Theorem 1 (Engel) Let $\mathfrak{g} \subseteq \mathfrak{gl}(V)$ be a Lie subalgebra of $\mathfrak{gl}(V)$ consisting of nilpotent endomorphisms. Then V has a basis with respect to which the elements of \mathfrak{g} are strictly triangular matrices. In particular, \mathfrak{g} is nilpotent.

PROOF : Excluding the trivial case V = 0, it is enough to show that there exists $0 \neq v \in V$ such that Xv = 0 for every X in \mathfrak{g} . We proceed by induction on the dimension of \mathfrak{g} . The proof being clear when this is 0, we assume that dim $\mathfrak{g} \geq 1$. We will show presently that there exists an ideal \mathfrak{h} in \mathfrak{g} of codimension 1. Assuming this for the moment, it follows from the induction hypothesis that the subspace $W := \{w \in V | Hw = 0 \text{ for all } H \text{ in } \mathfrak{h}\}$ is non-zero. Since \mathfrak{h} is an ideal, W is \mathfrak{g} -invariant. Letting Y be any element in $\mathfrak{g} \setminus \mathfrak{h}$ and choosing $0 \neq v$ in W such that Yv = 0, we are done.

That an ideal $\mathfrak h$ of codimension 1 exists follows immediately from this claim:

Any proper subalgebra \mathfrak{h} of \mathfrak{g} is contained in a subalgebra of one bigger dimension in which it is an ideal.

To prove the claim, let \mathfrak{h} be any proper subalgebra. Since $\mathfrak{g} \subseteq \mathfrak{gl}(V)$ and each element of \mathfrak{g} acts nilpotently on V, each element of \mathfrak{g} acts nilpotently on itself. In particular, each element of \mathfrak{h} acts nilpotently on $\mathfrak{g}/\mathfrak{h}$. By the induction hypothesis, there exists $0 \neq X \in \mathfrak{g}/\mathfrak{h}$ such that $[\mathfrak{h}, X] \subseteq \mathfrak{h}$. Now $\mathfrak{h} \oplus \mathbb{C}X$ is a subalgebra in which \mathfrak{h} is an ideal.

Complements

Theorem 2 (Group theoretic version of Engel) A group acting by unipotent automorphisms on a vector space leaves some non-zero vector invariant. In particular a group acting faithfully by unipotent endomorphisms on a vector space is nilpotent.

PROOF: Let G be the group and V the vector space. We may assume that V is a simple G-module and further that G is a subgroup of GL(V) consisting of unipotent elements. We will show that G is trivial.

Fix $g \in G$ and write g = 1 + n. We will show that n = 0 by showing that $\operatorname{Tr} nt = 0$ for all t in End V. By the density theorem or Burnside's Theorem, G is a spanning set for End V, and so it is enough that $\operatorname{Tr} ng' = 0$ for all g' in G. The function $\operatorname{Tr} g'$ being a constant $(= \dim V)$ on G, we have

$$\operatorname{Tr} ng' = \operatorname{Tr} gg' - \operatorname{Tr} g' = 0.$$