
AN APPLICATION OF LINEAR ALGEBRA TO NETWORKS

K. N. RAGHAVAN

1. Statement of the problem

Imagine that between two nodes there is a network of electrical connections, as for example in the

following picture between nodes numbered 6 and 1:

Imagine further that between nodes 6 and 1 a voltage difference is forced, so that there is a current

flowing from 6 to 1. Let us say that a current i0 is flowing into node 6 and flowing out of node 1

as indicated by the arrows. Let us suppose that we are given information about the resistance of

every edge. The problem to be solved is:

How does the current i0 distribute itself over the network? In other words, how to

determine the current in each of the edges of the network (as a fraction of i0)?

There is no loss of generality in assuming that the network contains no loops (that is, edges that

start and end at the same node); that there is at most one edge between any two given nodes

(multiple edges can be replaced by a single edge of appropriate resistance); and that the network

is connected (if the “source” node, 6 in the picture above, is not connected to the “sink” node, 1 in

the picture above, then of course no current can flow; nodes and edges that are not connected to

the source and sink can safely be removed because no current flows in those edges).

We orient the edges (that is, put arrows on them) in an arbitrary fashion. Each edge has a node

as head and another as tail . For example, 2 is the head and 3 the tail of the edge C in the above

picture. Note that the orientation of an edge is without prejudice to the positive direction of actual
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current flow: if it turns out that we chose the other direction, the algebraic value of the current in

that edge will come out negative.

2. Comments on the solution

We will solve the above problem using linear algebraic notions, or if you prefer matrix analysis.

We will set up a linear system of equations (see (6)) which we will show is solvable. Moreover,

although (6) admits multiple solutions, all of them lead to the same values of currents in the edges.

See the theorem in §6 and the remarks around it.

While we will illustrate the steps of the solution in the specific example of the network pictured

above, the solution itself is general and applies to any problem of the above nature. It will take us

on an excursion through several basic linear algebraic concepts. As we shall see, linear algebra is a

good language in which to express the physics involved.

3. The adjacency matrix M

We begin by encoding into a matrix M , called the adjacency matrix , information about the network,

excluding for the moment the information about the resistances of the edges. Let V denote the set

of nodes or vertices of the network; let E denote the set of edges of the network. In the example

pictured above, V = {1, 2, 3, 4, 5, 6} and E = {A,B,C,D,E, F,G,H, I}. Let |V | and |E | denote

respectively the cardinalities of V and E . The adjacency matrix M is of size |E | × |V |: its rows

are indexed by E , its columns by V . If e is an edge and v a vertex, we will denote by M(e, v) the

entry in row e and column v of M . Each row of M has exactly two non-zero entries: if e be the

edge indexing a row, M(e,head(e)) = −1 and M(e, tail(e)) = 1. The matrix M of the example

pictured above is: 

−1 1 0 0 0 0

−1 0 1 0 0 0

0 −1 1 0 0 0

0 −1 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 1 0

0 0 0 −1 1 0

0 0 0 −1 0 1

0 0 0 0 −1 1


(1)

The rows correspond respectively to the edges A, B, C, . . . , H, I; the columns respectively to the

nodes 1, . . . , 6.

Let us the pose the following questions about M :

What is the rank of M? What is its kernel? Its range?

Convention. In the sequel we will come across matrices with rows (or columns) indexed by V

or E . It is understood that the elements of V and E are enumerated once and for all in an arbitrary

order. This order remains fixed throughout.

4. The rank of the adjacency matrix M

To find the rank of M , we may of course try to row reduce M . Exploiting the special nature

of M—namely that it is the adjacency matrix of a network—leads us quickly to the answer. Let us

denote the rows of M by ρA, ρB, etc. Observe that ρA − ρB + ρC = 0: this is because if we follow
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the network along the edge A, then along B but in the direction opposite to the arrow, and finally

along C, then we would have completed a cycle (starting and ending with 2). So we may remove

one of the rows ρA, ρB, ρC from the matrix M and without changing its row space. Let us say we

remove ρB from M and correspondingly the edge B from the network.

Proceeding thus, we choose one cycle every time in the remaining network, observe a relation

among the rows corresponding to the edges in the cycle, and remove an edge of the cycle from the

network and the corresponding row from M . We continue until there are no more cycles left in the

network.

In the pictured example above, we could proceed as follows:

• remove B (cycle, A, −B, C)

• remove D (cycle D, −E, G)

• remove F (cycle C, −E, F )

• remove I (cycle G, −H, I)

The removed rows ρB, ρD, ρF , and ρI being linear combinations of the rows that remain, the

modified M has the same row space as M . We claim that the remaining rows, namely ρA, ρC , ρE ,

ρG, and ρH are linearly independent. This can be seen as follows. Suppose that there is a linear

dependence relation cAρA + cCρC + cEρE + cGρG + cHρH = 0. Then, because ρH is the only row

(among the five remaining rows) with a non-zero entry in column 6, it follows that cH = 0. Of the

other four rows rows (namely ρA, ρC , ρE , ρG), since ρG is the only row with a non-zero entry in

column 4, it follows that cG = 0. Of the remaining three rows (namely ρA, ρC , ρE), since ρE is

the only one with a non-entry in column 5, it follows that cE = 0. Since ρC has a non-entry in

column 3 but ρA does not, it follows that cC = 0. And finally cA = 0 since ρA 6= 0. And the claim

is proved.

We have just proved that the rank of the adjacency matrix M of the network pictured above

is 5. The method of proof works in general and gives:

The adjacency matrix has rank |V | − 1. (2)

Indeed, |V | − 1 is the number of edges that remain in the network at the point when there are no

cycles left. And the rows corresponding to these edges are linearly independent.

5. The kernel and range of the adjacency matrix M

We think of M as being a linear transformation from RV to RE . Elements of RV are naturally

thought of as voltage values at the nodes (recall that XY denotes functions from Y to X). We may

also think of RV as consisting of real column matrices of size |V | × 1. The image under M of an

element v of RV is given by usual matrix multiplication: v 7→ Mv. Observe that Mv is a column

matrix of size |E | × 1 and therefore naturally denotes an element of RE .

More abstractly (but also more intrinsically), if an element v of RV is interpreted as a real valued

function on V , its image under M is the real valued function on E that maps each edge e to the

voltage difference between its tail and head, namely, v(tail(e))− v(head(e)).

It is clear from the above description that if v is a constant function (in other words, if as a

|V |×1 column matrix, the entries of v are all equal), then its image under M is zero. On the other

hand, since the rank of M is |V | − 1, it follows from the rank-nullity theorem that the kernel of M

has dimension 1. Thus:

The kernel of M consists of constant functions on V . (3)
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As to the range of M , which is a subspace of RE , its dimension equals |V | − 1 (see (2)). We

think of elements of RE as real valued functions on E . Suppose that ε1e1, . . . , εkek is a cycle in the

network. This means the following:

Each εi has value either 1 or −1. Each ei is an edge in the network. Let us say

that to travel along εiei means to travel along the edge ei, in the same direction

as its arrow if εi = 1, and in the opposite direction of its arrow if εi = −1. Then

traveling along successively along ε1e1, . . . , εkek completes a cycle in the network.

For example, A, -B, -F, E is a cycle in the network pictured above.

We may think of a cycle ε1e1, . . . , εkek as a functional on RE , just by letting f in RE be mapped

to ε1f(e1) + · · ·+ εkek. We leave it to the reader as an exercise to prove the following assertions:

• The subspace spanned by the cycles in the dual space of RE has dimension |E | − |V | + 1.

(In fact, any sequence of cycles chosen as in the procedure above for determining the rank

of M would be a basis for the subspace spanned by the cycles.)

• An element f of RE belongs to the range of M if and only if, for every cycle ε1e1, . . . , εkek
in the network, we have ε1f(e1) + · · ·+ εkf(ek) = 0.

