
1. TUTORIAL 1A (VT 1)

Use ideas about group actions to prove (or disprove):
(1) If H and K are finite index subgroups of a group G, then so is H ∩K.
(2) For finite subgroups H and K of a group G, we have |HK| = |H|·|K|

|H∩K| .
(3) Let H be a subgroup of a group G which acts on a set X. The following are equivalent:

• H acts transitively on X.
• G acts transitively on X and G = HGx for every x in X.
• G acts transitively on X and G = HGx for some x in X.

(4) There is no transitive action of the alternating groupAn (with n ≥ 5) on a non-singleton set with
less than n elements. (Note that the natural action of An on the set {1, 2, . . . , n} is transitive
for n ≥ 3.) (Hint: Given a group homomorphism An → Sm with m < n, this cannot be injective for 2 < n,
which means the kernel is a non-trivial normal subgroup.)

(5) Which of the following occur as the class equation of a group of order 10?:
• 10 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
• 10 = 1 + 2 + 3 + 4
• 10 = 1 + 1 + 1 + 2 + 5
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2. TUTORIAL 1B (SV 1)

(1) By a linear character of a group G we mean a group homomorphism from G→ C?. Every linear
character of a group G factors through G/[G,G], where [G,G] is the commutator subgroup.
A perfect group (that is, one whose commutator subgroup is itself, e.g., a non-abelian simple
group) does not admit non-trivial linear characters.

(2) Let A be a finite abelian group and let ρ : A → GLC(V ) be a finite dimensional complex repre-
sentation. Show that there exists a basis of V each element of which is a common eigenvector
for the action of all elements of A. Show that this is not true if we drop the hypothesis that A is
abelian (in fact, for the symmetric group on three letters); show also that the statement is false
for real representations in place of complex representations (in fact, even for the cyclic group
of order three).
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3. TUTORIAL 2A (VT 2)

(1) Let X be a finite set on which a group G acts transitively, and N be a normal subgroup of G.
Then all N -orbits of X have the same cardinality.

(2) Let N be a normal subgroup of a group G that acts on a set X. Then there is a natural action
of the quotient group G/N on XN := {x ∈ X|nx = x ∀ n ∈ N}.

(3) Any normal subgroup of a finite p-group intersects the centre of the group non-trivially.
(4) Let X be a finite set on which there is a transitive action of a group G. If Y is any finite G-set

such that there is at least one G-map from Y to X, then the cardinality of X divides that of Y .
(5) Let Q8 denote the group {±1,±i,±j,±k} (where i, j, k are quaternions in the standard nota-

tion). By Cayley’s theorem, we have an embedding of Q8 into the symmetric group of S8. Show
that Q8 cannot be embedded into the symmetric group Sn for any n < 8. (Hint: Observe that {±1}
is a subgroup of Q8 that is contained in every non-trivial subgroup of Q8. So if Q8 has an action on any
set of less than 8 elements, then this subgroup stabilises every point.)

(6) Suppose that the centre of group has finite index. Then the cardinality of any conjugacy class
divides that finite index.

(7) A finite group has exactly two conjugacy classes. What can you say about it?
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4. TUTORIAL 2B (SV 2)

(1) Every irreducible representation of a finite p-group over a field of characteristic p is one dimen-
sional.
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5. TUTORIAL 3A (VT 3)

(1) A normal p-subgroup of a finite group is contained in every Sylow p-subgroup.
(2) Consider the left action of a group (not necessarily finite) on itself and the induced action on

the power set of the group. Observe that any subset S of the group is the union of (some) right
cosets of its stabiliser. [Note: this observation is relevant to the proof of Sylow’s existence theorem that
was discussed in the lecture.]

(3) Given a non-singleton conjugacy class of a finite group G, there exists an element that does not
commute with any element in the conjugacy class.

(4) If H is a finite index subgroup of a group G, then G is not the union of the conjugates of H.
(5) This shows that we cannot drop the hypothesis about H being of finite index in the previous

item. Let G = GLn(C) (for some integer n ≥ 2), and H be the subgroup of G consisting of
invertible upper triangular matrices. Show that G is a union of conjugates of H.

(6) This gives an alternative proof of the existence of Sylow p-subgroups.
(a) Show from first principles that, for a group G and a subgroup H, if G has a Sylow p-

subgroup (for some prime p), then so does H. In fact, show more precisely the following:
given a Sylow p-subgroup Q of G, the intersection of H with some conjugate of Q is a
Sylow p-subgroup of H.

