1. TUTORIAL 1A (VT 1)

Use ideas about group actions to prove (or disprove):

- (1) If *H* and *K* are finite index subgroups of a group *G*, then so is $H \cap K$.
- (2) For finite subgroups *H* and *K* of a group *G*, we have $|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$.
- (3) Let H be a subgroup of a group G which acts on a set X. The following are equivalent:
 - H acts transitively on X.
 - *G* acts transitively on *X* and $G = HG_x$ for every *x* in *X*.
 - *G* acts transitively on *X* and $G = HG_x$ for some *x* in *X*.
- (4) There is no transitive action of the alternating group A_n (with $n \ge 5$) on a non-singleton set with less than n elements. (Note that the natural action of A_n on the set $\{1, 2, ..., n\}$ is transitive for $n \ge 3$.) (Hint: Given a group homomorphism $A_n \to S_m$ with m < n, this cannot be injective for 2 < n, which means the kernel is a non-trivial normal subgroup.)
- (5) Which of the following occur as the class equation of a group of order 10?:

 - 10 = 1 + 2 + 3 + 4
 - 10 = 1 + 1 + 1 + 2 + 5

2. TUTORIAL 1B (SV 1)

- (1) By a *linear character of a group* G we mean a group homomorphism from $G \to \mathbb{C}^*$. Every linear character of a group G factors through G/[G,G], where [G,G] is the commutator subgroup. A perfect group (that is, one whose commutator subgroup is itself, e.g., a non-abelian simple group) does not admit non-trivial linear characters.
- (2) Let A be a finite abelian group and let $\rho : A \to GL_{\mathbb{C}}(V)$ be a finite dimensional complex representation. Show that there exists a basis of V each element of which is a common eigenvector for the action of all elements of A. Show that this is not true if we drop the hypothesis that A is abelian (in fact, for the symmetric group on three letters); show also that the statement is false for real representations in place of complex representations (in fact, even for the cyclic group of order three).

3. TUTORIAL 2A (VT 2)

- (1) Let X be a finite set on which a group G acts transitively, and N be a normal subgroup of G. Then all N-orbits of X have the same cardinality.
- (2) Let N be a normal subgroup of a group G that acts on a set X. Then there is a natural action of the quotient group G/N on $X^N := \{x \in X | nx = x \forall n \in N\}.$
- (3) Any normal subgroup of a finite *p*-group intersects the centre of the group non-trivially.
- (4) Let X be a finite set on which there is a transitive action of a group G. If Y is any finite G-set such that there is at least one G-map from Y to X, then the cardinality of X divides that of Y.
- (5) Let Q_8 denote the group $\{\pm 1, \pm i, \pm j, \pm k\}$ (where i, j, k are quaternions in the standard notation). By Cayley's theorem, we have an embedding of Q_8 into the symmetric group of S_8 . Show that Q_8 cannot be embedded into the symmetric group S_n for any n < 8. (Hint: Observe that $\{\pm 1\}$ is a subgroup of Q_8 that is contained in every non-trivial subgroup of Q_8 . So if Q_8 has an action on any set of less than 8 elements, then this subgroup stabilises every point.)
- (6) Suppose that the centre of group has finite index. Then the cardinality of any conjugacy class divides that finite index.
- (7) A finite group has exactly two conjugacy classes. What can you say about it?

4. TUTORIAL 2B (SV 2)

(1) Every irreducible representation of a finite p-group over a field of characteristic p is one dimensional.

5. TUTORIAL 3A (VT 3)

- (1) A normal *p*-subgroup of a finite group is contained in every Sylow *p*-subgroup.
- (2) Consider the left action of a group (not necessarily finite) on itself and the induced action on the power set of the group. Observe that any subset *S* of the group is the union of (some) right cosets of its stabiliser. [Note: this observation is relevant to the proof of Sylow's existence theorem that was discussed in the lecture.]
- (3) Given a non-singleton conjugacy class of a finite group *G*, there exists an element that does not commute with any element in the conjugacy class.
- (4) If H is a finite index subgroup of a group G, then G is not the union of the conjugates of H.
- (5) This shows that we cannot drop the hypothesis about H being of finite index in the previous item. Let $G = GL_n(\mathbb{C})$ (for some integer $n \ge 2$), and H be the subgroup of G consisting of invertible upper triangular matrices. Show that G is a union of conjugates of H.
- (6) This gives an alternative proof of the existence of Sylow *p*-subgroups.
 - (a) Show from first principles that, for a group G and a subgroup H, if G has a Sylow p-subgroup (for some prime p), then so does H. In fact, show more precisely the following: given a Sylow p-subgroup Q of G, the intersection of H with some conjugate of Q is a Sylow p-subgroup of H.
 - (b) Use item (a) to give an alternative proof of the existence of Sylow *p*-subgroups. (Hint: Given a finite group G of order n, we have $G \hookrightarrow S_n$ by Cayley, where S_n denotes the symmetric group on n letters. Given a prime p, we can embed S_n further in $GL_n(\mathbb{F}_p)$. Now $GL_n(\mathbb{F}_p)$ has a Sylow *p*-subgroup, e.g., the subgroup consisting of unipotent upper triangular matrices.)

6. TUTORIAL 3B (SV 3)

- (1) Let $\chi : A \to \mathbb{C}^*$ be a non-trivial character of a finite group A. Show that $\sum_{a \in A} \chi(a) = 0$. (Hint: Choose b in A such that $\chi(b) \neq 1$. Then $\sum_{a \in A} \chi(a) = \sum_{a \in A} \chi(ab) = \sum_{a \in A} \chi(a)\chi(b) = (\sum_{a \in A} \chi(a))\chi(b)$, and so $\sum_{a \in A} \chi(a) = 0$.)
- (2) Let A be any group, not necessarily finite, and let F be a field. Write F[A] for the F-vector space of all functions from A to F. Recall that $\operatorname{Hom}(A, F^{\times})$ denotes the group of all homomorphisms from A to the multiplicative group F^{\times} of nonzero elements of F. Note that elements of $\operatorname{Hom}(A, F^{\times})$ are functions on A valued in F, and hence $\operatorname{Hom}(A, F^{\times}) \subset F[A]$. Show: $\operatorname{Hom}(A, F^{\times})$ is a linearly independent subset of F[A].

<u>Hint</u>: Suppose not. Write a relation of linear independence of the form $c_1\chi_1 + \cdots + c_n\chi_n = 0$, where $c_i \neq 0$ for all *i*, where the χ_i are distinct, and where *n* is the smallest possible for such a relation. This means $c_1\chi_1(a) + \cdots + c_n\chi_n(a) = 0$ for all $a \in A$, and hence also for *a* replaced by *ab* with $a, b \in A$. Since $\chi_1 \neq \chi_2$, take *b* such that $\chi_1(b) \neq \chi_2(b)$. Now you have two equations, manipulate them to eliminate χ_1 and get a nontrivial relation of linear dependence with at most n - 1 terms, to obtain a contradiction.

- Note: The fact asserted in this question is the well-known 'linear independence of characters'.
- (3) Let *A* be a finite abelian group.
 - (a) Suppose $a \in A$. Show:

$$\sum_{\chi \in \operatorname{Hom}(A, \mathbb{C}^{\times})} \chi(a) = \begin{cases} |\operatorname{Hom}(A, \mathbb{C}^{\times})|, & \text{if } a = e, \text{ where } e \text{ is the identity element of } A, \text{ and} \\ 0, & \text{if } a \neq e. \end{cases}$$

<u>Hint</u>: For the case $a \neq e$, use the structure theorem for finite abelian groups to get that there exists $\chi_0 \in \text{Hom}(A, \mathbb{C}^{\times})$ with $\chi_0(a) \neq 1$. Show that the left-hand side of the above equation remains unchanged on multiplying with $\chi_0(a)$. Why does that force the left-hand side to be zero?

(b) Suppose $a_0 \in A$. Show that the function on A given by:

$$\delta_{a_0} := \frac{1}{|\operatorname{Hom}(A, \mathbb{C}^{\times})|} \sum_{\chi \in \operatorname{Hom}(A, \mathbb{C}^{\times})} \chi(a_0)^{-1} \chi,$$

namely the function defined by

$$\delta_{a_0}(a) = \frac{1}{|\mathrm{Hom}(A, \mathbb{C}^{\times})|} \sum_{\chi \in \mathrm{Hom}(A, \mathbb{C}^{\times})} \chi(a_0)^{-1} \chi(a),$$

is given by:

$$\delta_{a_0}(a) = egin{cases} 1, & ext{if } a = a_0, ext{ and } \ 0, & ext{otherwise.} \end{cases}$$

<u>Hint</u>: Use part (a).

- (c) Conclude from (b) that $\operatorname{Hom}(A, \mathbb{C}^{\times}) \subset \mathbb{C}[A]$ is a spanning set of the \mathbb{C} -vector space $\mathbb{C}[A]$.
- (d) Conclude from problems 1 and 2(c) that $\operatorname{Hom}(A, \mathbb{C}^{\times}) \subset \mathbb{C}[A]$ is a basis of the \mathbb{C} -vector space $\mathbb{C}[A]$ (and thence also that $|A| = |\operatorname{Hom}(A, \mathbb{C}^{\times})|$).

<u>Note</u>: We discussed the inner product on $\mathbb{C}[A]$:

$$\langle f_1, f_2 \rangle = \frac{1}{|A|} \sum_{a \in A} f_1(a) \overline{f_2(a)},$$

and the fact that $\operatorname{Hom}(A, \mathbb{C}^{\times})$ is an orthonormal set for this inner product. Thus, from the above problems it follows that $\operatorname{Hom}(A, \mathbb{C}^{\times})$ is an orthonormal basis for this inner product. Moreover, each of these elements spans an irreducible subrepresentation of $\mathbb{C}[A]$ for the left (or right) regular action.

(4) Suppose $\rho: G \to GL_n(\mathbb{C}) = GL_{\mathbb{C}}(\mathbb{C}^n)$ be a complex representation of a group G. Thus, for every $g \in G$, $\rho(g)$ is an $n \times n$ matrix. Let $r_{ij}(g)$ denote the (i, j)-th entry of $\rho(g)$. Each r_{ij} is then a function from G to \mathbb{C} , $g \mapsto r_{ij}(g)$; in other words, $r_{ij} \in \mathbb{C}[G]$.

Show using matrix multiplication and the fact that ρ is a homomorphism: if ρ_{lreg} denotes the left regular representation of G on $\mathbb{C}[G]$, then for all $h \in G$:

$$\rho_{\text{lreg}}(h)(r_{ij}) = \sum_{k=1}^{n} r_{ik}(h^{-1}) \cdot r_{kj}.$$

Conclude that the span of all the r_{ij} is a *G*-invariant subspace of $(\mathbb{C}[G], \rho_{\text{lreg}})$. Prove the analogous assertions for the right regular representation ρ_{rreg} of *G* on $\mathbb{C}[G]$ and the regular representation ρ_{reg} of $G \times G$ on $\mathbb{C}[G]$.

- (5) Let (V, ρ) be a representation of a finite group G, over a field F.
 - (a) Let $W \subset V$ be a finite dimensional vector subspace, and set:

W' = the *F*-linear span of $\{\pi(g)w \mid g \in G, w \in W\}$.

Show that W' is a *G*-invariant subspace of *V* that contains *W*, of dimension at most $|G| \cdot \dim_F W$.

- (b) If W'' is any *G*-invariant subspace of *V* that contains *W*, show that W'' contains W'.
- (c) Using (a) or otherwise, show that every irreducible representation of a finite group is finite dimensional.

<u>Note</u>: (b) tells us that W' can be thought of as 'the' (and not just 'a') smallest *G*-invariant subspace of *V* containing *W*. *W'* is said to be the *G*-invariant subspace of *V* generated by *W*.

- (6) This gives a representation theoretic proof of the Cauchy-Frobenius-Burnside orbit counting lemma:
 - (a) Suppose that V is a finite dimensional complex representation of a finite group G defined by $\rho: G \to GL(V)$. Let V^G be the subspace consisting of the points of V that are fixed by G. Show that the following endomorphism of V defines a G-projection onto the subspace V^G :

$$\frac{1}{|G|} \sum_{g \in G} \rho(g)$$

- (b) The trace of any projection to a subspace equals the dimension of the subspace.
- (c) Let X be a finite set on which a group acts. Consider the the free complex vector space V on X as a linear representation of G. Then the dimension of V^G equals the number of G-orbits in X. [Hint: First assume that the action of X is transitive and observe that V^G is one dimensional in this case.]
- (d) Prove the Cauchy-Frobenius-Burnside orbit counting lemma using the three items above.
- (7) If every irreducible complex representation of a finite group is one dimensional, then the group is abelian.

7. TUTORIAL 4A (VT 4)

- (1) If there is exactly one Sylow *p*-subgroup of a finite group for every prime *p*, then the group is a direct product of its Sylow *p*-subgroups.
- (2) Let G act transitively on X and Y. The natural action of G on $X \times Y$ is transitive if and only if $G_x G_y = G$ for some $x \in X$ and $y \in Y$ (equivalently for every $x \in X$ and $y \in Y$).
- (3) Let G be a finite group, S a subgroup, and P a Sylow p-subgroup of S (for some prime p). Put $N(P;S) := \{g \in G \mid gPg^{-1} \subseteq S\}$. Observe that N(P;S) contains the identity element, is stable under left multiplication by $N_G(S)$ and under right multiplication by $N_G(P)$. In particular, it contains both $N_G(S)$ and $N_G(P)$. Show that $N(P;S) \subseteq SN_G(P)$, and thus in particular that $SN_G(P) = G$ if S is normal in G. Other consequences are derived in the next few items. (Hint: Suppose that $g^{-1}Pg \subseteq S$. Then $g^{-1}Pg$ is a Sylow-p subgroup of S, and, by Sylow's second theorem, there exists $s \in S$ such that $s^{-1}Ps = gPg^{-1}$, which means sg belongs to $N_G(P)$, and so $g = s^{-1}(sg) \in SN_G(P)$.)
- (4) Let G be a finite group and S a subgroup that contains the normaliser $N_G(P)$ of a Sylow-p subgroup P of S (not necessarily of G). Then P is not contained in any other conjugate of S. More strongly, if $P \subseteq gSg^{-1}$, then $g \in S$. Observe that this implies the following: S is its own normaliser. (Hint: Suppose that $P \subseteq gSg^{-1}$. Then $g^{-1}Pg \subseteq S$, and so, by item (3), $g^{-1} \in N(P;S) \subseteq$ $SN_G(P)$. But by the hypothesis that $N_G(P) \subseteq S$, it follows that $g^{-1} \in N(P:S) \subseteq S$.)
- (5) As already seen in item (4), a subgroup of a finite group that contains the normaliser of one of its (the subgroup's, not necessarily the whole group's) Sylow *p*-subgroups is its own normaliser. Observe that this is equivalent to saying: if a subgroup of a finite group is normal and contains the normaliser of one of its (the subgroup's) Sylow-*p* subgroups, then it is the whole group. (Hint: Let *P* be a Sylow-*p* subgroup of a subgroup *S* of a finite group *G*, and suppose that $S \supseteq N_G(P)$. If $N_G(S) \supseteq S$, then the second statement is violated if we take $N_G(S)$ to be the whole group. Conversely, if the second statement is violated, that is, if *S* is normal and proper, then the first statement is violated, since $N_G(S) = G \supseteq S$.)
- (6) Let G be a finite group, S a subgroup, and P a Sylow-p subgroup of S (not necessarily of G). Suppose that $N_G(P) \subseteq S$. Then, for any subgroup T of G containing S, we have $[T : S] \equiv 1 \mod P$. (Hint: May assume T = G without loss of generality. Consider the action of P on the set X = G/S. We have |X| = [G : S]. (Although we don't need this fact, observe that X may be identified with the conjugates of S since S is its own normaliser by item (5).) Since $|X| = |X^P| \mod p$, it is enough to show that P does not fix any coset gS of S other than S. Let PgS = gS. Then $Pg \subseteq gS$, and so $P \subseteq gSg^{-1}$. By item (4) we have $g \in S$, and so gS = S.)

7.1. Some standard applications of Sylow's theorems.

- (1) Prove that there are no simple groups of order 12, 21, 56, 72, or 96.
- (2) Any Sylow-11 subgroup of a group of order 231 is contained in the centre.

8. TUTORIAL 6A (VT 5)

- (1) Let V and W be vector spaces, V finite dimensional. The map $V^* \otimes W \to \text{Hom}(V, W)$ given by the following description is an isomorphism: the image of $\varphi \otimes w$ acting on v is $\varphi(v)w$. Describe the inverse of this map.
- (2) A conceptual description of trace: Let V be a finite dimensional vector space. We have the natural isomorphism End $V \simeq V^* \otimes V$. We also have the linear map $V^* \otimes V \to \mathbb{F}$ given by $\psi \otimes v \mapsto \psi(v)$, where \mathbb{F} is the underlying field. The composition End $V \to \mathbb{F}$ is the trace map.

9. TUTORIAL 6B (KNR1)

- (1) Let V and W be finite dimensional complex representations of a finite group G. Let χ_V and χ_W be their respective characters. Then
 - (a) $\chi_{V\oplus W} = \chi_V + \chi_W$.
 - (b) $\chi_{V^*} = \overline{\chi_V}$. (Hint: If *M* is the matrix of g_V with respect to a basis of *V*, then the matrix is M^* of g_{V^*} with respect to the dual basis of V^* .)
 - (c) $\chi_{V\otimes W} = \chi_V \chi_W$. (Hint: If $M = (m_{ii'})$ be the $m \times m$ matrix of g_V with respect to a basis $\{v_i\}$ of Vand $N = (n_{jj'})$ the $n \times n$ matrix of g_W with respect to a basis $\{w_j\}$ of W, then $M \otimes N$, defined to be the $mn \times mn$ matrix whose entry in position ij, i'j' is $m_{ii'}n_{jj'}$, is the matrix of $g_{V\otimes W}$ with respect to the basis $\{v_i \otimes w_j\}$ of $V \otimes W$.)
 - (d) $\chi_{\operatorname{Hom}(V,W)} = \overline{\chi_V}\chi_W$. (Hint: $\operatorname{Hom}(V,W) \simeq V^* \otimes W$ is a *G*-isomorphism; now use the previous two items.)
- (2) Let V and W be linear representations of a group G. Then $\text{Hom}(V, W)^G = \text{Hom}_G(V, W)$. (Proof: $g\varphi g^{-1} = \varphi \Leftrightarrow g\varphi = \varphi g$.)
- (3) Let $G = \{\pm 1\}$ be the subgroup of order two of the group of non-zero real numbers (under multiplication). Consider the action of G on \mathbb{R} by left multiplication, and the "induced" (or "derived") action on real functions on \mathbb{R} : $gf(x) := f(g^{-1}x)$. A function f(x) is G-invariant if and only if it is even. The "average" of a general function f(x) is (f(x) + f(-x))/2, which is always even.

