
1. Some facts about Chambers, Weyl group etc

Let R be a reduced root system in V with Weyl group W . Let (· | ·) be a W -invariant
inner product on V . Given α ∈ R, let Lα := {α}⊥ (with respect to the given inner product);
this is the hyperplane of V fixed by the reflection sα. It is easily seen that Lwα = w(Lα) for
all w ∈W,α ∈ R. Thus W permutes the set {Lα : α ∈ R}. Define V reg := V \ ∪α∈R Lα. The
connected components of V reg are called chambers of R.

Each x ∈ V reg determines a partition of R into positive and negative roots as follows:

R+(x) := {α ∈ R : (α | x) > 0} and R−(x) := {α ∈ R : (α | x) < 0}
Exercise 1: Prove that for x, y ∈ V reg, R+(x) = R+(y) ⇐⇒ x, y belong to the same
chamber. Thus if C is a chamber, we can define R±(C) to be R±(x) where x is any element
of C. Clearly, R−(C) = −R+(C).

Now, fix a chamber C, and consider the set R+(C). An element α ∈ R+(C) is said to
be decomposable if ∃β1, β2 ∈ R+(C) such that α = β1 + β2; it is indecomposable if it is not
decomposable. Let B(C) denote the set of indecomposable roots in R+(C); the elements of
B(C) are called simple roots.

Theorem 1. (1) B(C) is a basis of V .
(2) R+(C) ⊂ Z≥0(B(C))

Proof: Fix x ∈ C, and define a function h : R+(C) → R>0 by h(α) := (α | x). Let m > 0
be the minimum value of h; thus h(α) ≥ m for all α ∈ R+(C). We first prove (2); given
β ∈ R+(C), if it is indecomposable, we are done, else write β = γ1 + γ2 where γi ∈ R+(C).
Observe h(γi) ≤ h(β) − m for i = 1, 2. If both γi are indecomposable, we are done, else
continue this process. This process must be finite, since the value of h decreases at least by
m > 0 at each step. This completes the proof of (2), and also shows that B(C) spans V .

Next observe, α, β ∈ B(C) implies that (α | β) ≤ 0. If not, then nα,β > 0 and by one
of our earlier lemmas, γ := α − β would be a root. If γ ∈ R+(C), then α = β + γ, which
contradicts the indecomposability of α; if on the other hand, −γ ∈ R+(C), one similarly has
β = α+ (−γ). The linear independence of B(C) now follows from the following Lemma.

Lemma 1. Let V be a finite dimensional vector space with inner prduct (|). Suppose S ⊂ V
satisfies (i) all elements of S lie on the same side of some hyperplane of V , and (ii) (v | w) ≤ 0
for all v, w ∈ S. Then S is linearly independent.

This is just Lemma 3 on page 82 of Bourbaki (Lie Groups and Lie Algebras, Chaps IV-VI).
With notation as above, we have:

Proposition 1. (1) C = {γ ∈ V : (γ | α) > 0 ∀α ∈ B(C)}.
(2) If α ∈ B(C), sα(R+(C)\{α}) = R+(C)\{α}.
(3) W is generated by {sα : α ∈ B(C)}.
(4) W acts simply transitively on the set of chambers.

Proof: (1): follows from Exercise 1 above.

(2): Let β ∈ R+(C); write β =
∑

γ∈B(C) cγ γ with cγ ∈ Z≥0∀γ. Since R is reduced, if β 6= α,

then ∃γ0 ∈ B(C)\{α} such that cγ0 > 0. Now sα(β) = β − nβαα =
∑

γ 6=α cγ γ + (cα − nβα)α;

thus when expressed as a linear combination of elements of B(C), sα(β) has at least one
positive coeffient, namely that of γ0. Part (2) of theorem 1 implies that sα(β) ∈ R+(C). This
completes the proof.

(3): Let W ′ := 〈sα : α ∈ B(C)}. Claim: Given β ∈ R+(C), there is a w ∈ W ′ such that
wβ = α ∈ B(C). Assuming the claim, we would have sβ = w−1sαw which clearly belongs
to W ′, thereby proving (3). Suppose the claim were false, it follows from (2) that W ′β ⊂
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R+(C)\B(C). For a root ε =
∑

γ∈B(C) cγγ, define ht(ε) :=
∑
cγ . Let β′ =

∑
γ∈B(C) dγγ be

an element of minimal height in W ′β. The height minimality condition in particular implies
that ht(sγβ) ≥ ht(β) ∀γ ∈ B(C); this in turn implies that (β | γ) ≤ 0 for all simple roots γ.
But then, (β′ | β′) =

∑
γ dγ(β′ | γ) ≤ 0, a contradiction.

(4) Given x ∈ V reg, let λ be an element of maximal height in the W -orbit of x. By
arguments similar to (3), it is clear that (λ | α) ≥ 0 for all α ∈ B(C). Equality cannot
occur for any α, since that would mean λ lies on the hyperplane Lα, and therefore that x is
not in V reg. Thus λ ∈ C. This proves that W acts transitively on the set of chambers. To
prove that it acts simply one requires a few more notions. Each w ∈ W can be written as
w = sα1sα2 · · · sαk

where each αi ∈ B(C). The length k of the shortest such word is defined to
be the length of w. It is a fact that the length of an element w ∈W is the number of positive
roots α for which wα is a negative root. Now observe that if w ∈ W is such that wC = C,
we also have w(R+(C)) = R+(C). The preceding sentence then implies that the length of w
must be zero, i.e, w = 1. �


