1. Some facts about Chambers, Weyl group etc

Let R be a reduced root system in V with Weyl group W. Let $(\cdot \mid \cdot)$ be a W-invariant inner product on V. Given $\alpha \in R$, let $L_{\alpha}:=\{\alpha\}^{\perp}$ (with respect to the given inner product); this is the hyperplane of V fixed by the reflection s_{α}. It is easily seen that $L_{w \alpha}=w\left(L_{\alpha}\right)$ for all $w \in W, \alpha \in R$. Thus W permutes the set $\left\{L_{\alpha}: \alpha \in R\right\}$. Define $V^{r e g}:=V \backslash \cup_{\alpha \in R} L_{\alpha}$. The connected components of $V^{\text {reg }}$ are called chambers of R.

Each $x \in V^{\text {reg }}$ determines a partition of R into positive and negative roots as follows:

$$
R^{+}(x):=\{\alpha \in R:(\alpha \mid x)>0\} \text { and } R^{-}(x):=\{\alpha \in R:(\alpha \mid x)<0\}
$$

Exercise 1: Prove that for $x, y \in V^{\text {reg }}, R^{+}(x)=R^{+}(y) \Longleftrightarrow x, y$ belong to the same chamber. Thus if C is a chamber, we can define $R^{ \pm}(C)$ to be $R^{ \pm}(x)$ where x is any element of C. Clearly, $R^{-}(C)=-R^{+}(C)$.

Now, fix a chamber C, and consider the set $R^{+}(C)$. An element $\alpha \in R^{+}(C)$ is said to be decomposable if $\exists \beta_{1}, \beta_{2} \in R^{+}(C)$ such that $\alpha=\beta_{1}+\beta_{2}$; it is indecomposable if it is not decomposable. Let $B(C)$ denote the set of indecomposable roots in $R^{+}(C)$; the elements of $B(C)$ are called simple roots.

Theorem 1. (1) $B(C)$ is a basis of V.
(2) $R^{+}(C) \subset \mathbb{Z}_{\geq 0}(B(C))$

Proof: Fix $x \in C$, and define a function $h: R^{+}(C) \rightarrow \mathbb{R}_{>0}$ by $h(\alpha):=(\alpha \mid x)$. Let $m>0$ be the minimum value of h; thus $h(\alpha) \geq m$ for all $\alpha \in R^{+}(C)$. We first prove (2); given $\beta \in R^{+}(C)$, if it is indecomposable, we are done, else write $\beta=\gamma_{1}+\gamma_{2}$ where $\gamma_{i} \in R^{+}(C)$. Observe $h\left(\gamma_{i}\right) \leq h(\beta)-m$ for $i=1,2$. If both γ_{i} are indecomposable, we are done, else continue this process. This process must be finite, since the value of h decreases at least by $m>0$ at each step. This completes the proof of (2), and also shows that $B(C)$ spans V.

Next observe, $\alpha, \beta \in B(C)$ implies that $(\alpha \mid \beta) \leq 0$. If not, then $n_{\alpha, \beta}>0$ and by one of our earlier lemmas, $\gamma:=\alpha-\beta$ would be a root. If $\gamma \in R^{+}(C)$, then $\alpha=\beta+\gamma$, which contradicts the indecomposability of α; if on the other hand, $-\gamma \in R^{+}(C)$, one similarly has $\beta=\alpha+(-\gamma)$. The linear independence of $B(C)$ now follows from the following Lemma.

Lemma 1. Let V be a finite dimensional vector space with inner prduct (|). Suppose $S \subset V$ satisfies (i) all elements of S lie on the same side of some hyperplane of V, and (ii) $(v \mid w) \leq 0$ for all $v, w \in S$. Then S is linearly independent.