(b) Use item (a) to give an alternative proof of the existence of Sylow p-subgroups. (Hint: Given
a finite group G of order n, we have G ↪→ Sn by Cayley, where Sn denotes the symmetric group
on n letters. Given a prime p, we can embed Sn further in GLn(Fp). Now GLn(Fp) has a Sylow
p-subgroup, e.g., the subgroup consisting of unipotent upper triangular matrices.)
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6. TUTORIAL 3B (SV 3)

(1) Let χ : A → C∗ be a non-trivial character of a finite group A. Show that
∑
a∈A χ(a) = 0. (Hint:

Choose b in A such that χ(b) 6= 1. Then
∑
a∈A χ(a) =

∑
a∈A χ(ab) =

∑
a∈A χ(a)χ(b) =

(∑
a∈A χ(a)

)
χ(b),

and so
∑
a∈A χ(a) = 0.)

(2) Let A be any group, not necessarily finite, and let F be a field. Write F [A] for the F -vector
space of all functions from A to F . Recall that Hom(A,F×) denotes the group of all homomor-
phisms from A to the multiplicative group F× of nonzero elements of F . Note that elements of
Hom(A,F×) are functions on A valued in F , and hence Hom(A,F×) ⊂ F [A]. Show: Hom(A,F×)
is a linearly independent subset of F [A].
Hint: Suppose not. Write a relation of linear independence of the form c1χ1 + · · · + cnχn = 0,
where ci 6= 0 for all i, where the χi are distinct, and where n is the smallest possible for such
a relation. This means c1χ1(a) + · · · + cnχn(a) = 0 for all a ∈ A, and hence also for a replaced
by ab with a, b ∈ A. Since χ1 6= χ2, take b such that χ1(b) 6= χ2(b). Now you have two equations,
manipulate them to eliminate χ1 and get a nontrivial relation of linear dependence with at
most n− 1 terms, to obtain a contradiction.
Note: The fact asserted in this question is the well-known ‘linear independence of characters’.

(3) Let A be a finite abelian group.
(a) Suppose a ∈ A. Show:∑
χ∈Hom(A,C×)

χ(a) =

{
|Hom(A,C×)|, if a = e, where e is the identity element of A, and
0, if a 6= e.

Hint: For the case a 6= e, use the structure theorem for finite abelian groups to get that
there exists χ0 ∈ Hom(A,C×) with χ0(a) 6= 1. Show that the left-hand side of the above
equation remains unchanged on multiplying with χ0(a). Why does that force the left-hand
side to be zero?

(b) Suppose a0 ∈ A. Show that the function on A given by:

δa0 :=
1

|Hom(A,C×)|
∑

χ∈Hom(A,C×)

χ(a0)−1χ,

namely the function defined by

δa0(a) =
1

|Hom(A,C×)|
∑

χ∈Hom(A,C×)

χ(a0)−1χ(a),

is given by:

δa0(a) =

{
1, if a = a0, and
0, otherwise.

Hint: Use part (a).
(c) Conclude from (b) that Hom(A,C×) ⊂ C[A] is a spanning set of the C-vector space C[A].
(d) Conclude from problems 1 and 2(c) that Hom(A,C×) ⊂ C[A] is a basis of the C-vector space

C[A] (and thence also that |A| = |Hom(A,C×)|).
Note: We discussed the inner product on C[A]:

〈f1, f2〉 =
1

|A|
∑
a∈A

f1(a)f2(a),

and the fact that Hom(A,C×) is an orthonormal set for this inner product. Thus, from the
above problems it follows that Hom(A,C×) is an orthonormal basis for this inner product.
Moreover, each of these elements spans an irreducible subrepresentation of C[A] for the
left (or right) regular action.

(4) Suppose ρ : G→ GLn(C) = GLC(Cn) be a complex representation of a group G. Thus, for every
g ∈ G, ρ(g) is an n × n matrix. Let rij(g) denote the (i, j)-th entry of ρ(g). Each rij is then a
function from G to C, g 7→ rij(g); in other words, rij ∈ C[G].

6



Show using matrix multiplication and the fact that ρ is a homomorphism: if ρlreg denotes the
left regular representation of G on C[G], then for all h ∈ G:

ρlreg(h)(rij) =

n∑
k=1

rik(h−1) · rkj .

