
4. PROJECTIONS AND THE LINE OF BEST FIT

4.1. Motivation: the line of best fit. As motivation for what follows later in this section,
consider the following situation that occurs routinely in laboratories (presumably!). Sup-
pose that we know that two quantities of interest are related linearly—which means that
one is a function of the other and that its graph with respect to the other is a straight
line—and that we are trying to determine this straight line experimentally. We vary one
of the quantities (over a finite set of values) and measure the corresponding values of the
other, thereby getting a set of data points. Now if we try to find a straight line running
through our set of data points, there is often no such line! This after all should not be so
surprising, there being several reasons for the deviation from the ideal behaviour, not the
least of which is experimental error. At any rate, our problem now is to find a line that
“best fits” the data points.

One way of formulating the problem and the “best fit” criterion is as follows. Let the
line of best fit be y = mx + c, where m is the slope and c the y-intercept.2 Let (x1, y1),
. . . , (xn, yn) be the set of data points. The point (xk, yk) lies on y = mx + c if and only if
yk = mxk + c. The ideal situation (which as noted above is rarely the case) would be when
we can solve the following system of linear equations for m and c (in other words, when
all the data points do lie on a single line):

y1
y2
...
yn

 =


x1 1
x2 1
...

...
xn 1


(

m
c

)
(5)

Note that there is a solution to the above system if and only if the column vector on the
left side belongs to the column space of the n× 2 matrix on the right. Confronted with the
problem of being forced to “solve” this system when no solution exists, a natural thing to
do would be to replace the column vector on the left side by the vector “closest” to it in
the column space of the n× 2 matrix and then solve. Such a closest vector is given by the
“orthogonal projection” (to be defined presently) of the column vector on the left side on
to the column space. This approach demands that we know how to compute orthogonal
projections.

4.2. Definition of the orthogonal projection to a subspace. Suppose that we are given
a subspace V of Rm. Define V ⊥ := {w ∈ Rm |wtv = 0 for all v ∈ V }. Then V ∩ V ⊥ = 0,
for vtv = 0 implies v = 0 for v in Rm. Moreover, the dimension of V ⊥ is such that dimV +
dimV ⊥ = m. Indeed, this follows from the rank-nullity theorem, given the interpretation
that V ⊥ is the solution space of Atw = 0, where A is a matrix of size m × dimV whose
column space is V .

Putting together a basis of V with a basis of V ⊥ therefore gives a basis of Rm. In other
words, each element x of Rm has a unique expression of the form x = v + v′ with v in V
and v′ in V ⊥. The association x 7→ v is a linear transformation from Rm to V (or to Rm,

2This so-called slope-intercept form of the line would not be appropriate if we expect the line of best fit
to be vertical. But since, following convention, we plot the “dependent variable” on the x-axis, and there are
many different values of this variable, a vertical line is ruled out, and we are justified in our choice of the
form of equation for the required line.



if one prefers). It is characterized by the properties that it is identity on V and vanishes
on V ⊥. It is called the orthogonal projection to the subspace V .

4.3. A formula for the orthogonal projection. Now suppose that V is specified for us as
being the column space of a m×n matrix A with linearly independent columns. The matrix
A of course determines the orthogonal projection—call it P—on to V . The question now
is: how do we write the matrix of P (with respect to the standard basis of Rm) given A?

The answer is:
P = A(AtA)−1At (6)

For the proof, we first observe that the AtA is an invertible n×n matrix, so that the inverse
in the formula makes sense. Suppose that (AtA)x = 0 for some x in Rn. Then, multiplying
by xt on the left, we get (xtAt)(Ax) = 0. But this means ||Ax|| = 0, so Ax = 0. Since
the columns of A are linearly independent, this in turn means x = 0. This proves that the
endomorphism of Rn represented by AtA is injective and so also bijective. Thus AtA is
invertible.

For an element v of V we have v = Ax for some x in Rn, so that Pv = A(AtA)−1At(Ax) =
A(AtA)−1(AtA)x = Ax = v. And for an element w of V ⊥ we have Atw = 0 (because the m
entries of Atw are precisely the inner products of w with the columns of A which span V ),
and so Pw = 0. This proves the formula.

4.4. Remarks. We make various remarks about the argument in the preceding subsection.
(1) Note that if m = n, then we get P = A(AtA)−1At = AA−1(At)−1At = identity,

which makes sense.
(2) In the course of the proof we have shown the following: the map At restricted to

the image of A is injective (where A is a real matrix). Indeed, if AtAx = 0, then
xtAtAx = 0 and so ||Ax|| = 0 and Ax = 0.

(3) Observe directly (without recourse to formula (6)) that the matrix P represent-
ing (with respect to the standard basis of Rm) the orthogonal projection to any
subspace of Rm is symmetric and satisfies P 2 = P .

(4) Suppose that P is an m×m symmetric matrix such that P 2 = P . Then P represents
with respect to the standard basis of Rm the orthogonal projection onto its column
space.

(5) If in §4.3 the columns of A are orthonormal, then AtA is the identity matrix, so
formula (6) reduces to P = AAt. This motivates the Gram-Schmidt orthogonaliza-
tion procedure for computing an orthonormal basis for a subspace of Rm starting
from any given basis for that subspace.

4.5. Approximate solution to an overdetermined linear system. Motivated by the need
to find the line of best fit and armed with the formula of the previous subsection, we now
proceed to give an approximate solution to an overdetermined linear system of equations.
Suppose that we want to solve Ax = b for x, where A is an m × n matrix with linearly
independent columns (so, in particular, m ≥ n). In general b may not be in the column
space of A. We replace b by its orthogonal projection on to the column space of A, which
by the formula of the previous subsection is A(AtA)−1Atb. We get Ax = A(AtA)−1Atb. But
since A has linearly indepedent columns, we can cancel the leading A from both sides, so
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we get
x = (AtA)−1Atb (7)

4.6. Illustration. As an illustration of the method just described, let us work out the line
that best fits the three points (1, 1), (2, 3) and (3, 3). The slope m and y-intercept c are
obtained by an application of (7) as follows.(

m
c

)
= (AtA)−1Atb where A =

 1 1
2 1
3 1

 and b =

 1
3
3

. We have AtA =

(
14 6
6 3

)
.

Computation of (AtA)−1 (see §2.3):(
14 6
6 3

∣∣∣∣ 1 0
0 1

)
−→

(
2 0
6 3

∣∣∣∣ 1 −20 1

)
−→

(
2 0
0 3

∣∣∣∣ 1 −2
−3 7

)
−→

(
1 0
0 1

∣∣∣∣ 1/2 −1
−1 7/3

)
Thus we have:(

m
c

)
=

(
1/2 −1
−1 7/3

)(
1 2 3
1 1 1

) 1
3
3

 =

(
1/2 −1
−1 7/3

)(
16
7

)
=

(
1
1
3

)
Thus the line that best fits the points (1, 1), (2, 3), and (3, 3) is y = x+ 1

3
.
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