10. TUTORIAL 6B (KNR 1) CONTINUED

(1) Recall the following from an early lecture by SV. Let $\rho : G \to GL(V)$ be a finite dimensional complex representation of a finite group G. Then, for any element g of the group G, the linear transformation $\rho(g)$ is diagonalizable. (Hint: If n is such that $g^n = 1$, then $\rho(g)$ satisfies the equation $X^n - 1 = 0$, which means that its minimal polynomial divides $X^n - 1$, which has distinct roots.) In fact, $\rho(g)$ can be represented by a diagonal matrix each of whose diagonal entry is a complex root of unity.

Caveat: While each $\rho(g)$ is by itself diagonalizable, this does not mean that we can necessarily simultaneously diagonalize all of them. In fact, $\rho(g)$ are simultaneously diagonalizable if and only if they all commute with one another.

Prove the following using the above ideas:

- (a) Any irreducible complex representation of a finite abelian group is one dimensional.
- (b) Let χ_V be the character of a finite dimensional complex representation of a finite group *G*. Then:
 - (i) $|\chi_V(g)| \leq \dim_{\mathbb{C}} V$ for every $g \in G$, and equality holds if and only if g acts on V as multiplication by a scalar (complex number).
 - (ii) $\chi_V(g)$ is an integer if it is rational. (Hint: Diagonalize the linear transformation g_V . It is then clear that $\chi(g)$ is a sum of complex roots of unity. As such, it is an algebraic integer. But only the integers among rationals are algebraic integers.)
- (c) The centre of a finite group G consists of those elements g for which $|\chi_V(g)| = \chi_V(1) = \dim_{\mathbb{C}} V$ for every finite dimensional complex irreducible representation V of G.
- (2) The purpose of this exercise is to illustrate that ideas about finite group actions on sets can be applied to representations. Let G be a p-group and V a finite dimensional linear representation of G over a finite field of characteristic p. If V is non-zero, then there exists a non-zero vector v in V that is left invariant by G, that is, gv = v for all g in G. (Hint: $|V| = |V^G| \mod p$.)

11. TUTORIAL 7A (GT 1)

In what follows, R denotes a ring with identity, not necessarily commutative.

- (1) (Examples of division rings) Quaternions $\mathbb{H} = \{a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \mid a, b, c, d \in \mathbb{R}; \mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{ijk} = -1\}$ form a division ring. We could take the coefficients to range over some subfield of \mathbb{R} (e.g., \mathbb{Q}) rather than over all of \mathbb{R} , to get other division rings.
- (2) Suppose that every non-zero element of R has a left (multiplicative) inverse. Then every non-zero element of R has a two-sided inverse. (Hint: Let b be a left inverse of a, and c a left inverse of b. Then $c = c \cdot 1 = c(ba) = (cb)a = 1 \cdot a = a$. Thus a is a left inverse of b, which is the same thing as saying b is a right inverse of a.)
- (3) The matrix ring $M_n(D)$ (*n* is a positive integer) over a division ring D is a simple ring.
- (4) Let R_{ℓ} denote R considered as a left module over itself. Show that R_{ℓ} is a simple module if and only if R is a division ring.
- (5) Schur's Lemma:
 - A non-zero R-module homomorphism $M \to N$ between simple R-modules is an isomorphism. In particular, $\operatorname{End}_R(M)$ is a division ring for M a simple R-module.
 - Suppose that a finite dimensional \mathbb{C} -algebra A is a division ring. Show that A must be \mathbb{C} itself (more precisely, the ring homomorphism $\mathbb{C} \to A$ that defines A as a \mathbb{C} -algebra is an isomorphism onto A).
 - Deduce the following: if R is a \mathbb{C} -algebra and M a finite dimensional simple R-module, then $\operatorname{End}_{R}(M)$ consists only of homotheties.
- (6) Every two sided ideal of $M_n(R)$ has the form $M_n(I)$ for some unique two sided ideal I of R.
- (7) For D a division ring, $M_n(D)$ is a direct sum of n minimal left ideals.
- (8) Any simple module is cyclic. Is the coverse true?
- (9) Determine all simple \mathbb{Z} -modules.
- (10) Any simple module is indecomposable. How about the converse?

12. TUTORIAL 7B (KNR 2)

(1) Given a group homomorphism $\rho: G \to GL_n(\mathbb{R})$ of a finite group G, show that there exists an element P in $GL_n(\mathbb{R})$ such that $P\rho(g)P^{-1}$ is, for every g in G, an orthogonal $n \times n$ matrix.

13. TUTORIAL 8A (GT 2)

- (1) Is the zero module simple? Is it semisimple?
- (2) Every submodule of a semisimple module has a complement. Is it (the complement) unique?
- (3) Submodules and quotient modules of semisimple modules are semisimple.
- (4) What are all the semisimple \mathbb{Z} -modules?
- (5) Write down all composition series for the cyclic abelian group $\mathbb{Z}/6\mathbb{Z}$.
- (6) Write down all composition series for the cyclic abelian group $\mathbb{Z}/n\mathbb{Z}$.
- (7) Any simple $M_n(D)$ -module (where D is a division ring) is isomorphic to D^n .

14. TUTORIAL 8A (GT 2) CONTINUED

Let R be an (assoicative) algebra over a field k, and let M be a finite dimensional (left) R-module.

- (1) Example of a simple module that does not occur as a submodule of the ring (as a left module over itself). Recall that every simple module occurs as the quotient of the ring (as a left module over itself). Let A be the subalgebra of $M_2(\mathbb{C})$ consisting of the upper triangular matrices. Let I be the left ideal of A consisting of those matrices whose second row is identically zero. Show that A/I is a simple A-module and that there is no submodule of A that is isomorphic to A/I.
- (2) A sequence 0 = M₀ ⊊ M₁ ⊊ M₂ ⊊ ... ⊊ M_{k-1} ⊊ M_k = M of submodules such that each quotient M_j/M_{j-1} is simple (for 1 ≤ j ≤ k) is said to be a composition series. Such a sequence always exists (because of the finite dimensionality of M). We call k the length of the composition series and the collection (with multiplicity) of (the isomorphism classes of) simple modules {M_j/M_{j-1} | 1 ≤ j ≤ k} the composition factors.
- (3) (Jordan Hölder Theorem) The length of any composition series and the composition factors in it depend only upon M and not on the particular composition series. (Hint: Proceed by induction on the dimension of M.)