Conclude that the span of all the rij is a G-invariant subspace of (C[G], ρlreg).
Prove the analogous assertions for the right regular representation ρrreg of G on C[G] and the
regular representation ρreg of G×G on C[G].

(5) Let (V, ρ) be a representation of a finite group G, over a field F .
(a) Let W ⊂ V be a finite dimensional vector subspace, and set:

W ′ = the F -linear span of {π(g)w | g ∈ G,w ∈W}.
Show that W ′ is a G-invariant subspace of V that contains W , of dimension at most |G| ·
dimF W .

(b) If W ′′ is any G-invariant subspace of V that contains W , show that W ′′ contains W ′.
(c) Using (a) or otherwise, show that every irreducible representation of a finite group is finite

dimensional.
Note: (b) tells us that W ′ can be thought of as ‘the’ (and not just ‘a’) smallest G-invariant
subspace of V containing W . W ′ is said to be the G-invariant subspace of V generated by W .

(6) This gives a representation theoretic proof of the Cauchy-Frobenius-Burnside orbit counting
lemma:
(a) Suppose that V is a finite dimensional complex representation of a finite group G defined

by ρ : G→ GL(V ). Let V G be the subspace consisting of the points of V that are fixed by G.
Show that the following endomorphism of V defines a G-projection onto the subspace V G:

1

|G|
∑
g∈G

ρ(g)

(b) The trace of any projection to a subspace equals the dimension of the subspace.
(c) Let X be a finite set on which a group acts. Consider the the free complex vector space V

on X as a linear representation of G. Then the dimension of V G equals the number of
G-orbits in X. [Hint: First assume that the action of X is transitive and observe that V G is one
dimensional in this case.]

(d) Prove the Cauchy-Frobenius-Burnside orbit counting lemma using the three items above.
(7) If every irreducible complex representation of a finite group is one dimensional, then the group

is abelian.
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7. TUTORIAL 4A (VT 4)

(1) If there is exactly one Sylow p-subgroup of a finite group for every prime p, then the group is a
direct product of its Sylow p-subgroups.

(2) Let G act transitively on X and Y . The natural action of G on X × Y is transitive if and only if
GxGy = G for some x ∈ X and y ∈ Y (equivalently for every x ∈ X and y ∈ Y ).

(3) Let G be a finite group, S a subgroup, and P a Sylow p-subgroup of S (for some prime p). Put
N(P ;S) := {g ∈ G | gPg−1 ⊆ S}. Observe that N(P ;S) contains the identity element, is stable
under left multiplication by NG(S) and under right multiplication by NG(P ). In particular, it
contains both NG(S) and NG(P ). Show that N(P ;S) ⊆ SNG(P ), and thus in particular that
SNG(P ) = G if S is normal in G. Other consequences are derived in the next few items. (Hint:
Suppose that g−1Pg ⊆ S. Then g−1Pg is a Sylow-p subgroup of S, and, by Sylow’s second theorem, there
exists s ∈ S such that s−1Ps = gPg−1, which means sg belongs to NG(P ), and so g = s−1(sg) ∈ SNG(P ).)

(4) Let G be a finite group and S a subgroup that contains the normaliser NG(P ) of a Sylow-p
subgroup P of S (not necessarily of G). Then P is not contained in any other conjugate of S.
More strongly, if P ⊆ gSg−1, then g ∈ S. Observe that this implies the following: S is its own
normaliser. (Hint: Suppose that P ⊆ gSg−1. Then g−1Pg ⊆ S, and so, by item (3), g−1 ∈ N(P ;S) ⊆
SNG(P ). But by the hypothesis that NG(P ) ⊆ S, it follows that g−1 ∈ N(P : S) ⊆ S.)

(5) As already seen in item (4), a subgroup of a finite group that contains the normaliser of one of
its (the subgroup’s, not necessarily the whole group’s) Sylow p-subgroups is its own normaliser.
Observe that this is equivalent to saying: if a subgroup of a finite group is normal and contains
the normaliser of one of its (the subgroup’s) Sylow-p subgroups, then it is the whole group.
(Hint: Let P be a Sylow-p subgroup of a subgroup S of a finite group G, and suppose that S ⊇ NG(P ). If
NG(S) ) S, then the second statement is violated if we take NG(S) to be the whole group. Conversely, if
the second statement is violated, that is, if S is normal and proper, then the first statement is violated,
since NG(S) = G ) S.)

