′ is also a right inverse for E, and E is invertible. 2

2.2. Conditions for invertibility of a square matrix.

Proposition 9. (1) Any square matrix having a left inverse is ER-equivalent to the iden-
tity matrix and hence a product of elementary row matrices.

(2) Any square matrix having a left or right inverse is invertible.

PROOF: Let A be a square matrix.
(1) If A has a left inverse, then, by Proposition 7 (1), it is ER-equivalent to the identity,

which means that it is a product of elementary row matrices.
(2) If A has a left inverse, then it is invertible by part (1) and Proposition 8. If it has a

right inverse R, then R has a left inverse and so by (1) is invertible. The left inverse of R
being unique, A = R−1. Alternatively, in the case A has a right inverse, one could observe
that its transpose has a left inverse and reduce to (1). 2

2.3. Computing the inverse by row reduction. Given an invertible n×n matrix A, there
is a convenient device to compute its inverse. Form the n× 2n matrix (A|I), where I is the
identity matrix of size n× n. Perform the same ER-operations on (A|I) as you would on A
to transform it to the identity matrix I. After these operations, the matrix (A|I) would
have been transformed to the form (I|B). The matrix B is the inverse of A. Indeed, if
En · · ·E1A = I, for ER-matrices E1, . . . , En, then, on the one hand, A−1 = En · · ·E1, and,
on the other, En · · ·E1(A|I) = (I|En · · ·E1).

We work out an example: 1 −1 0
−1 1 −1

0 −1 1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 is ER-equivalent to

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
0 −1 −1
−1 −1 −1
−1 −1 0


and so

 1 −1 0
−1 1 −1

0 −1 1

−1 =

 0 −1 −1
−1 −1 −1
−1 −1 0


3. LINEAR SYSTEMS OF EQUATIONS

Consider the matrix equation Ax = b, where A is an m×n matrix, b a column matrix of size
m× 1, and x a column matrix of unknowns of size n× 1. This is equivalent to a “system”
of m linear constraints on the unknown entries of x, and hence called a linear system.
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To solve the system means to determine the set of all elements x of Rn that satisfy the
equation. Linear systems of equations are ubiquitous in mathematics and its applications.
It is important therefore to be able to solve them. We quickly review the standard method
of solution by row reduction and, along the way, comment on the structure of the solution
set.

The system Ax = 0 is called the corresponding homogeneous system and its solution set—
which is here denoted by K—is related closely to that of the original system. Indeed, the
solution set of Ax = b equals x0 +K, where x0 is any one particular solution (of Ax = b).

In terms of the linear transformation A from Rn to Rm (corresponding to the matrix A),
the solution set of Ax = b is precisely the preimage of b. In particular, Ax = b admits a
solution if and only if b belongs to the image of the linear transformation A (which equals
the column space of the matrix A). The solution space K of the homogeneous system
Ax = 0 is just the kernel of the linear transformation A.

3.1. The method of row reduction. The observation underlying this method is:

The solution set remains unchanged when the system Ax = b is modified
by mulitplication on the left by an by m ×m invertible matrix C. In other
words, the system CAx = Cb has the same solution set as Ax = b for C
invertible.

We choose an invertible matrix C so that CA is in RREF: note that A may be brought to RREF by
ER operations (Lemma 5 (iv)), that each ER operation is equivalent to left multiplication by an ER matrix
(§2.1), and that each ER matrix (and so also any product of ER matrices) is invertible (Proposition 8). Left
multiplication by such a C transforms Ax = b to A′x = b′, where A′ = CA is in RREF and
b′ = Cb. We may thus assume, without loss of generality, that A is in RREF.

3.2. The solution of Ax = b in case A is in RREF. We claim that, for A in RREF, the
system Ax = b admits a solution if and only if br+1 = . . . = bm = 0 where r is the
number of non-zero rows (or the rank) of A. Indeed, this condition is necessary, for
(Ax)r+1 = . . . = (Ax)m = 0, no matter what x is, since the rows r + 1 through m of A
are zero. For the converse, assuming that br+1 = . . . = bm = 0, we produce a particular
solution as follows: let `1, . . . , `r be in order the column numbers in which the leading
(non-zero) entries of the non-zero rows of A appear; set x`k = bk for k such that 1 ≤ k ≤ r,
and xj = 0 if j 6∈ {`1, . . . , `r}.