15. TUTORIAL 8B (KNR 3)

- (1) Let G be a finite group. Let V_1, V_2, \ldots be a complete list of representatives of isomorphism classes of irreducible representations, and let χ_1, χ_2, \ldots be their respective characters. Let V be a finite dimensional complex representation. Suppose that a decomposition of V as a direct sum of irreducible representations is given. Let m_1, m_2, \ldots be the numbers of the summands that are isomorphic respectively to V_1, V_2, \ldots . Use the orthonormality of χ_1, χ_2, \ldots to show the following:
 - (a) the numbers m_1, m_2, \ldots depend only upon V and not upon the particular decomposition as a direct sum of irreducibles. In fact, $m_j = \langle \chi_V, \chi_j \rangle$, and so is determined by χ_V .
 - (b) Characters determine representations: that is, two representations that have the same character are isomorphic. (Hint: This follows from the previous item.)
 - (c) $\langle \chi_V, \chi_V \rangle = m_1^2 + m_2^2 + \cdots$. In particular, V is irreducible if and only if $\langle \chi_V, \chi_V \rangle = 1$.
 - (d) The number of isomorphism classes of irreducible representations is at most the number of conjugacy classes. (In particular, the list V_1, V_2, \ldots is finite.) Note: In fact, equality holds since χ_1, χ_2, \ldots span the space of class functions on G as we have further shown.
- (2) Fix notation as in the previous item. Deduce from Schur's lemma that, for a complex finite dimensional representation V' of G, dim Hom_G(V, V') = m₁m'₁ + m₂m'₂ + ··· , where m'_j := ⟨χ_{V'}, χ_j⟩.
- (3) (Decomposition of the left regular representation) Fix notation as in item (1) above. Let Λ denote the left regular representation of *G* and χ_{Λ} its character.
 - (a) $\chi_{\Lambda}(g) = 0$ unless g = 1, and $\chi_{\Lambda}(1) = |G|$.
 - (b) $\langle \chi_{\Lambda}, \chi_j \rangle = \dim V_j$. Thus each irreducible representation V_j occurs in Λ with multiplicity dim V_j .
- (4) Let G be a finite group and V a finite dimensional complex representation. Then $\chi_V(1) = \dim V$, where χ_V is the character of V.
- (5) Let G be a finite group¹ and $\mathbb{C}G$ the group ring of G with complex coefficients. The purpose of this exercise is to show that a complex representation of G is nothing more and nothing less than a $\mathbb{C}G$ -module V. Thus ideas and constructs from ring and module theory can be brought to bear upon questions about representations.
 - Recall that a complex vector space V is said to be a $\mathbb{C}G$ -module if there exists a \mathbb{C} -algebra homomorphism $\rho : \mathbb{C}G \to \operatorname{End}_{\mathbb{C}}(V)$. Since elements of G (identified with their canonical images in $\mathbb{C}G$) are units in $\mathbb{C}G$, their images $\rho(g), g \in G$, are units in $\operatorname{End}_{\mathbb{C}}(V)$. Thus, restricting ρ to G, we get a map $G \to GL(V)$. This is moreover a group homomorphism.
 - Conversely, suppose we are given a linear representation $\rho: G \to GL(V)$ of G on a complex vector space V. Then, by a linear extension, we get a homomorphism $\mathbb{C}G \to \operatorname{End}_{\mathbb{C}}(V)$ of vector spaces. This is moreover an algebra homomorphism.
 - The space $\operatorname{Hom}_G(V, W)$ of *G*-homomorphisms between two complex representation spaces *V* and *W* of *G* is the same as the space $\operatorname{Hom}_{\mathbb{C}G}(V, W)$ of $\mathbb{C}G$ -module homomorphisms when we think of *V* and *W* as $\mathbb{C}G$ -modules.
- (6) Let G be a finite group and c the number of its conjugacy classes. Let C₁, ..., C_c be all the conjugacy classes in G. The elements χ_i, 1 ≤ i ≤ c, where χ_i = ∑_{g∈Ci} g, form a basis for the centre of CG. (Hint: h_{χi}h⁻¹ = ∑_{g∈Ci} hgh⁻¹ = ∑_{g∈Ci} g.) Thus the centre of the group ring CG has dimension c as a complex vector space. An element ∑_{g∈G} f(g)g in CG belongs to the centre if and only if f is a class function on G.

¹The assumption here of finiteness of G is not really necessary.

16. TUTORIAL 9A (GT 3)

- (1) Let R_{ℓ} denote R considered as a left module over itself. Show that $\operatorname{End}_{R} R_{\ell}$ is isomorphic as a ring to R^{opp} , where R^{opp} is the opposite ring of R.
- (2) M_n(R)^{opp} = M_n(R^{opp}), for any ring R.
 (3) A semisimple ring (not necessarily a finite dimensional algebra over a field) admits only finitely many isomorphism classes of simple modules.

17. TUTORIAL 9B (KNR 4)

(1) Let G be a group and X a set with a G-action. We denote by $\mathbb{C}X$ the free \mathbb{C} -vector space with X as basis and by $\mathbb{C}[X]$ the \mathbb{C} -vector space of functions on X with values in \mathbb{C} . (Recall that both these are representations of G: the action of G on $\mathbb{C}X$ is obtained by extending linearly the action on X; the action on $\mathbb{C}[X]$ is given by the following: $(fg)(x) = f(g^{-1}x)$ for f in $\mathbb{C}[X]$, g in G, and x in X.) For x in X, let δ_x denote the function on X that takes value 1 on x and 0 elsewhere.

