We assume all Lie algebras and vector spaces are finite dimensional over k unless otherwise mentioned.

1. CARTAN'S CRITERION, KILLING FORM, SEMISIMPLICITY

If \mathfrak{g} is a Lie subalgebra of $\mathfrak{gl}(V)$ for some finite dimensional vector space V, then \mathfrak{g} is said to be a **linear Lie algebra**.

Theorem 1. (Lie's theorem) Let k be an algebraically closed field of characteristic zero, and let V be a nonzero finite dimensional vector space over k. Suppose $\mathfrak{g} \subset \mathfrak{gl}(V)$ is a solvable Lie algebra. Then there is a nonzero vector $v \in V$ such that $Xv = \lambda(X)v$ for all $X \in \mathfrak{g}$ (i.e a common eigenvector).

Note that λ in the statement above must be a linear functional on \mathfrak{g} . Recall that similar results have been encountered before: (a) If \mathfrak{g} is an abelian Lie subalgebra of $\mathfrak{gl}(V)$ such that every $X \in \mathfrak{g}$ is diagonalizable, then a simultaneous eigenvector exists (linear algebra), (b) If \mathfrak{g} is a Lie subalgebra of $\mathfrak{gl}(V)$ such that every $X \in \mathfrak{g}$ is a nilpotent operator on V, then \exists a common eigenvector for all $X \in \mathfrak{g}$ (with eigenvalue necessarily zero). This was encountered in the context of Engel's theorem.

A slightly more general version of Lie's theorem is the following: With the same hypothesis on k, if (ϕ, V) is a representation of a solvable Lie algebra \mathfrak{g} , then $\exists v \neq 0$ in V such that $X \cdot v = \lambda(X)v \,\forall X \in \mathfrak{g}$, for some $\lambda \in \mathfrak{g}^*$. This can be obtained by applying Lie's theorem to the solvable Lie algebra $\phi(\mathfrak{g})$.

Remarks: Assume the hypotheses of Theorem 1. Then we have :

- (1) The operators in \mathfrak{g} can in fact be simultaneously upper triangularized. In other words, \exists a basis \mathcal{B} of V such that $[X]_{\mathcal{B}}$ is upper triangular for all $X \in \mathfrak{g}$. This can be proved by repeated application of the general version of Lie's theorem to suitable quotients of V.
- (2) $[\mathfrak{g},\mathfrak{g}]$ is a nilpotent Lie algebra. This follows from the simultaneous upper triangularization above; the commutator subalgebra would become a subalgebra of the Lie algebra of strictly upper triangular matrices, which is nilpotent.
- (3) This also gives us that if $X \in \mathfrak{g}$ and $Y \in [\mathfrak{g}, \mathfrak{g}]$, then $\operatorname{tr}(XY) = 0$.

It turns out that the converse of the last statement above is true, and gives a powerful criterion for solvability of a linear Lie algebra.

Theorem 2. (Cartan's criterion) Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be a Lie algebra. If $\operatorname{tr}(XY) = 0 \forall X \in \mathfrak{g}, Y \in [\mathfrak{g}, \mathfrak{g}]$, then g is solvable.

We also have the following easy extension of this result to not necessarily linear Lie algebras:

Proposition 1. If (ϕ, V) is a representation of \mathfrak{g} such that $\operatorname{tr}(\phi(X)\phi(Y)) = 0$ for all $X \in \mathfrak{g}, Y \in [\mathfrak{g}, \mathfrak{g}]$, and if ker ϕ is solvable, then \mathfrak{g} is solvable.

Note that $\phi = \text{ad}$ gives a ready example of a representation whose kernel $(= Z(\mathfrak{g}))$ is solvable. This motivates the following definition:

Definition 1. The Killing form of the Lie algebra \mathfrak{g} is defined to be the symmetric bilinear form $B(X,Y) := \operatorname{tr} (\operatorname{ad} X \operatorname{ad} Y : \mathfrak{g} \to \mathfrak{g}).$

The above discussion shows that if $B(X, Y) = 0 \forall X \in \mathfrak{g}, Y \in [\mathfrak{g}, \mathfrak{g}]$, then \mathfrak{g} is solvable. The Killing form has the following important properties:

- (1) (g-invariance) $B([X, Y], Z) + B(Y, [X, Z]) = 0, \forall X, Y, Z \in \mathfrak{g}.$
- (2) If I is an ideal of \mathfrak{g} , let B_I denote the Killing form of I viewed as a Lie algebra in its own right. Then $B_I(X,Y) = B(X,Y)$ for all $X, Y \in I$. In other words, $B_I = B|_{I \times I}$.