6. Ohm’s law

As seen in §4, we may think of the adjacency matrix M as a linear transformation from RV

to RE . Indeed if v is an element of RV , then Mv, thought of as a function on RE , has value

v(tail(e)) − v(head(e)) at edge e. If we think of v as giving the voltages at the nodes, then Mv

evaluated at an edge e is just the voltage difference between its end points. Thus letting ce denote

the conductance of edge e—recall that conductance is the reciprocal of resistance—we obtain, by

Ohm’s law, ce · (Mv)(e) = ie, where ie denotes the current in edge e. We may combine these

expressions of Ohm’s law for every edge into a single matrix equation:

CMv = i (4)

where C is a |E |× |E | diagonal matrix, whose rows and columns are both indexed by elements of E

and whose diagonal entry corresponding to an edge e is the conductance ce of that edge; and i is

the column matrix of size |E |×1 whose entry corresponding to an edge e is the value of the current

ie in that edge (along the direction of the arrow).

7. The transpose of M and Kirchoff’s current law

The transpose M t of M is a |V | × |E | matrix, with rows indexed by V and columns by E . Thus it

is naturally interpreted as a linear transformation from RE to RV . If we denote by i an element of

RE and think of it as giving the values of the currents in the edges, then M ti has a nice physical

interpretation, which we now want to work out.

The entries along a given row of M t are either 0, 1, or −1. In fact, if the row is indexed by a

node v, then entry in a column corresponding to an edge e is 1 if v is the tail of e, −1 if v is the

head of e, and 0 otherwise. Thus M ti evaluated at a vertex v gives the value of the current flowing

out of it (along the network’s edges). This value is of course −i0 at the sink, i0 at the source, and

0 elsewhere (by Kirchoff’s current law). Assuming we have enumerated the nodes in such a way
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that the first node is the sink and the last is the source, we obtain the matrix equation:

M ti =


−i0

0
...

0

i0

 (5)

8. The main equation and the main theorem

Combining equations (4) and (5) we get

M tCMv =


−i0

0
...

0

i0

 (6)

The matrices M and C represent the data of the connections in the network and the information

about resistances of the edges. These are known. Thus we may solve the system (6) of linear

equations for v. The answers will be in terms of i0. Once v is known, it is a simple matter to find

the matrix i of currents: we could just plug v into (4) to get i.

The questions that confront us now are:

• Is such a system as (6) always solvable?

• What if there are multiple solutions?

Our physical intuition tells us that there ought to be a unique solution to our original problem

stated in §1. How is this captured by (6)?

As the following theorem shows, all is well:

Theorem. The system (6) always has a solution. Any two solutions differ by a column matrix all

of whose entries are equal.

Thus while v itself admits multiple solutions, the voltage value at a given vertex by itself has no

physical significance. It is only the differences in the voltages across edges which matter. And these

are uniquely determined. Thus (6) is in agreement with our physical intuition.

9. Proof of the Theorem

We claim that M tCM has the same rank as M . For this, it is enough, by the rank nullity theorem,

to show that KerM = KerM tCM . The containment ⊆ is clear. Now suppose that M tCMv = 0.

Then, multiplying on the left by vt, we get vtM tCMv = 0 or (Mv)tC(Mv) = 0. Putting x = Mv,

we get xtCx = 0 or
∑

e∈E cex
2
e. Since ce > 0 for all e and x2e ≥ 0 for all xe, it follows that this can

happen only if x = 0. Thus Mv = 0, which means v ∈ KerM and the claim is proved.

By (2) it follows that M tCM has rank |V | − 1. Now let us imagine solving (6) by row reducing

the augmented matrix (M tCM |b) where b stands for the right hand side in (6). Observe that the

sum of the columns of M is zero, which means that the sum of the rows of M t (and therefore also

those of M tCM) is zero. Let us replace the last row of (M tCM |b) by the sum of all the rows.

Then the last row would be zero, since b also has the property that the sum of all its rows is zero.
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Let us imagine continuing with our row reduction of (M tCM |b). Since the rank of M tCM is

|V | − 1, all the rows except the last will be non-zero for the |V | × |V | matrix on the left. It follows

that the system (6) has a solution, which proves the first assertion of the theorem.

Any two solutions of the inhomogeneous system (6) differ by a solution of the corresponding

homogeneous system M tCM = 0. As proved in the claim above, the kernel of M tCM is the same

as that of M . As observed in (3), the kernel of M consists of column matrices all of whose entries

are the same, and the second assertion of the theorem is proved. �
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