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(1) Let R be a root system (not necessarily reduced or irreducible), and let α, β be non-proportional roots.
Suppose ∃t ∈ R such that γ := β+ tα ∈ R. Prove that (a) 2t ∈ Z and (b) if α is indivisible, then t ∈ Z. Hint:
Analyse the α-chains through β and γ.
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(2) Let R be a reduced, irreducible root system, and let (·|·) be a W := W (R)-invariant inner product on
V := span R. Let C be a chamber, and let B(C) be the corresponding set of simple roots. Let X+ :=
R≥0(B(C)) ⊂ V . Define a partial order � on V by setting λ � µ if λ− µ ∈ X+.
(a) If µ ∈ V , prove that ∃γ ∈W · µ (the Weyl group orbit of µ) such that (γ|α) ≥ 0 for all α ∈ B(C).
(b) Let λ ∈ C. Suppose µ ∈ V is such that λ � wµ for all w ∈ W . Prove that (λ|λ) ≥ (µ|µ), and equality
holds iff µ ∈W · λ.
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(3) Let g be a semisimple Lie algebra over C and let

g = h⊕
⊕
α∈R

gα

be its root space decomposition with respect to a chosen maximal toral subalgebra h; here R ⊂ h∗ is the set
of roots.
(a) If α, β ∈ R are such that α+ β ∈ R, prove that gα+β = [gα, gβ].
(b) Let C ⊂ h∗ be a chamber, and let R+ := R+(C) be the corresponding set of positive roots, and B := B(C),
the set of simple roots. Define n+ :=

⊕
α∈R+ gα. Prove that n+ is a Lie subalgebra of g.

(c) Prove that n+ is the smallest Lie subalgebra of g containing
⊕

α∈B gα.
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(4) Let R be a reduced root system, and let (·|·) be a W (R)-invariant inner product on V := span R. A subset
B of R is said to be a basis of R if there exists a chamber C for which B = B(C) (the set of simple roots in
R+(C)). (a) Let S ⊂ R be a linearly independent set such that R ⊂ R≥0(S)∪R≤0(S). Prove that S is a basis
of R. (b) If B is a basis of R, show that B∨ := {α∨ : α ∈ B} is a basis of R∨. (c) Suppose B = {αi : i = 1 · · · l}

is a basis of R. Let α =
∑l

i=1 ci αi ∈ R. Prove that
ci(αi|αi)

(α|α)
∈ Z.
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(5) Let R be a reduced root system, and let α, β be non-proportional roots; recall that n(α, β) := 2(α|β)
(β|β) .

(a) Let w := sαsβ ∈ W (R) and m := n(α, β)n(β, α). Prove that the order of w equals 2, 3, 4 or 6 according
as m = 0, 1, 2 or 3. (b) Let R be the root system with Dynkin diagram Al (l ≥ 1). Let S = {αi : i = 1 · · · l}
be a basis of R (see problem 4). Define c := sα1sα2 · · · sαl

∈ W (R). Compute the order of c. Note: While
c depends on the choice of ordering of the elements of S, it is a fact (which you can use without proof) that
different choices give rise to elements which are conjugate to each other; hence the order o(c) in W (R) is well
defined.