To get the general solution of Ax = b (still assuming A to be in RREF of rank r, with
notation as above), now that we have a particular solution in hand (or know that the system
admits no solution, in which case there is nothing more to be done), we try to find the space K of
solutions of the homogeneous system Ax = 0: as observed above, the general solution of Ax = b is
the sum of K with any particular solution. Let us first consider an example. Suppose that A is:(

0 1 2 0 −1 0
0 0 0 1 3 −2

)
The solution space K in this case consists of all x ∈ R6 such that x2 = −2x3 + x5 and
x4 = −3x5 + 2x6. We may think of it as being parametrized by x1, x3, x5, and x6, each of
these four being free to take on any scalar as value. For a basis of K, we could take e1,
e3 − 2e2, e5 + e2 − 3e4, and e6 + 2e4.
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As in the illustration above, the RREF properties of the matrix A enable an explicit
description of the solution spaceK of Ax = 0. enable an explicit description of the solution
space K of Ax = 0. The r equations in the system can be written as: xj = −

∑
akixi for

j ∈ {`1, . . . , `r} where the sum is over i such that j + 1 ≤ i ≤ n, i 6∈ {`1, . . . , `k}. Note that
there is a “separation of variables” here: the xi with i ∈ {`1, . . . , `r} appear only on the left
hand side and the other xi only on the right hand side (of any of these r equations). We
may therefore think of the latter xi as completely free and the former xi as determined (by
the values of the latter xi). In other words, K has a basis consisting of ej −

∑
1≤k≤r a`kje

`k ,
indexed by j such that 1 ≤ j ≤ n, j 6∈ {`1, . . . , `r}.

Corollary 10. (Rank-nullity theorem) For an m× n matrix A of rank r, the dimension of the
space of solutions of the homogeneous system Ax = 0 is n− r.

PROOF: By the method of row reduction (§3.1), we may assume A to be in RREF. But then,
as we have just seen, K has a basis consisting of n− r elements. 2

Corollary 11. If S is a subspace of dimension d of Fn, then the dimension of its perpendicular
space S⊥ (in Fn or Fn) is n− d.

PROOF: Choose A to be an m× n matrix the span of whose rows is S. Then A had rank d
and S⊥ (in Fn) is the solution space K of the homogeneous system Ax = 0. Now invoke
the previous corollary. 2

3.3. A practical procedure to solve linear systems of equations. In practice, when we
are solving a system Ax = b as above, it is convenient to encode the given information (of
A and b) in the form of the m × (n + 1)-matrix (A|b). Now apply the same ER operations
on (A|b) as you would do on A to bring it to RREF A′. Let (A′|b′) be the result. If b′j 6= 0
for some j > r (where r is the rank of A or A′) then there is no solution. Otherwise,
there is a solution. In fact, the set of solutions consists of x ∈ Rn such that x`k = b′k −∑

`k<j≤n,j 6∈{`1,...,`r} a
′
kjxj, where each of xj, j 6∈ {`1, . . . , `r}, is free to take on any scalar

value.
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EXERCISE SET 2

Most but not all of these problems are taken from the linear algebra exams available on
MIT open courseware.

(1) Given A to be the following 3 × 4 matrix, solve the system Ax = 0. What is the
dimension of the solution space? Find a basis for the column space of A. What is
the RREF of the 6× 8 matrix B?

A =

 0 1 2 2
0 3 8 7
0 0 4 2

 B =

(
A A
A A

)
(2) Consider the linear system Ax = b where A is a 3× 3 matrix. After performing ER

operations on both sides, Ax = b is transformed to Rx = d with R in RREF. The
complete solution to Rx = d is given by

x =

 4
0
0

+ c1

 2
1
0

+ c2

 5
0
1


(a) What is the solution space of the homogeneous system Rx = 0? What of

Ax = 0?
(b) Determine R and d.
(c) In moving from Ax = b to Rx = d, the ER operations performed in order

were: first subtract 3 times row 1 from row 2; then 5 times row 1 from row 3.
Determine A and b.