(3) If I is an ideal of \mathfrak{g} , then so is $I^{\perp} := \{X \in \mathfrak{g} : B(X, Y) = 0 \forall Y \in I\}.$

Define the ideal ker $B := \mathfrak{g}^{\perp}$. Recall that one would call the symmetric bilinear form B nondegenerate if ker B = 0. The following theorem gives a very useful criterion for semisimplicity of \mathfrak{g} .

Theorem 3. A Lie algebra \mathfrak{g} is semisimple \iff its Killing form B is nondegenerate.

Proof: Letting $\mathfrak{k} := \ker B$, we have B(X, Y) = 0 for all $X \in \mathfrak{k}$ and $Y \in \mathfrak{g}$, in particular for all $Y \in [\mathfrak{k}, \mathfrak{k}]$. Since the Killing form of \mathfrak{k} is the restriction of B to $\mathfrak{k} \times \mathfrak{k}$, Cartan's criterion shows that \mathfrak{k} is solvable. For the converse, recall that if \mathfrak{g} has a nonzero solvable ideal R, then it also has a nonzero abelian ideal I (take I to be the last nonzero term in the derived series of R). It is easy to see that ad X ad Y ad X = 0 for all $X \in I$ and $Y \in \mathfrak{g}$. Thus ad X ad Y is a nilpotent operator, and must have trace 0. Thus B(X, Y) = 0 for all $X \in I, Y \in \mathfrak{g}$, contradicting the nondegeneracy of B.

Corollary 1. Let \mathfrak{g} be a semisimple Lie algebra over \mathbb{C} (or any algebraically closed field of characteristic 0) and let I be an ideal of \mathfrak{g} . Then

$$\mathfrak{g} = I \oplus I^{\perp}$$

Proof: From general facts about nondegenerate bilinear forms, it follows that dim $\mathfrak{g} = \dim I + \dim I^{\perp}$. It remains only to show that $\mathfrak{k} := I \cap I^{\perp}$ is zero. But clearly $B(X,Y) = 0 \forall X, Y \in \mathfrak{k}$. Hence Cartan's criterion shows \mathfrak{k} is a solvable ideal of \mathfrak{g} , and hence 0.

Corollary 2. Let \mathfrak{g} be a semisimple Lie algebra. Then \exists simple ideals \mathfrak{g}_i $(i = 1, \dots, r)$ such that

$$\mathfrak{g}=igoplus_{i=1}^{\prime}\mathfrak{g}_{i}$$

Further, the \mathfrak{g}_i are unique.

The proof is a straightforward induction argument that uses corollary 1.

2. Abstract Jordan decomposition

Let V be a finite dimensional vector space over the algebraically closed field k. The following is the *abstract Jordan decomposition* theorem for linear operators on V.

Theorem 4. Let T be a linear operator on V. There exist unique linear operators T_s and T_n such that (a) $T = T_s + T_n$, (b) T_s is diagonalizable and T_n is nilpotent and (c) $[T_s, T_n] = 0$.

In fact, it is further true that T_s and T_n are polynomials in T. In terms of matrices, once the (usual) Jordan matrix form of T is found, T_s is just the matrix of diagonal entries of this Jordan form, and $T_n = T - T_s$ is the matrix consisting of ones and zeros on the first superdiagonal, and zeros elsewhere.

Next, suppose that $\mathfrak{g} \subset \mathfrak{gl}(V)$ is a linear Lie algebra. If $X \in \mathfrak{g}$, it is not necessarily true that X_s and X_n must also lie in \mathfrak{g} (for instance, take \mathfrak{g} to be the one dimensional Lie subalgebra spanned by a non-diagonalizable, non-nilpotent operator). It is thus remarkable that the following theorem is true.

Theorem 5. Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be a semisimple Lie algebra. Then $X \in \mathfrak{g} \Rightarrow X_s, X_n \in \mathfrak{g}$.