(6) Let G be a finite group, S a subgroup, and P a Sylow-p subgroup of S (not necessarily of G).
Suppose that NG(P ) ⊆ S. Then, for any subgroup T of G containing S, we have [T : S] ≡
1 mod P . (Hint: May assume T = G without loss of generality. Consider the action of P on the set X =

G/S. We have |X| = [G : S]. (Although we don’t need this fact, observe that X may be identified with the
conjugates of S since S is its own normaliser by item (5).) Since |X| = |XP | mod p, it is enough to show
that P does not fix any coset gS of S other than S. Let PgS = gS. Then Pg ⊆ gS, and so P ⊆ gSg−1. By
item (4) we have g ∈ S, and so gS = S.)

7.1. Some standard applications of Sylow’s theorems.
(1) Prove that there are no simple groups of order 12, 21, 56, 72, or 96.
(2) Any Sylow-11 subgroup of a group of order 231 is contained in the centre.
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8. TUTORIAL 6A (VT 5)

(1) Let V and W be vector spaces, V finite dimensional. The map V ? ⊗W → Hom(V,W ) given by
the following description is an isomorphsim: the image of ϕ⊗ w acting on v is ϕ(v)w. Describe
the inverse of this map.

(2) A conceptual description of trace: Let V be a finite dimensional vector space. We have the
natural isomorphism EndV ' V ? ⊗ V . We also have the linear map V ? ⊗ V → F given by
ψ ⊗ v 7→ ψ(v), where F is the underlying field. The composition EndV → F is the trace map.
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9. TUTORIAL 6B (KNR1)

(1) Let V and W be finite dimensional complex representations of a finite group G. Let χV and χW
be their respective characters. Then
(a) χV⊕W = χV + χW .
(b) χV ? = χV . (Hint: If M is the matrix of gV with respect to a basis of V , then the matrix is M? of gV ?

with respect to the dual basis of V ?.)
(c) χV⊗W = χV χW . (Hint: If M = (mii′) be the m ×m matrix of gV with respect to a basis {vi} of V

and N = (njj′) the n× n matrix of gW with respect to a basis {wj} of W , then M ⊗N , defined to be
the mn×mn matrix whose entry in position ij, i′j′ is mii′njj′ , is the matrix of gV⊗W with respect to
the basis {vi ⊗ wj} of V ⊗W .)

(d) χHom(V,W ) = χV χW . (Hint: Hom(V,W ) ' V ? ⊗W is a G-isomorphism; now use the previous two
items.)

(2) Let V and W be linear representations of a group G. Then Hom(V,W )G = HomG(V,W ). (Proof:
gϕg−1 = ϕ⇔ gϕ = ϕg.)

(3) Let G = {±1} be the subgroup of order two of the group of non-zero real numbers (under
multiplication). Consider the action of G on R by left multiplication, and the “induced” (or
“derived”) action on real functions on R: gf(x) := f(g−1x). A function f(x) is G-invariant if and
only if it is even. The “average” of a general function f(x) is (f(x) + f(−x))/2, which is always
even.
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10. TUTORIAL 6B (KNR 1) CONTINUED

(1) Recall the following from an early lecture by SV. Let ρ : G → GL(V ) be a finite dimensional
complex representation of a finite group G. Then, for any element g of the group G, the linear
transformation ρ(g) is diagonalizable. (Hint: If n is such that gn = 1, then ρ(g) satisfies the equation
Xn − 1 = 0, which means that its minimal polynomial divides Xn − 1, which has distinct roots.) In fact,
ρ(g) can be represented by a diagonal matrix each of whose diagonal entry is a complex root of
unity.

Caveat: While each ρ(g) is by itself diagonalizable, this does not mean that we can neces-
sarily simultaneously diagonalize all of them. In fact, ρ(g) are simultaneously diagonalizable
if and only if they all commute with one another.

Prove the following using the above ideas:
(a) Any irreducible complex representation of a finite abelian group is one dimensional.
(b) Let χV be the character of a finite dimensional complex representation of a finite group G.