(3) Is

 8
28
14

 in the column space of

 2 1
6 5
2 4

?

(4) Given that A is a 3 × 5 matrix of rank 3, circle the words that correctly complete
the following sentence: the equation Ax = b (always / sometimes but not always)
has (no solution / a unique solution/ many solutions). What is the column space
of A? What is the dimension of its null space?

(5) Let A be an m × n matrix of rank r. Given that B is a matrix of size n × p whose
columns form a basis for the solution space Ax = 0, what is p (in terms of m, n,
and r)? Describe the solution space of the linear system xB = 0.

(6) If Ax =

 1
1
1

 has no solutions and Ax =

 0
1
0

 has precisely one solution, what

all can you say about the size and rank of A? What is the null space of A? Find a
matrix A that fits the given description.

(7) Given that the RREF of a 3 × 5 matrix A has the following form, what all can you
say about the columns of A? 1 4 0 0 0

0 0 0 1 0
0 0 0 0 1


(8) What is the subspace of 3× 3 matrices spanned by all possible RREFs (of size 3× 3

of course)?
11



4. PROJECTIONS AND THE LINE OF BEST FIT

4.1. Motivation: the line of best fit. As motivation for what follows later in this section,
consider the following situation that occurs routinely in laboratories (presumably!). Sup-
pose that we know that two quantities of interest are related linearly—which means that
one is a function of the other and that its graph with respect to the other is a straight
line—and that we are trying to determine this straight line experimentally. We vary one
of the quantities (over a finite set of values) and measure the corresponding values of the
other, thereby getting a set of data points. Now if we try to find a straight line running
through our set of data points, there is often no such line! This after all should not be so
surprising, there being several reasons for the deviation from the ideal behaviour, not the
least of which is experimental error. At any rate, our problem now is to find a line that
“best fits” the data points.

One way of formulating the problem and the “best fit” criterion is as follows. Let the
line of best fit be y = mx + c, where m is the slope and c the y-intercept.2 Let (x1, y1),
. . . , (xn, yn) be the set of data points. The point (xk, yk) lies on y = mx + c if and only if
yk = mxk + c. The ideal situation (which as noted above is rarely the case) would be when
we can solve the following system of linear equations for m and c (in other words, when
all the data points do lie on a single line):

y1
y2
...
yn

 =


x1 1
x2 1
...

...
xn 1


(
m
c

)
(5)

Note that there is a solution to the above system if and only if the column vector on the
left side belongs to the column space of the n× 2 matrix on the right. Confronted with the
problem of being forced to “solve” this system when no solution exists, a natural thing to
do would be to replace the column vector on the left side by the vector “closest” to it in
the column space of the n× 2 matrix and then solve. Such a closest vector is given by the
“orthogonal projection” (to be defined presently) of the column vector on the left side on
to the column space. This approach demands that we know how to compute orthogonal
projections.

4.2. Definition of the orthogonal projection to a subspace. Suppose that we are given
a subspace V of Rm. Define V ⊥ := {w ∈ Rm |wtv = 0 for all v ∈ V }. Then V ∩ V ⊥ = 0,
for vtv = 0 implies v = 0 for v in Rm. Moreover, the dimension of V ⊥ is such that dimV +
dimV ⊥ = m. Indeed, this follows from the rank-nullity theorem, given the interpretation
that V ⊥ is the solution space of Atw = 0, where A is a matrix of size m × dimV whose
column space is V .

Putting together a basis of V with a basis of V ⊥ therefore gives a basis of Rm. In other
words, each element x of Rm has a unique expression of the form x = v + v′ with v in V
and v′ in V ⊥. The association x 7→ v is a linear transformation from Rm to V (or to Rm,

2This so-called slope-intercept form of the line would not be appropriate if we expect the line of best fit
to be vertical. But since, following convention, we plot the “independent variable” on the x-axis, and there
are many different values of this variable, a vertical line is ruled out, and we are justified in our choice of
the form of equation for the required line.
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if one prefers). It is characterized by the properties that it is identity on V and vanishes
on V ⊥. It is called the orthogonal projection to the subspace V .

