
We assume all Lie algebras and vector spaces are finite dimensional over k unless otherwise
mentioned.

1. Cartan’s criterion, Killing form, semisimplicity

If g is a Lie subalgebra of gl(V ) for some finite dimensional vector space V , then g is said
to be a linear Lie algebra.

Theorem 1. (Lie’s theorem) Let k be an algebraically closed field of characteristic zero, and
let V be a nonzero finite dimensional vector space over k. Suppose g ⊂ gl(V ) is a solvable
Lie algebra. Then there is a nonzero vector v ∈ V such that Xv = λ(X) v for all X ∈ g (i.e
a common eigenvector).

Note that λ in the statement above must be a linear functional on g. Recall that similar
results have been encountered before: (a) If g is an abelian Lie subalgebra of gl(V ) such that
every X ∈ g is diagonalizable, then a simultaneous eigenvector exists (linear algebra), (b) If
g is a Lie subalgebra of gl(V ) such that every X ∈ g is a nilpotent operator on V , then ∃ a
common eigenvector for all X ∈ g (with eigenvalue necessarily zero). This was encountered
in the context of Engel’s theorem.

A slightly more general version of Lie’s theorem is the following: With the same hypothesis
on k, if (φ, V ) is a representation of a solvable Lie algebra g, then ∃v 6= 0 in V such that
X · v = λ(X)v ∀X ∈ g, for some λ ∈ g∗. This can be obtained by applying Lie’s theorem to
the solvable Lie algebra φ(g).

Remarks: Assume the hypotheses of Theorem 1. Then we have :

(1) The operators in g can in fact be simultaneously upper triangularized. In other words,
∃ a basis B of V such that [X]B is upper triangular for all X ∈ g. This can be proved
by repeated application of the general version of Lie’s theorem to suitable quotients
of V .

(2) [g, g] is a nilpotent Lie algebra. This follows from the simultaneous upper triangu-
larization above; the commutator subalgebra would become a subalgebra of the Lie
algebra of strictly upper triangular matrices, which is nilpotent.

(3) This also gives us that if X ∈ g and Y ∈ [g, g], then tr (XY ) = 0.

It turns out that the converse of the last statement above is true, and gives a powerful
criterion for solvability of a linear Lie algebra.

Theorem 2. (Cartan’s criterion) Let g ⊂ gl(V ) be a Lie algebra. If tr (XY ) = 0∀X ∈ g, Y ∈
[g, g], then g is solvable.

We also have the following easy extension of this result to not necessarily linear Lie algebras:

Proposition 1. If (φ, V ) is a representation of g such that tr (φ(X)φ(Y )) = 0 for all X ∈
g, Y ∈ [g, g], and if kerφ is solvable, then g is solvable.

Note that φ = ad gives a ready example of a representation whose kernel (= Z(g)) is solvable.
This motivates the following definition:

Definition 1. The Killing form of the Lie algebra g is defined to be the symmetric bilinear
form B(X,Y ) := tr (adX adY : g→ g).

The above discussion shows that if B(X,Y ) = 0∀X ∈ g, Y ∈ [g, g], then g is solvable. The
Killing form has the following important properties:

(1) (g-invariance) B([X,Y ], Z) +B(Y, [X,Z]) = 0, ∀X,Y, Z ∈ g.
(2) If I is an ideal of g, let BI denote the Killing form of I viewed as a Lie algebra in its

own right. Then BI(X,Y ) = B(X,Y ) for all X,Y ∈ I. In other words, BI = B|I×I .
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(3) If I is an ideal of g, then so is I⊥ := {X ∈ g : B(X,Y ) = 0∀Y ∈ I}.
Define the ideal kerB := g⊥. Recall that one would call the symmetric bilinear form B non-
degenerate if kerB = 0. The following theorem gives a very useful criterion for semisimplicity
of g.

Theorem 3. A Lie algebra g is semisimple ⇐⇒ its Killing form B is nondegenerate.

Proof: Letting k := kerB, we have B(X,Y ) = 0 for all X ∈ k and Y ∈ g, in particular for all
Y ∈ [k, k]. Since the Killing form of k is the restriction of B to k× k, Cartan’s criterion shows
that k is solvable. For the converse, recall that if g has a nonzero solvable ideal R, then it also
has a nonzero abelian ideal I (take I to be the last nonzero term in the derived series of R). It
is easy to see that adXadY adX = 0 for all X ∈ I and Y ∈ g. Thus adXadY is a nilpotent
operator, and must have trace 0. Thus B(X,Y ) = 0 for all X ∈ I, Y ∈ g, contradicting the
nondegeneracy of B. �

Corollary 1. Let g be a semisimple Lie algebra over C (or any algebraically closed field of
characteristic 0) and let I be an ideal of g. Then

g = I ⊕ I⊥

Proof: From general facts about nondegenerate bilinear forms, it follows that dim g = dim I+
dim I⊥. It remains only to show that k := I ∩ I⊥ is zero. But clearly B(X,Y ) = 0∀X,Y ∈ k.
Hence Cartan’s criterion shows k is a solvable ideal of g, and hence 0. �

Corollary 2. Let g be a semisimple Lie algebra. Then ∃ simple ideals gi (i = 1, · · · , r) such
that

g =

r⊕
i=1

gi

Further, the gi are unique.