Assume that *X* is finite. Verify the following:

- (a) The map $x \mapsto \delta_x$ defines a *G*-linear isomorphism between the *G*-spaces $\mathbb{C}X$ and $\mathbb{C}[X]$. (What happens if the finiteness assumption on X is removed?)
- (b) For $g \in G$, the value $\chi_{\mathbb{C}X}(g)$ at g of the character $\chi_{\mathbb{C}X}$ of $\mathbb{C}X$ is $|X^g|$.
- (c) $\mathbb{C}[X]_0 := \{f \in K[X] \mid \sum_{x \in X} f(x) = 0\}$ is a *G*-invariant subspace of $\mathbb{C}[X]$. Evidently, constant functions span a one dimensional *G*-invariant subspace of $\mathbb{C}[X]$. These two subspaces are complementary.
- (2) Let G be a finite group and V, V' finite dimensional complex representations of G.
 - (a) V is called *self dual* if it is isomorphic (as a representation) to its dual V^* . Observe that V is self dual if and only if its character takes only real values.
 - (b) dim $V^G = \dim (V^\star)^G$
 - (c) dim $\operatorname{Hom}_G(V, V') = \langle \chi_V, \chi'_V \rangle$

18. TUTORIAL 10A (GT4)

- (1) Let G be a finite group and consider the left regular representation on $\mathbb{C}G$ of G. The elements of G form a basis for $\mathbb{C}G$. The action of each element of G with respect to this basis is represented by a permutation matrix. Write these matrices down explicitly when G is the cyclic group of three elements and when G is the Klein four group.
- (2) Let G be the subgroup of \mathfrak{S}_5 generated by a 5-cycle. Let $X = \{1, 2, 3, 4, 5\}$ and consider the restriction to G of the defining action of \mathfrak{S}_5 on $\mathbb{C}X$. Prove that $\mathbb{C}X$ is isomorphic as a G-representation to the left regular representation of G.
- (3) Let G be the subgroup of the symmetric group \mathfrak{S}_4 generated by (12) and (34). Let $X = \{1, 2, 3, 4\}$ and consider the restriction to G of the defining action of \mathfrak{S}_4 . Is $\mathbb{C}X$ isomorphic as a G-representation to the left regular representation of G?

19. TUTORIAL 10B (KNR 4)

- (1) For X a finite G-set, $\dim(\mathbb{C}X^G)$ equals the number of G-orbits in X.
- (2) Let *G* be a group and *X*, *Y* be *G*-sets. Consider the following "integration along the fiber" map:

$$T: \ \mathbb{C}[X \times Y] \to \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}X, \mathbb{C}[Y]), \quad k(x, y) \mapsto T_k, \text{ where } T_k(\sum_{x \in X} f(x)x)(y) := \sum_{x \in X} f(x)k(x, y)$$

The summation makes sense since the function f(x) on X has finite support. Show that:

- (a) *T* is linear map of vector spaces.
- (b) T is one-to-one. (Hint: k(x, y) can be recovered from its image T_k . Indeed $k(x, y) = T_k(x)(y)$.)
- (c) T is onto. (Hint: For x_0 in X and y_0 in Y, let F_{x_0,y_0} be the linear function from $\mathbb{C}X$ to $\mathbb{C}[Y]$ that maps x_0 to δ_{y_0} and remaining x to 0. It is enough to show that F_{x_0,y_0} belongs to the image of T, for any choice of x_0 and y_0 . Now check that T maps δ_{x_0,y_0} to F_{x_0,y_0} .)
- (d) Check that T commutes with the action of G on either side.
- (e) Conclude that $\mathbb{C}[X \times Y]^G \simeq \operatorname{Hom}_G(\mathbb{C}X, \mathbb{C}[Y])$.
- (f) (Intertwining Number Lemma) Now suppose that X and Y are finite. Conclude that $\dim \operatorname{Hom}_G(\mathbb{C}X, \mathbb{C}[Y])$ equals the number of G-orbits in $X \times Y$. (Hint: Use the previous item of this exercise and the previous exercise.)
- (3) Let *n* be a natural number. For *i* a non-negative integer, $i \le n$, let X_i denote the set of subsets of cardinality *i* of $[n] = \{1, 2, ..., n\}$. The defining action of the symmetric group \mathfrak{S}_n on [n] induces an action on X_i . Let *k* and ℓ denote non-negative integers $\le n$.
 - (a) The action of \mathfrak{S}_n on X_k is transitive.
 - (b) $X_k \simeq X_{n-k}$ as \mathfrak{S}_n -sets. (Hint: $S \leftrightarrow [n] \setminus S$.)
 - (c) Observe that two elements (S,T) and (S',T') in $X_k \times X_\ell$ are in the same \mathfrak{S}_n -orbit (for the diagonal action on $X_k \times X_\ell$) if and only if $|S \cap T| = |S' \cap T'|$.
 - (d) Conclude from the previous item that, for $0 \le k, l \le n/2$, the number of *G*-orbits in $X_k \times X_\ell$ equals $\min\{k, \ell\} + 1$.
 - (e) Use the previous item and the intertwining number lemma (previous exercise) to conclude, for $0 \le k, \ell \le n/2$, that $\dim \operatorname{Hom}_{\mathfrak{S}_n}(\mathbb{C}X_k, \mathbb{C}X_\ell) = \min\{k, \ell\} + 1$. (Hint: $\mathbb{C}Y \simeq \mathbb{C}[Y]$ as *G*-representations, as was seen in an earlier tutorial problem.)
- (4) (Alternative proof of the intertwining number lemma, using the orbit counting lemma) Let X and Y be finite sets with actions of a finite group G. Then

$$\dim \operatorname{Hom}_{G}(\mathbb{C}X, \mathbb{C}[Y]) = \langle \chi_{\mathbb{C}X}, \chi_{\mathbb{C}[Y]} \rangle \quad \text{(since } \dim \operatorname{Hom}_{G}(V, V') = \langle \chi_{V}, \chi_{V'} \rangle, \text{ as seen earlier)}$$

$$= \frac{1}{|G|} \sum_{g \in G} \overline{\chi_{\mathbb{C}X}(g)} \chi_{\mathbb{C}[Y]}(g) \quad \text{(definition of the inner product)}$$

$$= \frac{1}{|G|} \sum_{g \in G} \chi_{\mathbb{C}X}(g) \chi_{\mathbb{C}Y}(g) \quad (\chi_{\mathbb{C}X}(g) \text{ is an integer and } \mathbb{C}Y \simeq \mathbb{C}[Y])$$

$$= \frac{1}{|G|} \sum_{g \in G} |X^{g}| \cdot |Y^{g}| \qquad (\chi_{\mathbb{C}X}(g) = |X^{g}|)$$

$$= \frac{1}{|G|} \sum_{g \in G} |(X \times Y)^{g}| \quad (G \text{ acts diagonally on } X \times Y)$$

$$= \text{number of } G \text{-orbits in } X \times Y \quad \text{(orbit counting lemma)}$$

20. TUTORIAL 11A (GT 5)

- (1) Prove that if a finite group admits a faithful irreducible representation, then its centre is cyclic.
- (2) Let g be a generator of the cyclic group G of order 3. Verify that g mapping to the matrix $\begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ defines a complex representation of G. Decompose the representation into irreducibles.
- (3) (Wedderburn decomposition) Let G be the Klein four group. Write the group ring $\mathbb{C}G$ as the direct product of four one dimensional subalgebras.