Then:
(i) |χV (g)| ≤ dimC V for every g ∈ G, and equality holds if and only if g acts on V as

multiplication by a scalar (complex number).
(ii) χV (g) is an integer if it is rational. (Hint: Diagonalize the linear transformation gV . It is

then clear that χ(g) is a sum of complex roots of unity. As such, it is an algebraic integer. But
only the integers among rationals are algebraic integers.)

(c) The centre of a finite group G consists of those elements g for which |χV (g)| = χV (1) =
dimC V for every finite dimensional complex irreducible representation V of G.

(2) The purpose of this exercise is to illustrate that ideas about finite group actions on sets
can be applied to representations. Let G be a p-group and V a finite dimensional linear
representation of G over a finite field of characteristic p. If V is non-zero, then there exists
a non-zero vector v in V that is left invariant by G, that is, gv = v for all g in G. (Hint:
|V | = |V G| mod p.)
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11. TUTORIAL 7A (GT 1)

In what follows, R denotes a ring with identity, not necessarily commutative.
(1) (Examples of division rings) Quaternions H = {a+ bi+ cj+ dk | a, b, c, d ∈ R; i2 = j2 = k2 = ijk =
−1} form a division ring. We could take the coefficients to range over some subfield of R (e.g.,
Q) rather than over all of R, to get other division rings.

(2) Suppose that every non-zero element of R has a left (multiplicative) inverse. Then every non-
zero element of R has a two-sided inverse. (Hint: Let b be a left inverse of a, and c a left inverse of b.
Then c = c · 1 = c(ba) = (cb)a = 1 · a = a. Thus a is a left inverse of b, which is the same thing as saying b
is a right inverse of a.)

(3) The matrix ring Mn(D) (n is a positive integer) over a division ring D is a simple ring.
(4) Let R` denote R considered as a left module over itself. Show that R` is a simple module if and

only if R is a division ring.
(5) Schur’s Lemma:

• A non-zero R-module homomorphism M → N between simple R-modules is an isomor-
phism. In particular, EndR(M) is a division ring for M a simple R-module.

• Suppose that a finite dimensional C-algebra A is a division ring. Show that A must be C
itself (more precisely, the ring homomorphism C → A that defines A as a C-algebra is an
isomorphism onto A).

• Deduce the following: if R is a C-algebra and M a finite dimensional simple R-module,
then EndR(M) consists only of homotheties.

(6) Every two sided ideal of Mn(R) has the form Mn(I) for some unique two sided ideal I of R.
(7) For D a division ring, Mn(D) is a direct sum of n minimal left ideals.
(8) Any simple module is cyclic. Is the coverse true?
(9) Determine all simple Z-modules.

(10) Any simple module is indecomposable. How about the converse?
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12. TUTORIAL 7B (KNR 2)

(1) Given a group homomorphism ρ : G → GLn(R) of a finite group G, show that there exists an
element P in GLn(R) such that Pρ(g)P−1 is, for every g in G, an orthogonal n× n matrix.
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13. TUTORIAL 8A (GT 2)

(1) Is the zero module simple? Is it semisimple?
(2) Every submodule of a semisimple module has a complement. Is it (the complement) unique?
(3) Submodules and quotient modules of semisimple modules are semisimple.
(4) What are all the semisimple Z-modules?
(5) Write down all composition series for the cyclic abelian group Z/6Z.
(6) Write down all composition series for the cyclic abelian group Z/nZ.
(7) Any simple Mn(D)-module (where D is a division ring) is isomorphic to Dn.
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14. TUTORIAL 8A (GT 2) CONTINUED

Let R be an (assoicative) algebra over a field k, and let M be a finite dimensional (left) R-module.
(1) Example of a simple module that does not occur as a submodule of the ring (as a left

module over itself). Recall that every simple module occurs as the quotient of the ring (as
a left module over itself). Let A be the subalgebra of M2(C) consisting of the upper triangular
matrices. Let I be the left ideal of A consisting of those matrices whose second row is identi-
cally zero. Show that A/I is a simple A-module and that there is no submodule of A that is
isomorphic to A/I.

(2) A sequence 0 = M0 (M1 (M2 ( . . . (Mk−1 (Mk = M of submodules such that each quotient
Mj/Mj−1 is simple (for 1 ≤ j ≤ k) is said to be a composition series. Such a sequence always
exists (because of the finite dimensionality of M ). We call k the length of the composition
series and the collection (with multiplicity) of (the isomorphism classes of) simple modules
{Mj/Mj−1 | 1 ≤ j ≤ k} the composition factors.

