1. Some facts about Chambers, Weyl group etc

Let R be a reduced root system in V with Weyl group W. Let $(\cdot | \cdot)$ be a W-invariant inner product on V. Given $\alpha \in R$, let $L_{\alpha} := \{\alpha\}^{\perp}$ (with respect to the given inner product); this is the hyperplane of V fixed by the reflection s_{α} . It is easily seen that $L_{w\alpha} = w(L_{\alpha})$ for all $w \in W, \alpha \in R$. Thus W permutes the set $\{L_{\alpha} : \alpha \in R\}$. Define $V^{reg} := V \setminus \bigcup_{\alpha \in R} L_{\alpha}$. The connected components of V^{reg} are called *chambers* of R.

Each $x \in V^{reg}$ determines a partition of R into positive and negative roots as follows:

$$R^+(x) := \{ \alpha \in R : (\alpha \mid x) > 0 \} \text{ and } R^-(x) := \{ \alpha \in R : (\alpha \mid x) < 0 \}$$

Exercise 1: Prove that for $x, y \in V^{reg}$, $R^+(x) = R^+(y) \iff x, y$ belong to the same chamber. Thus if C is a chamber, we can define $R^{\pm}(C)$ to be $R^{\pm}(x)$ where x is any element of C. Clearly, $R^-(C) = -R^+(C)$.

Now, fix a chamber C, and consider the set $R^+(C)$. An element $\alpha \in R^+(C)$ is said to be *decomposable* if $\exists \beta_1, \beta_2 \in R^+(C)$ such that $\alpha = \beta_1 + \beta_2$; it is *indecomposable* if it is not decomposable. Let B(C) denote the set of indecomposable roots in $R^+(C)$; the elements of B(C) are called *simple roots*.

Theorem 1. (1) B(C) is a basis of V. (2) $R^+(C) \subset \mathbb{Z}_{>0}(B(C))$

Proof: Fix $x \in C$, and define a function $h : R^+(C) \to \mathbb{R}_{>0}$ by $h(\alpha) := (\alpha \mid x)$. Let m > 0be the minimum value of h; thus $h(\alpha) \ge m$ for all $\alpha \in R^+(C)$. We first prove (2); given $\beta \in R^+(C)$, if it is indecomposable, we are done, else write $\beta = \gamma_1 + \gamma_2$ where $\gamma_i \in R^+(C)$. Observe $h(\gamma_i) \le h(\beta) - m$ for i = 1, 2. If both γ_i are indecomposable, we are done, else continue this process. This process must be finite, since the value of h decreases at least by m > 0 at each step. This completes the proof of (2), and also shows that B(C) spans V.

Next observe, $\alpha, \beta \in B(C)$ implies that $(\alpha \mid \beta) \leq 0$. If not, then $n_{\alpha,\beta} > 0$ and by one of our earlier lemmas, $\gamma := \alpha - \beta$ would be a root. If $\gamma \in R^+(C)$, then $\alpha = \beta + \gamma$, which contradicts the indecomposability of α ; if on the other hand, $-\gamma \in R^+(C)$, one similarly has $\beta = \alpha + (-\gamma)$. The linear independence of B(C) now follows from the following Lemma.

Lemma 1. Let V be a finite dimensional vector space with inner prduct (|). Suppose $S \subset V$ satisfies (i) all elements of S lie on the same side of some hyperplane of V, and (ii) $(v \mid w) \leq 0$ for all $v, w \in S$. Then S is linearly independent.

This is just Lemma 3 on page 82 of Bourbaki (*Lie Groups and Lie Algebras, Chaps IV-VI*). With notation as above, we have:

Proposition 1. (1) $C = \{ \gamma \in V : (\gamma \mid \alpha) > 0 \ \forall \alpha \in B(C) \}.$

(2) If $\alpha \in B(C)$, $s_{\alpha}(R^+(C) \setminus \{\alpha\}) = R^+(C) \setminus \{\alpha\}$.

- (3) W is generated by $\{s_{\alpha} : \alpha \in B(C)\}$.
- (4) W acts simply transitively on the set of chambers.

Proof: (1): follows from Exercise 1 above.

(2): Let $\beta \in R^+(C)$; write $\beta = \sum_{\gamma \in B(C)} c_{\gamma} \gamma$ with $c_{\gamma} \in \mathbb{Z}_{\geq 0} \forall \gamma$. Since R is reduced, if $\beta \neq \alpha$, then $\exists \gamma_0 \in B(C) \setminus \{\alpha\}$ such that $c_{\gamma_0} > 0$. Now $s_{\alpha}(\beta) = \beta - n_{\beta\alpha}\alpha = \sum_{\gamma \neq \alpha} c_{\gamma} \gamma + (c_{\alpha} - n_{\beta\alpha})\alpha$; thus when expressed as a linear combination of elements of B(C), $s_{\alpha}(\beta)$ has at least one positive coefficient, namely that of γ_0 . Part (2) of theorem 1 implies that $s_{\alpha}(\beta) \in R^+(C)$. This completes the proof.

(3): Let $W' := \langle s_{\alpha} : \alpha \in B(C) \rangle$. Claim: Given $\beta \in R^+(C)$, there is a $w \in W'$ such that $w\beta = \alpha \in B(C)$. Assuming the claim, we would have $s_{\beta} = w^{-1}s_{\alpha}w$ which clearly belongs to W', thereby proving (3). Suppose the claim were false, it follows from (2) that $W'\beta \subset$

 $R^+(C)\setminus B(C)$. For a root $\epsilon = \sum_{\gamma \in B(C)} c_{\gamma}\gamma$, define $\operatorname{ht}(\epsilon) := \sum c_{\gamma}$. Let $\beta' = \sum_{\gamma \in B(C)} d_{\gamma}\gamma$ be an element of minimal height in $W'\beta$. The height minimality condition in particular implies that $\operatorname{ht}(s_{\gamma}\beta) \ge \operatorname{ht}(\beta) \forall \gamma \in B(C)$; this in turn implies that $(\beta \mid \gamma) \le 0$ for all simple roots γ . But then, $(\beta' \mid \beta') = \sum_{\gamma} d_{\gamma}(\beta' \mid \gamma) \le 0$, a contradiction.

(4) Given $x \in V^{reg}$, let λ be an element of maximal height in the *W*-orbit of x. By arguments similar to (3), it is clear that $(\lambda \mid \alpha) \geq 0$ for all $\alpha \in B(C)$. Equality cannot occur for any α , since that would mean λ lies on the hyperplane L_{α} , and therefore that x is not in V^{reg} . Thus $\lambda \in C$. This proves that *W* acts transitively on the set of chambers. To prove that it acts simply one requires a few more notions. Each $w \in W$ can be written as $w = s_{\alpha_1} s_{\alpha_2} \cdots s_{\alpha_k}$ where each $\alpha_i \in B(C)$. The length k of the shortest such word is defined to be the length of w. It is a fact that the length of an element $w \in W$ is the number of positive roots α for which $w\alpha$ is a negative root. Now observe that if $w \in W$ is such that wC = C, we also have $w(R^+(C)) = R^+(C)$. The preceding sentence then implies that the length of w must be zero, i.e, w = 1.