21. TUTORIAL 11B (KNR 6)

- (1) Enumerate all SSYT of shape 5 + 3 and type 3 + 3 + 2. How many of them are there?
- (2) Let $\lambda : \lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_l \ge 1$ and $\mu : \mu_1 \ge \mu_2 \ge \ldots \mu_m \ge 1$ be two partitions of a positive integer *n*. Let X_{λ} (respectively X_{μ}) be the collection of set partitions of $[n] = \{1, 2, \ldots, n\}$ of type λ (respectively μ). Two elements (\mathbb{S}, \mathbb{T}) and $(\mathbb{S}', \mathbb{T}')$ of $X_{\lambda} \times X_{\mu}$ are in the same orbit of \mathfrak{S}_n if and only if $|S_i \cap T_j| = |S'_i \cap T'_j|$ for every $1 \le i \le l$ and $1 \le j \le m$, where \mathbb{S} denotes the set partition $S_1 \sqcup \cdots \sqcup S_l = [n]$ with $|S_i| = \lambda_i$ and $\mathbb{T} = T_1 \sqcup \ldots \sqcup T_m = [n]$ with $|T_j| = \mu_j$.

Denote by $\mathbb{M}_{\lambda\mu}$ the set of non-negative integer matrices of size $l \times m$ with row sums being $\lambda_1, \ldots, \lambda_l$ and column sums being μ_1, \ldots, μ_m . Denote by $M_{\lambda\mu}$ the cardinality of $\mathbb{M}_{\lambda\mu}$. From the intertwining number lemma and the observation above about the *G*-orbits in $X_{\lambda} \times X_{\mu}$, deduce that $M_{\lambda\mu} = \dim \operatorname{Hom}_G(\mathbb{C}X_{\lambda}, \mathbb{C}Y_{\mu})$.

22. TUTORIAL 12A (GT 6)

Some suggested references:

- Karin Erdmann: Representations of Algebras
- Bruce Sagan: Representations of symmetric groups
- Gordon James and Martin Liebeck: Representations of finite groups
- (1) For a finite group G, the number of one dimensional representations is equal to the order of G/G', where G' is the commutator subgroup of G. Given that the alternating group A_n is the commutator subgroup of \mathfrak{S}_n , it follows that \mathfrak{S}_n has exactly two irreducible one dimensional representations. These are the trivial and sign representations.
- (2) How many irreducible representations (up to isomorphism) does A_4 have? What are their dimensions? Find the Wedderburn decomposition as a product of matrix rings of $\mathbb{C}A_4$. (Hint: The commutator subgroup of A_4 is {identity, (12)(34), (13)(24), (14)(23)}. So there are three one dimensional representations.)
- (3) Suppose that a finite group G has an abelian normal subgroup N. Then any irreducible representation of G has dimension bounded by |G/N|. Observe that this implies that the irreducible representations of dihedral groups D_n are at most two dimensional. Work out the Wedderburn decomposition of the dihedral group D_{10} of order 10.
- (4) What is the Wedderburn decomposition of $\mathbb{C}S_3$?
- (5) Let A = k[X]/(f), where $f \in k[X]$ is the product $f_1 \cdots f_r$ of distinct irreducible monic polynomials f_1, \ldots, f_r . Then the Wedderburn decomposition of the semisimple algebra A is the isomorphism $A \simeq k[x]/(f_1) \times \cdots \times k[x]/(f_r)$ given by the Chinese Remainder Theorem.
- (6) The Wedderburn decomposition of the group ring kC_n of the cyclic group C_n of order n with coefficients in a field k is given by the decomposition of the previous item taking f to be the polynomial $f(x) = x^n 1$.
- (7) The Wedderburn decomposition of $\mathbb{R}C_3$ is given by $\mathbb{R}C_3 \simeq \mathbb{R}[X]/(x-1) \times \mathbb{R}[x]/(x^2+x+1) \simeq \mathbb{R} \times \mathbb{C}$.
- (8) Does there exist a finite group G such that the Wedderburn decomposition of $\mathbb{C}G$ has the following form?
 - (a) $M_2(\mathbb{C})$
 - (b) $\mathbb{C} \times M_2(\mathbb{C})$
 - (c) $\mathbb{C} \times \mathbb{C} \times M_2(\mathbb{C})$

23. TUTORIAL 12B (KNR 7)

Let $\lambda : \lambda_1 \ge \ldots \lambda_l \ge 1$ and $\mu : \mu_1 \ge \ldots \ge \mu_1 \ge 1$ be partitions of n. The set of semi-standard Young tableaux of shape λ and type μ is denoted by $\mathbb{K}_{\lambda\mu}$, and the cardinality of $\mathbb{K}_{\lambda\mu}$ by $K_{\lambda\mu}$. Observe the following:

- (1) $K_{\lambda\lambda} = 1$.
- (2) Let $\mu = 1 + 1 + \dots + 1$ (*n* times). Then $\mathbb{K}_{\lambda\mu}$ is the set of standard Young tableaux of shape λ (each filled with numbers 1, ..., n, each used exactly once) and $K_{\lambda\mu}$ is their number.
- (3) $K_{\lambda\mu} \neq 0$ implies that λ dominates μ , that is, $l \leq m$ and $\lambda_1 + \cdots + \lambda_j \geq \mu_1 + \cdots + \mu_j$ for every $1 \le j \le l$. (The converse is also true, but it takes some proving.)
- (4) Consider the total order—which for lack of a better term we call the *lexicographic order*—on partitions of n defined by: $\lambda \leq \mu$ if $\lambda_j > \mu_j$ for the least $j, j \geq 1$, such that $\lambda_j \neq \mu_j$. Observe that $\lambda \leq \mu$ if λ dominates μ . So, by the previous item, $\lambda \leq \mu$ if $K_{\lambda\mu} \neq 0$.
- (5) We define a square matrix K with non-negative integer entries as follows. Its rows and columns are both indexed by partitions arranged in increasing lexicographic order. The entry in the row corresponding to λ and the column corresponding to μ is $K_{\lambda\mu}$. Observe that:0
- K is an upper triangular non-negative integer matrix; its diagonal entries are all 1.
- (6) Recall the statement of the RSK correspondence. Solution: There is a bijection:

$$\mathbb{M}_{\lambda\mu} \simeq \sqcup_{\nu \vdash n} \mathbb{K}_{\nu\lambda} \times \mathbb{K}_{\nu\mu}$$

Here $\mathbb{M}_{\lambda\mu}$ denotes the set of non-negative integer matrices of size $l \times m$ with row sums being $\lambda_1, \ldots, \lambda_l$ and column sums being μ_1, \ldots, μ_m . Since $\mathbb{K}_{\nu\lambda}$ is empty unless $\nu \leq \lambda$ and $\mathbb{K}_{\nu\mu}$ is empty unless $\nu \leq \mu$, the disjoint union on the right may well be taken only over those ν such that $\nu \leq \lambda$ and $\nu \leq \mu$.

- (7) Let A be the diagonal $l \times l$ matrix with diagonal entries $\lambda_1, \ldots, \lambda_l$. Which ordered pair of SSYTs is attached to A by the RSK correspondence?
- (8) Let T be the SSYT of shape λ with all entries in row j being j (for all j). Identify the $l \times l$ square matrix that is mapped by the RSK correspondence to the ordered pair (T, T).
- (9) Observe that if A in $\mathbb{M}_{\lambda\mu}$ is mapped to (S,T) by the RSK correspondence, then A^t in $\mathbb{M}_{\mu\lambda}$ is mapped to (T, S).
- (10) Let $M_{\lambda\mu}$ denote the cardinality of $\mathbb{M}_{\lambda\mu}$ (defined in the solution to the previous item). We define a square matrix M with non-negative integer entries as follows. Its rows and columns are both indexed by partitions arranged in increasing lexicographic order. The entry in the row corresponding to λ and the column corresponding to μ is $M_{\lambda\mu}$. Deduce from the RSK correspondence that:

$$M = K^{t}K$$
 where K is the matrix defined in item (5) above

(11) Let p be the number of partitions of n. Let C' be the $p \times 1$ matrix described as follows: the rows of C' are indexed by partitions arranged in increasing lexicographic order, and the entry in the row indexed by λ is the character of $\mathbb{C}X_{\lambda}$. By item (2) of Tutorial 11B, we have

$$\langle C'_{\lambda}, C'_{\mu}
angle = \langle C'_{\mu}, C'_{\lambda}
angle = \dim \operatorname{Hom}_{G}(\mathbb{C}X_{\lambda}, \mathbb{C}X_{\mu}) = M_{\lambda\mu} \quad \text{ or more succinctly } \langle C', C'^{t}
angle = M_{\lambda\mu}$$

Put $C = (K^t)^{-1}C'$. Observe that $(K^t)^{-1}$ is a lower triangular integer matrix (with possibly negative integers below the diagonal) with all diagonal entries equal to 1. Each entry of C is an integral linear combination of irreducible characters (since C' has this property). Moreover, we have the following (using the fact that $M = K^t K$ from item (10) above):

$$\begin{split} \langle C, C^t \rangle &= \langle (K^t)^{-1}C', C'^t K^{-1} \rangle = (K^t)^{-1} \langle C', C'^t \rangle K^{-1} \\ &= (K^t)^{-1} M K^{-1} = (K^t)^{-1} (K^t K) K^{-1} = \text{Identity}_{p \times} \end{split}$$

Thus the entries of C are the irreducible characters possibly up to a sign factor. But since C'_{λ} is a character, and $\langle C'_{\lambda}, C_{\lambda} \rangle = \langle (K^t C)_{\lambda}, C_{\lambda} \rangle = \sum K_{\mu\lambda} \langle C_{\mu}, C_{\lambda} \rangle = K_{\lambda\lambda} = 1$, it follows that the entries of ${\it C}$ are precisely the irreducible characters (not just up to sign).

Let V_{λ} denote the complex irreducible representation of \mathfrak{S}_n with character C_{λ} .

(12) (Young's rule) Show that $\mathbb{C}X_{\lambda} = \sum_{\mu \vdash n} V_{\mu}^{\oplus K_{\mu\lambda}}$. (Hint: From $C' = K^t C$, we obtain $C'_{\lambda} = \sum_{\mu} K_{\mu\lambda} C_{\mu}$, which, since characters determine representations, means $\mathbb{C}X_{\lambda} = \sum_{\mu} V_{\mu}^{\oplus K_{\mu\lambda}}$)

- (13) Deduce from Young's rule that the dimension of the irreducible representation V_λ equals the number (denoted by f^λ) of the number of standard Young tableaux of shape λ (filled with numbers 1, ..., n, each used exactly once). (Hint: Put λ = 1 + 1 + ... + 1 (n times). Then CX_λ is the regular representation of S_n. By Young's rule the multiplicity of V_μ in CX_λ equals K_{μλ}. But K_{μλ} equals f^μ, and any irreducible representation occurs exactly as many times as its dimension in the regular representation.)
- (14) Deduce that $n! = \sum_{\lambda \vdash n} (f^{\lambda})^2$. (Hint: We know that the order of a finite group equals the sum of the squares of the dimensions of its irreducible representations. Apply this to \mathfrak{S}_n and use items (11) and (13) above.)
- (15) The RSK correspondence restricted to permutation matrices gives a bijection onto ordered pairs of standard Young tableaux of the same shape. In particular, we obtain a combinatorial proof of the identity of item (14). (Hint: Put $\lambda = \mu = 1 + 1 + \dots + 1$ (*n* times). Then $\mathbb{M}_{\lambda\mu}$ is the set of all $n \times n$ permutation matrices, and $\mathbb{K}_{\nu\lambda} = \mathbb{K}_{\nu\mu}$ is the set of all standard Young tableaux of shape ν .)