This is just Lemma 3 on page 82 of Bourbaki (Lie Groups and Lie Algebras, Chaps IV-VI). With notation as above, we have:
Proposition 1. (1) $C=\{\gamma \in V:(\gamma \mid \alpha)>0 \forall \alpha \in B(C)\}$.
(2) If $\alpha \in B(C), s_{\alpha}\left(R^{+}(C) \backslash\{\alpha\}\right)=R^{+}(C) \backslash\{\alpha\}$.
(3) W is generated by $\left\{s_{\alpha}: \alpha \in B(C)\right\}$.
(4) W acts simply transitively on the set of chambers.

Proof: (1): follows from Exercise 1 above.
(2): Let $\beta \in R^{+}(C)$; write $\beta=\sum_{\gamma \in B(C)} c_{\gamma} \gamma$ with $c_{\gamma} \in \mathbb{Z}_{\geq 0} \forall \gamma$. Since R is reduced, if $\beta \neq \alpha$, then $\exists \gamma_{0} \in B(C) \backslash\{\alpha\}$ such that $c_{\gamma_{0}}>0$. Now $s_{\alpha}(\beta)=\beta-n_{\beta \alpha} \alpha=\sum_{\gamma \neq \alpha} c_{\gamma} \gamma+\left(c_{\alpha}-n_{\beta \alpha}\right) \alpha$; thus when expressed as a linear combination of elements of $B(C), s_{\alpha}(\beta)$ has at least one positive coeffient, namely that of γ_{0}. Part (2) of theorem 1 implies that $s_{\alpha}(\beta) \in R^{+}(C)$. This completes the proof.
(3): Let $W^{\prime}:=\left\langle s_{\alpha}: \alpha \in B(C)\right\}$. Claim: Given $\beta \in R^{+}(C)$, there is a $w \in W^{\prime}$ such that $w \beta=\alpha \in B(C)$. Assuming the claim, we would have $s_{\beta}=w^{-1} s_{\alpha} w$ which clearly belongs to W^{\prime}, thereby proving (3). Suppose the claim were false, it follows from (2) that $W^{\prime} \beta \subset$
$R^{+}(C) \backslash B(C)$. For a root $\epsilon=\sum_{\gamma \in B(C)} c_{\gamma} \gamma$, define $\operatorname{ht}(\epsilon):=\sum c_{\gamma}$. Let $\beta^{\prime}=\sum_{\gamma \in B(C)} d_{\gamma} \gamma$ be an element of minimal height in $W^{\prime} \beta$. The height minimality condition in particular implies that $\operatorname{ht}\left(s_{\gamma} \beta\right) \geq \operatorname{ht}(\beta) \forall \gamma \in B(C)$; this in turn implies that $(\beta \mid \gamma) \leq 0$ for all simple roots γ. But then, $\left(\beta^{\prime} \mid \beta^{\prime}\right)=\sum_{\gamma} d_{\gamma}\left(\beta^{\prime} \mid \gamma\right) \leq 0$, a contradiction.
(4) Given $x \in V^{r e g}$, let λ be an element of maximal height in the W-orbit of x. By arguments similar to (3), it is clear that $(\lambda \mid \alpha) \geq 0$ for all $\alpha \in B(C)$. Equality cannot occur for any α, since that would mean λ lies on the hyperplane L_{α}, and therefore that x is not in $V^{\text {reg }}$. Thus $\lambda \in C$. This proves that W acts transitively on the set of chambers. To prove that it acts simply one requires a few more notions. Each $w \in W$ can be written as $w=s_{\alpha_{1}} s_{\alpha_{2}} \cdots s_{\alpha_{k}}$ where each $\alpha_{i} \in B(C)$. The length k of the shortest such word is defined to be the length of w. It is a fact that the length of an element $w \in W$ is the number of positive roots α for which $w \alpha$ is a negative root. Now observe that if $w \in W$ is such that $w C=C$, we also have $w\left(R^{+}(C)\right)=R^{+}(C)$. The preceding sentence then implies that the length of w must be zero, i.e, $w=1$.