Thus elements of a semisimple linear Lie algebra admit an abstract Jordan decomposition. This can be extended to all semisimple Lie algebras via the map ad : $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$; since \mathfrak{g} is semisimple, ker ad = 0. Thus $\tilde{\mathfrak{g}} \cong \mathfrak{g}$ is a semisimple linear Lie algebra. Applying the theorem above to $\tilde{\mathfrak{g}}$, we deduce: Given $X \in \mathfrak{g}$, there exist unique elements $X_s, X_n \in \mathfrak{g}$ such that (a) $X = X_s + X_n$, (b) ad X_s is diagonalizable and ad X_n is nilpotent and (c) $[X_s, X_n] = 0$. In fact, ad X_s and ad X_n are just the diagonalizable and nilpotent parts of ad X. The decomposition $X = X_s + X_n$ is called the abstract Jordan decomposition of X in \mathfrak{g} . When \mathfrak{g} is a semisimple *linear* Lie algebra, the two notions of abstract Jordan decomposition defined above can be easily checked to coincide.

The usefulness of this notion arises from the following important theorem.

Theorem 6. (Preservation of Jordan decomposition) Let \mathfrak{g} be a semisimple Lie algebra and let (ϕ, V) be a representation of \mathfrak{g} . Then

$$\phi(X_s) = \phi(X)_s \text{ and } \phi(X_n) = \phi(X)_n$$

In other words, X_s and X_n intrinsically keep track of the diagonalizable and nilpotent parts of the action of X in *every representation* of \mathfrak{g} .

Definition 2. Let \mathfrak{g} be a semisimple Lie algebra. An element $X \in \mathfrak{g}$ is called *semisimple* (resp. *nilpotent*) if $X = X_s$ (resp. $X = X_n$).

We observe that \mathfrak{g} must contain at least one nonzero semisimple element. Otherwise all $X \in \mathfrak{g}$ would be ad-nilpotent; Engel's theorem would then imply that \mathfrak{g} is nilpotent, hence solvable, contradicting its semisimplicity. Semisimple elements act as diagonalizable operators in all representations of \mathfrak{g} and nilpotent elements act as nilpotent operators in all representations of \mathfrak{g} .

Examples: Let $\mathfrak{g} = \mathfrak{sl}_2\mathbb{C}$. Recall the standard basis elements $H := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $X := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $Y := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. The element H is semisimple while X and Y are nilpotent. Similarly for $\mathfrak{g} = \mathfrak{sl}_n\mathbb{C}$, the diagonal trace 0 matrices are all semisimple, while the matrix units E_{ij} for $i \neq j$ (with a 1 in the $(i, j)^{th}$ entry and zeros elsewhere) are all nilpotent.

Definition 3. Let g be a semisimple Lie algebra. A Lie subalgebra \mathfrak{t} of \mathfrak{g} is called a *toral subalgebra* if all its elements are semisimple (i.e $X = X_s$ for all $X \in \mathfrak{t}$).

Lemma 1. If \mathfrak{t} is a toral subalgebra of \mathfrak{g} , then \mathfrak{t} is abelian.

Proof: Let $X \in \mathfrak{t}$; then ad X is diagonalizable, and leaves \mathfrak{t} invariant. Thus ad $X|_{\mathfrak{t}}$ is also diagonalizable. We thus only need to show that all eigenvalues of ad $X|_{\mathfrak{t}}$ are zero. If not, let $\lambda \neq 0$ be an eigenvalue, with eigenvector $Y \in \mathfrak{t}$. Thus ad $X(Y) = \lambda Y$. This implies that X and Y are linearly independent; we also have ad $Y(X) = -\lambda Y$. Thus ad Y leaves the span of X, Y invariant, and must therefore act diagonalizably on this 2 dimensional subspace. With respect to the basis X, Y, the matrix of ad Y is $\begin{bmatrix} 0 & 0 \\ -\lambda & 0 \end{bmatrix}$, which is clearly not diagonalizable. \Box

We now let \mathfrak{h} denote a maximal toral subalgebra of \mathfrak{g} . Since nonzero semisimple elements exist, there are toral subalgebras of dim 1; \mathfrak{h} is thus nonzero. Observe that the maximality of \mathfrak{h} implies that if $X \in \mathfrak{g}$ is semisimple and commutes with all elements of \mathfrak{h} , then $X \in \mathfrak{h}$. The following theorem asserts that the same is true for *all elements* of \mathfrak{g} (not just for the semisimple ones).

Theorem 7. Let \mathfrak{h} be a maximal toral subalgebra of the semisimple Lie algebra \mathfrak{g} . Then $C_{\mathfrak{g}}(\mathfrak{h}) = \mathfrak{h}$ where the centralizer $C_{\mathfrak{g}}(\mathfrak{h}) := \{X \in \mathfrak{g} : [X, H] = 0 \forall H \in \mathfrak{h}\}.$