4.3. A formula for the orthogonal projection. Now suppose that V is specified for us as
being the column space of am×nmatrix Awith linearly independent columns. The matrix
A of course determines the orthogonal projection—call it P—on to V . The question now
is: how do we write the matrix of P (with respect to the standard basis of Rm) given A?

The answer is:
P = A(AtA)−1At (6)

For the proof, we first observe that the AtA is an invertible n×n matrix, so that the inverse
in the formula makes sense. Suppose that (AtA)x = 0 for some x in Rn. Then, multiplying
by xt on the left, we get (xtAt)(Ax) = 0. But this means ||Ax|| = 0, so Ax = 0. Since
the columns of A are linearly independent, this in turn means x = 0. This proves that the
endomorphism of Rn represented by AtA is injective and so also bijective. Thus AtA is
invertible.

For an element v of V we have v = Ax for some x in Rn, so that Pv = A(AtA)−1At(Ax) =
A(AtA)−1(AtA)x = Ax = v. And for an element w of V ⊥ we have Atw = 0 (because the m
entries of Atw are precisely the inner products of w with the columns of A which span V ),
and so Pw = 0. This proves the formula.

4.4. Remarks. We make various remarks about the argument in the preceding subsection.
(1) Note that if m = n, then we get P = A(AtA)−1At = AA−1(At)−1At = identity,

which makes sense.
(2) In the course of the proof we have shown the following: the map At restricted to

the image of A is injective (where A is a real matrix). Indeed, if AtAx = 0, then
xtAtAx = 0 and so ||Ax|| = 0 and Ax = 0.

(3) Observe directly (without recourse to formula (6)) that the matrix P represent-
ing (with respect to the standard basis of Rm) the orthogonal projection to any
subspace of Rm is symmetric and satisfies P 2 = P .

(4) Suppose that P is an m×m symmetric matrix such that P 2 = P . Then P represents
with respect to the standard basis of Rm the orthogonal projection onto its column
space.

(5) If in §4.3 the columns of A are orthonormal, then AtA is the identity matrix, so
formula (6) reduces to P = AAt. This motivates the Gram-Schmidt orthogonaliza-
tion procedure for computing an orthonormal basis for a subspace of Rm starting
from any given basis for that subspace.

4.5. Approximate solution to an overdetermined linear system. Motivated by the need
to find the line of best fit and armed with the formula of the previous subsection, we now
proceed to give an approximate solution to an overdetermined linear system of equations.
Suppose that we want to solve Ax = b for x, where A is an m × n matrix with linearly
independent columns (so, in particular, m ≥ n). In general b may not be in the column
space of A. We replace b by its orthogonal projection on to the column space of A, which
by the formula of the previous subsection is A(AtA)−1Atb. We get Ax = A(AtA)−1Atb. But
since A has linearly indepedent columns, we can cancel the leading A from both sides, so

13



we get

x = (AtA)−1Atb (7)

4.6. Illustration. As an illustration of the method just described, let us work out the line
that best fits the three points (1, 1), (2, 3) and (3, 3). The slope m and y-intercept c are
obtained by an application of (7) as follows.(
m
c

)
= (AtA)−1Atb where A =

 1 1
2 1
3 1

 and b =

 1
3
3

. We have AtA =

(
14 6
6 3

)
.

Computation of (AtA)−1 (see §2.3):(
14 6
6 3

∣∣∣∣ 1 0
0 1

)
−→

(
2 0
6 3

∣∣∣∣ 1 −2
0 1

)
−→

(
2 0
0 3

∣∣∣∣ 1 −2
−3 7

)
−→

(
1 0
0 1

∣∣∣∣ 1/2 −1
−1 7/3

)
Thus we have:(

m
c

)
=

(
1/2 −1
−1 7/3

)(
1 2 3
1 1 1

) 1
3
3

 =

(
1/2 −1
−1 7/3

)(
16
7

)
=

(
1
1
3

)
Thus the line that best fits the points (1, 1), (2, 3), and (3, 3) is y = x+ 1

3
.

4.7. Normal form of a linear system. Consider a system Ax = b of linear equations over
the real numbers. Here A is a real m× n matrix, x a n× 1 matrix of indeterminates, and b
a m× 1 real matrix. The following system is called the normal form of Ax = b:

AtAx = Atb

This terminology is justified by the following observations:
• The normal form has a solution even if the original one doesn’t, for the column

space of At equals that of AtA. (Proof: Suppose that Atx = c. Write x = Ay + z
with z perpendicular to the range space (column space) of A. Thus ztAu = 0 for
all u in Rn, so ztA = 0 or Atz = 0. Substituting for x in Atx = c, we obtain
At(Ay + z) = c. But Atz = 0, so we obtain AtAy = c.)
• Clearly any solution of the system Ax = b is also a solution of its normal form.

Moreover, if Ax = b has a solution, then its solution set and that of its normal form
are identical. (Proof: The solutions of the homogeneous systems AtAx = 0 and
Ax = 0 are identical: AtAx = 0 implies 0 = xtAtAx = ||Ax||2, so Ax = 0.)

The normal form is thus a good proxy for the original. In case A has linearly independent
columns, AtA is invertible and the normal form has a unique solution given by (7).

5. THE SPECTRAL THEOREM FOR A REAL SYMMETRIC MATRIX

Let A be an n× n real symmetric matrix (RSM, for short). Then:
• The eigenvalues of A are all real.
• Eigenvectors of A corresponding to different eigenvalues are orthogonal.
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• There exists an orthonormal basis for Rn each member of which is an eigenvectorSpectral
theorem for A. More precisely, if λ1, . . . , λn be the eigenvalues of A listed with multiplicity in

any given order, and D the diagonal matrix whose diagonal entry on the ith row is λi,
then there exists a special orthogonal n× n matrix g such that g ∈ SO(n)

D = diag(λ)

gtAg = D

The assertions above are collectively called the spectral theorem. In the proof of the third
assertion, we will use the following proposition.

Proposition 12. Let A be a symmetric n×n matrix and W a subspace of Rn that is A-stable
(that is, Aw belongs to W whenever w does). Then

(1) W⊥ is also A-stable;
(2) the matrix of A|W with respect to an orthonormal basis of W is symmetric.

Proof. For y ∈ W⊥ and w ∈ W , we have wtAy = ytAtw = yt(Aw) = 0, so (1) holds. For w1,
. . . , wd an orthonormal basis for W , the entry in position (i, j) of the matrix of A|W with
respect to this basis is wtiAwj. We have wtiAwj = wtjA

twi = wtjAwi, so (2) is proved. �

Now we prove the spectral theorem. We consider the assertions one by one.
Let λ be an a priori complex eigenvalue of A. Let v 6= 0 in Cn be such that Av = λv. We

first multiply this equation on the left by v∗ to get v∗Av = λv∗v. Next we take the conjugate X∗ = conjugate
transpose of Xtranspose of the same equation and then multiply it by v on the right to get v∗A∗v = λ̄v∗v.

But A being an RSM, we have A∗ = A, so that the left sides of the two resulting equations
are the same. Equating their right sides, we get λv∗v = λ̄v∗v. Since v 6= 0, we have v∗v 6= 0
and λ = λ̄, so λ is real.

Let v and w be eigenvectors corresponding respectively to distinct eigenvalues λ and µ:
that is, Av = λv and Aw = µw. Multiplying on the left the first by w∗ and the second by v∗

we get w∗Av = λw∗v and v∗Aw = µv∗w. The left sides of these two equations are conjugate
transposes of each other. And therefore so are their right sides. Thus (λ−µ)w∗v = 0. Since
λ 6= µ, we have w∗v = 0, which means w is orthogonal to v.

For the proof of the last statement, let us first observe that, for orthogonal g, the state-
ments gtAg = D and Ag = gD are equivalent, and that the latter statement is just saying
that the columns of g form an orthonormal basis of eigenvectors for A with eigenvalues
the diagonal entries in the corresponding rows of D.

Let λ be an eigenvalue of A. By the first part, we know λ is real. We may choose
v 6= 0 in Rn such that Av = λv. Such a v exists because the homogeneous linear system
(A−λI)v = 0 has a non-trivial solution in Rn (since A−λI is singular and has real entries).
Let P be the subspace of vectors perpendicular to v.