The proof is a straightforward induction argument that uses corollary 1.

2. Abstract Jordan decomposition

Let V be a finite dimensional vector space over the algebraically closed field k. The following
is the abstract Jordan decomposition theorem for linear operators on V .

Theorem 4. Let T be a linear operator on V . There exist unique linear operators Ts and Tn
such that (a) T = Ts + Tn, (b) Ts is diagonalizable and Tn is nilpotent and (c) [Ts, Tn] = 0.

In fact, it is further true that Ts and Tn are polynomials in T . In terms of matrices, once
the (usual) Jordan matrix form of T is found, Ts is just the matrix of diagonal entries of
this Jordan form, and Tn = T − Ts is the matrix consisting of ones and zeros on the first
superdiagonal, and zeros elsewhere.

Next, suppose that g ⊂ gl(V ) is a linear Lie algebra. If X ∈ g, it is not necessarily true that
Xs and Xn must also lie in g (for instance, take g to be the one dimensional Lie subalgebra
spanned by a non-diagonalizable, non-nilpotent operator). It is thus remarkable that the
following theorem is true.

Theorem 5. Let g ⊂ gl(V ) be a semisimple Lie algebra. Then X ∈ g⇒ Xs, Xn ∈ g.

Thus elements of a semisimple linear Lie algebra admit an abstract Jordan decomposition.
This can be extended to all semisimple Lie algebras via the map ad : g → gl(g); since g is
semisimple, ker ad = 0. Thus g̃ ∼= g is a semisimple linear Lie algebra. Applying the theorem
above to g̃, we deduce: Given X ∈ g, there exist unique elements Xs, Xn ∈ g such that (a)
X = Xs+Xn, (b) adXs is diagonalizable and adXn is nilpotent and (c) [Xs, Xn] = 0. In fact,
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adXs and adXn are just the diagonalizable and nilpotent parts of adX. The decomposition
X = Xs +Xn is called the abstract Jordan decomposition of X in g. When g is a semisimple
linear Lie algebra, the two notions of abstract Jordan decomposition defined above can be
easily checked to coincide.

The usefulness of this notion arises from the following important theorem.

Theorem 6. (Preservation of Jordan decomposition) Let g be a semisimple Lie algebra and
let (φ, V ) be a representation of g. Then

φ(Xs) = φ(X)s and φ(Xn) = φ(X)n

In other words, Xs and Xn intrinsically keep track of the diagonalizable and nilpotent parts
of the action of X in every representation of g.

Definition 2. Let g be a semisimple Lie algebra. An element X ∈ g is called semisimple
(resp. nilpotent) if X = Xs (resp. X = Xn).

We observe that g must contain at least one nonzero semisimple element. Otherwise all X ∈
g would be ad -nilpotent; Engel’s theorem would then imply that g is nilpotent, hence solvable,
contradicting its semisimplicity. Semisimple elements act as diagonalizable operators in all
representations of g and nilpotent elements act as nilpotent operators in all representations
of g.
Examples: Let g = sl2C. Recall the standard basis elements H :=

[
1 0
0 −1

]
, X := [ 0 1

0 0 ] and
Y := [ 0 0

1 0 ]. The element H is semisimple while X and Y are nilpotent. Similarly for g = slnC,
the diagonal trace 0 matrices are all semisimple, while the matrix units Eij for i 6= j (with a

1 in the (i, j)th entry and zeros elsewhere) are all nilpotent.

Definition 3. Let g be a semisimple Lie algebra. A Lie subalgebra t of g is called a toral
subalgebra if all its elements are semisimple (i.e X = Xs for all X ∈ t).

Lemma 1. If t is a toral subalgebra of g, then t is abelian.

Proof: Let X ∈ t; then adX is diagonalizable, and leaves t invariant. Thus adX|t is also
diagonalizable. We thus only need to show that all eigenvalues of adX|t are zero. If not, let
λ 6= 0 be an eigenvalue, with eigenvector Y ∈ t. Thus adX(Y ) = λY . This implies that X
and Y are linearly independent; we also have adY (X) = −λY . Thus adY leaves the span of
X,Y invariant, and must therefore act diagonalizably on this 2 dimensional subspace. With
respect to the basis X,Y , the matrix of adY is

[
0 0
−λ 0

]
, which is clearly not diagonalizable. �

We now let h denote a maximal toral subalgebra of g. Since nonzero semisimple elements
exist, there are toral subalgebras of dim 1; h is thus nonzero. Observe that the maximality
of h implies that if X ∈ g is semisimple and commutes with all elements of h, then X ∈ h.
The following theorem asserts that the same is true for all elements of g (not just for the
semisimple ones).

Theorem 7. Let h be a maximal toral subalgebra of the semisimple Lie algebra g. Then
Cg(h) = h where the centralizer Cg(h) := {X ∈ g : [X,H] = 0 ∀H ∈ h}.