(3) (Jordan Hölder Theorem) The length of any composition series and the composition factors in
it depend only upon M and not on the particular composition series. (Hint: Proceed by induction
on the dimension of M .)
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15. TUTORIAL 8B (KNR 3)

(1) Let G be a finite group. Let V1, V2, . . . be a complete list of representatives of isomorphism
classes of irreducible representations, and let χ1, χ2, . . . be their respective characters. Let V
be a finite dimensional complex representation. Suppose that a decomposition of V as a direct
sum of irreducible representations is given. Let m1, m2, . . . be the numbers of the summands
that are isomorphic respectively to V1, V2, . . . . Use the orthonormality of χ1, χ2, . . . to show the
following:
(a) the numbers m1, m2, . . . depend only upon V and not upon the particular decomposition

as a direct sum of irreducibles. In fact, mj = 〈χV , χj〉, and so is determined by χV .
(b) Characters determine representations: that is, two representations that have the same

character are isomorphic. (Hint: This follows from the previous item.)
(c) 〈χV , χV 〉 = m2

1 +m2
2 + · · · . In particular, V is irreducible if and only if 〈χV , χV 〉 = 1.

(d) The number of isomorphism classes of irreducible representations is at most the number
of conjugacy classes. (In particular, the list V1, V2, . . . is finite.) Note: In fact, equality holds
since χ1, χ2, . . . span the space of class functions on G as we have further shown.

(2) Fix notation as in the previous item. Deduce from Schur’s lemma that, for a complex finite
dimensional representation V ′ of G, dim HomG(V, V ′) = m1m

′
1 +m2m

′
2 + · · · , where m′j :=

〈χV ′ , χj〉.
(3) (Decomposition of the left regular representation) Fix notation as in item (1) above. Let Λ

denote the left regular representation of G and χΛ its character.
(a) χΛ(g) = 0 unless g = 1, and χΛ(1) = |G|.
(b) 〈χΛ, χj〉 = dimVj . Thus each irreducible representation Vj occurs in Λ with multiplic-

ity dimVj .
(4) LetG be a finite group and V a finite dimensional complex representation. Then χV (1) = dimV ,

where χV is the character of V .
(5) Let G be a finite group1 and CG the group ring of G with complex coefficients. The purpose

of this exercise is to show that a complex representation of G is nothing more and nothing
less than a CG-module V . Thus ideas and constructs from ring and module theory can be
brought to bear upon questions about representations.
• Recall that a complex vector space V is said to be a CG-module if there exists a C-algebra

homomorphism ρ : CG → EndC(V ). Since elements of G (identified with their canonical
images in CG) are units in CG, their images ρ(g), g ∈ G, are units in EndC(V ). Thus,
restricting ρ to G, we get a map G→ GL(V ). This is moreover a group homomorphism.

• Conversely, suppose we are given a linear representation ρ : G→ GL(V ) of G on a complex
vector space V . Then, by a linear extension, we get a homomorphism CG → EndC(V ) of
vector spaces. This is moreover an algebra homomorphism.

• The space HomG(V,W ) ofG-homomorphisms between two complex representation spaces V
and W of G is the same as the space HomCG(V,W ) of CG-module homomorphisms when
we think of V and W as CG-modules.

(6) Let G be a finite group and c the number of its conjugacy classes. Let C1, . . . , Cc be all the
conjugacy classes in G. The elements χi, 1 ≤ i ≤ c, where χi =

∑
g∈Ci g, form a basis for the

centre of CG. (Hint: hχih−1 =
∑
g∈Ci hgh

−1 =
∑
g∈Ci g.) Thus the centre of the group ring CG has

dimension c as a complex vector space. An element
∑
g∈G f(g)g in CG belongs to the centre if

and only if f is a class function on G.

1The assumption here of finiteness of G is not really necessary.
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16. TUTORIAL 9A (GT 3)

(1) Let R` denote R considered as a left module over itself. Show that EndRR` is isomorphic as a
ring to Ropp, where Ropp is the opposite ring of R.