By the proposition, P is A-stable and the matrix of A|P with respect to an orthonormal
basis of P is symmetric. By induction on n, there exists an orthonormal basis of P each
member of which is an eigenvector for A|P (and hence of A). Putting these together with
v we get an orthonormal basis of Rn consisting of eigenvectors of A. Let g be the matrix
whose columns are these basis in any given order. Then g is orthogonal. Thus there exists
orthogonal g such that gtAg = D. Finally, multiplying one of the columns of g by −1 if
necessary (that is, replacing one of the eigenvectors by its negative), we may take g to be
special orthogonal.
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5.1. Symmetric positive definite and semi-definite matrices. Let A be an n × n RSM.
The assignment (v, w) 7→ vtAw defines on Rn a symmetric bilinear form. We call A positive
semi-definite if vtAv ≥ 0 for all v; we call it positive definite if moreover vtAv = 0 only for
v = 0. We observe:

(1) These notions are preserved under the passage A↔ gtAg with g orthogonal.
(2) These notions extend to linear endomorphisms of finite dimensional inner prod-

uct spaces (in particular, to those of subspaces of Rn): an endomorphism is said
to have the property if its matrix with respect to an orthonormal basis has the
corresponding property. The choice of the orthonormal basis is immaterial by (1).

(3) As is easily seen, a diagonal matrix is positive definite (respectively, semi-definite)
if and only if all its diagonal entries are positive (respectively, non-negative). To-
gether with (1) and the spectral theorem, this gives: A is positive definite if and
only if all its eigenvalues are positive; positive semi-definite if and only if all its
eigenvalues are non-negative.

(4) If A is positive semi-definite, then BtAB is also symmetric positive semi-definite,
for B any real matrix of size n × m. Further, if A is positive definite, then the
restrictionBtAB|range(Bt) ofBtAB to the range ofBt is positive definite (hereBtAB
denotes the endomorphism of Rm whose matrix with respect to the standard basis
is BtAB): indeed if ztBtABz = 0 for z = Bty for some y, then, since A is positive
definite, Bz = BBty = 0, which in turn means ytBBty = 0 or ||Bty|| = 0, so z = 0.

(5) An important special case of (4) is the following. Let W be a subspace of Rn and
P the n× n matrix representing with respect to the standard basis the orthogonal
projection on to W . (A formula for P is given in §4.3.) Then P is symmetric and
range(P ) = W . So, by (4), PAP is symmetric positive semi-definite if A is so;
morevoer PAP |W is positive definite if A is so. In particular, the principal sub-
matrices of a positive definite (respectively, semi-definite) matrix are themselves
positive definite (respectively, semi-definite) RSMs.

(6) Combining (5) with (3) shows that the determinants of all principal submatrices
of A are positive (respectively, non-negative) if A is positive definite (respectively,
semi-definite). Conversely, if the determinants of the top left corner submatrices
of A of sizes 1×1, . . . , n−1×n−1, n×n are all positive, then A is positive definite:
see Exercise 6. (If we assume that these determinants are only non-negative, is A
semi-definite? Again see Exercise 6.)

(7) A positive semi-definite RSM has a unique positive semi-definite RSM as nth root,
for n a positive integer. Every RSM has a unique RSM as nth root, for n an odd
positive integer. See Exercise 8.

6. SINGULAR VALUE DECOMPOSITION (SVD)

This is a version of spectral theorem for a non-square matrix. Let A be an m × n ma-
trix. We think of A also as a linear transformation from Rn → Rm, the columns of A
being the images in order of the standard basis elements of Rn. SVD is about nice basesWhat is the

SVD about? for the domain Rn and the codomain Rm with respect to which the matrix of the linear
transformation A has a particularly simple form.

We first find a nice basis for Rn. Observe that AtA is a positive semi-definite n × n
real symmetric matrix. By the spectral theorem for a real symmetric matrix (§5), there
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exists an orthonormal basis, say u1, . . . , un, of Rn, each member of which is an eigenvector
for AtA. Since AtA is positive semi-definite, its eigenvalues are all non-negative, and we Orthonormal

basis for the
domainmay write AtAui = σ2

i ui with σi non-negative (the σi are uniquely determined). After a
rearrangement of the basis ui, we may assume that σi are strictly positive for 1 ≤ i ≤ r,
and zero for i > r, where r is the rank of AtA (and also of A).

Next we observe that orthogonality is preserved by A. More precisely, we have:
• For i 6= j, Aui and Auj are orthogonal: indeed

(Auj)
tAui = (utjA

t)Aui = utj(A
tAui) = utj(σ

2
i ui) = σ2

i (u
t
jui) = 0

• ||Aui|| = σi, for

(Aui)
tAui = (utiA

t)Aui = uti(A
tAui) = uti(σ

2
i ui) = σ2

i (u
t
iui) = σ2

i

Taking a cue from the above observations, we set vi := Aui/σi, for 1 ≤ i ≤ r. Then v1, Orthonormal
basis for the
codomain. . . , vr are orthonormal. We choose vr+1, . . . , vm, so that v1, . . . , vm form an orthonormal

basis of Rm.
Finally we express in a matrix equation the action of the linear transformation A. Let

U := (u1, u2, . . . , un) be the n × n matrix whose columns in order are the basis vectors u1,
. . . , un, and similarly V := (v1, v2, . . . , vm) the m ×m matrix whose columns in order are
the basis vectors v1, . . . , vm. Then

AU = ΣV

where Σ is a m × n matrix all of whose entries are zero except those at positions (1, 1),
(2, 2), . . . , (r, r), which respectively are σ1, σ2, . . . , σr. Since the ui form an orthonormal
basis, the inverse of the matrix U is U t, multiplying by which the last equation on the right,
we get: This is the SVD.

A = V ΣU t (8)

The numbers σ1, . . . , σr being the positive square roots of the positive eigenvalues of AtA,
they are unique. Thus the matrix Σ is uniquely determined if we impose the condition that Uniqueness

σ1 ≥ σ2 ≥ . . . ≥ σr.

EXERCISE SET 3

(1) Consider the 4× 4 RSM all of whose entries are 1. What are its eigenvalues? Find
an orthonormal basis (for R4) consisting of eigenvectors of this matrix.

(2) The range of a real symmetric matrix is the orthogonal complement of its kernel.
(3) For any real m × n matrix A and any integer p ≥ 0, the range of A(AtA)p is the

range of A; the range of (AtA)pAt is the range of At. In particular, the ranks of
all these matrices are the same. Specializing to the case of a symmetric matrix A,
we conclude that the ranges of all its powers An, for n ≥ 1, coincide. In particular
rankA = rankA2 = . . .. Zero is the only nilpotent real symmetric matrix.

(4) If A is an invertible RSM and A2 = A, what is A?
(5) Suppose that A is a n × n real symmetric matrix with distinct eigenvalues. The

number of elements g with gtAg diagonal and g orthogonal is 2nn!. For a fixed
diagonal, the corresponding number is 2n. The corresponding numbers of special
orthogonal g are 2n−1n! and 2n−1.

(6) Prove the assertion in item (6) of §5.1 (the converse part).
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(7) Given commuting real symmetric matrices A and B, there exists orthogonal g such
that both gtAg and gtBg are diagonal.

(8) Prove the assertions in item (7) of §5.1.
(9) Can a real m × n matrix A be recovered from AAtA? (Hint: Can an RSM be

recovered from its cube?)
(10) State and prove the spectral theorem for normal matrices. Recall that a complex

n× n matrix N is called normal if it commutes with its adjoint N∗.

7. MIN-MAX CHARACTERISATION OF THE EIGENVALUES OF A RSM

Let A be a n× n RSM.

7.1. Alternative proof of the spectral theorem. The crucial starting point in the proof
of the spectral theorem in §5 above is that A has a real eigenvalue. This was proved
by showing that any complex eigenvalue (which exists by the fundamental theorem of
algebra) must be real. Here we give a different proof, using some basic topology and
calculus but avoiding the use of the fundamental theorem of algebra, that A has a real
eigenvalue.

Consider the continuous function f(x) = xtAx on the sphere Sn−1 := {x ∈ Rn | ||x|| = 1}.
Since Sn−1 is compact, this attains a maximum, say at v ∈ Sn−1. Fix arbitrarily a unit vector
w perpendicular to v. Consider the unit circle S1 in the plane spanned by v and w. This
circle is parametrized as v cos t+ w sin t, t ∈ R, and the function f restricted to S1 is given
in terms of t by:

vtAv cos2 t+ vtAw sin t cos t+ wtAv sin t cos t+ wtAw sin2 t

Since A is symmetric, we have vtAw = wtAv, and so the function value above may be
rewritten as:

vtAv cos2 t+ 2vtAw sin t cos t+ wtAw sin2 t

The smooth function f(t) attains a maximum at t = 0, and so its derivative vanishes at
t = 0. As an easy calculation shows, this means that vtAw = 0, or in other words that Av
is perpendicular to w.

Since this is true for any w that is perpendicular to v, we conclude that Av must be a
multiple of v, and so v is an eigenvector for A.

The rest of the proof remains the same: consider the linear transformation x 7→ Ax on
the subspace P of vectors in Rn that are perpendicular to v, observe that it is represented
by a symmetric matrix with respect to any orthonormal basis of P , and invoke induction
on the size n of A.

7.2. A characterization of the eigenvalues of A. Let λ1 ≥ . . . ≥ λn be the eigenvalues
of A. The eigenvalue λk may be characterised thus:

λk = max
W ⊆ Rn

dimW = k

min
x ∈W
||x|| = 1

xtAx

Let v1, . . . , vn be an orthonormal basis for Rn with vi being an eigenvector with eigen-
value λi for A for 1 ≤ i ≤ n. The minimum value of xtAx for x of norm one in the span
of v1, . . . , vk is easily seen to be λk. On the other hand, any subspace W of Rn of dimen-
sion k intersects non-trivially the n − k + 1 dimensional subspace generated by vk, . . . ,
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vn, and so the minimum value of xtAx for x of norm one in W is at most λk. The above
characterisation is thus proved.

7.3. An application: Sylvester’s criterion for positive definiteness. As an application
of the characterisation in §7.2, we prove the following sufficiency criterion due to Sylvester
for positive definiteness (see item (6) in §5.1; also item (6) in Exercise set 3): A is positive
definite if all the top left corner submatrices of A of sizes 1× 1, 2× 2, . . . , (n− 1)× (n− 1),
and n × n have positive determinant (note that the top left corner n × n submatrix is A
itself). As seen in item (5) of §5.1, the condition is clearly necessary: in fact, all principal
minors of a positive definite matrix are positive.

As seen in item (3) of §5.1, A is positive definite if and only if all its eigenvalues are
positive. Suppose that A satisfies the hypothesis in Sylvester’s criterion. To show that
it is positive definite, it is enough to show that λn−1 is positive (where as in §7.2 above
λ1 ≥ . . . ≥ λn are the eigenvalues of A arranged in weakly decreasing order), for then λ1,
. . . , λn−2 are also positive, and so is λn = detA/λ1 . . . λn−1.

By induction on the size n of A, we conclude that the top left corner (n − 1) × (n − 1)
submatrix of A is positive definite. All its eigenvalues are therefore positive. This means
(proof?) that the least value is positive of xtAx as x runs over vectors of norm one in
the span of the first n − 1 standard basis vectors e1, . . . , en−1. This in turn means λn−1 is
positive by the characterization in §7.2.

EXERCISE SET 4

(1) Let λ1 ≤ . . . ≤ λn be the eigenvalues (which are all real) of a RSM A, arranged in
weakly increasing order. Observe that

λk = min
W ⊆ Rn

dimW = k

max
x ∈W
||x|| = 1

xtAx

(2) Suppose that A is a n × n real skew-symmetric matrix. Observe that vtAv = 0 for
all v ∈ Rn. Prove that this property characterises skew-symmetry: if A is a n × n
real matrix such that vtAv = 0 for all v ∈ Rn, then A is skew-symmetric.

(3) Let A be a real n × n matrix (not necessarily symmetric). Show the existence of
a vector v in Rn such that vtAw + wtAv = 0 for all vectors w in Rn perpendicular
to v. In fact, there exist at least two linearly independent such vectors v for n ≥ 2.
(Observe that vtAw + wtAv = 0 for all v, w in case A is skew-symmetric.)
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