(2) Mn(R)opp = Mn(Ropp), for any ring R.
(3) A semisimple ring (not necessarily a finite dimensional algebra over a field) admits only finitely

many isomorphism classes of simple modules.
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17. TUTORIAL 9B (KNR 4)

(1) Let G be a group and X a set with a G-action. We denote by CX the free C-vector space with
X as basis and by C[X] the C-vector space of functions on X with values in C. (Recall that both
these are representations of G: the action of G on CX is obtained by extending linearly the action on X;
the action on C[X] is given by the following: (fg)(x) = f(g−1x) for f in C[X], g in G, and x in X.) For x
in X, let δx denote the function on X that takes value 1 on x and 0 elsewhere.

Assume that X is finite. Verify the following:
(a) The map x 7→ δx defines aG-linear isomorphism between theG-spaces CX and C[X]. (What

happens if the finiteness assumption on X is removed?)
(b) For g ∈ G, the value χCX(g) at g of the character χCX of CX is |Xg|.
(c) C[X]0 := {f ∈ K[X] |

∑
x∈X f(x) = 0} is a G-invariant subspace of C[X]. Evidently, con-

stant functions span a one dimensionalG-invaraint subspace of C[X]. These two subspaces
are complementary.

(2) Let G be a finite group and V , V ′ finite dimensional complex representations of G.
(a) V is called self dual if it is isomorphic (as a representation) to its dual V ?. Observe that V

is self dual if and only if its character takes only real values.
(b) dimV G = dim (V ?)G

(c) dim HomG(V, V ′) = 〈χV , χ′V 〉

18



18. TUTORIAL 10A (GT4)

(1) Let G be a finite group and consider the left regular representation on CG of G. The elements
of G form a basis for CG. The action of each element of G with respect to this basis is rep-
resented by a permutation matrix. Write these matrices down explicitly when G is the cyclic
group of three elements and when G is the Klein four group.

(2) Let G be the subgroup of S5 generated by a 5-cycle. Let X = {1, 2, 3, 4, 5} and consider the
restriction to G of the defining action of S5 on CX. Prove that CX is isomorphic as a G-
representation to the left regular representation of G.

(3) LetG be the subgroup of the symmetric group S4 generated by (12) and (34). LetX = {1, 2, 3, 4}
and consider the restriction to G of the defining action of S4. Is CX isomorphic as a G-
representation to the left regular representation of G?
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19. TUTORIAL 10B (KNR 4)

(1) For X a finite G-set, dim(CXG) equals the number of G-orbits in X.
(2) Let G be a group and X, Y be G-sets. Consider the following “integration along the fiber” map:

T : C[X × Y ]→ HomC(CX,C[Y ]), k(x, y) 7→ Tk, where Tk(
∑
x∈X

f(x)x)(y) :=
∑
x∈X

f(x)k(x, y)

The summation makes sense since the function f(x) on X has finite support. Show that:
(a) T is linear map of vector spaces.
(b) T is one-to-one. (Hint: k(x, y) can be recovered from its image Tk. Indeed k(x, y) = Tk(x)(y).)
(c) T is onto. (Hint: For x0 in X and y0 in Y , let Fx0,y0 be the linear function from CX to C[Y ] that

maps x0 to δy0 and remaining x to 0. It is enough to show that Fx0,y0 belongs to the image of T , for
any choice of x0 and y0. Now check that T maps δx0,y0 to Fx0,y0 .)

(d) Check that T commutes with the action of G on either side.
(e) Conclude that C[X × Y ]G ' HomG(CX,C[Y ]).
(f) (Intertwining Number Lemma) Now suppose that X and Y are finite. Conclude that

dim HomG(CX,C[Y ]) equals the number of G-orbits in X × Y . (Hint: Use the previous item of
this exercise and the previous exercise.)

(3) Let n be a natural number. For i a non-negative integer, i ≤ n, let Xi denote the set of subsets of
cardinality i of [n] = {1, 2, . . . , n}. The defining action of the symmetric group Sn on [n] induces
an action on Xi. Let k and ` denote non-negative integers ≤ n.
(a) The action of Sn on Xk is transitive.
(b) Xk ' Xn−k as Sn-sets. (Hint: S ↔ [n] \ S.)
(c) Observe that two elements (S, T ) and (S′, T ′) in Xk ×X` are in the same Sn-orbit (for the

diagonal action on Xk ×X`) if and only if |S ∩ T | = |S′ ∩ T ′|.
(d) Conclude from the previous item that, for 0 ≤ k, l ≤ n/2, the number of G-orbits in Xk×X`

equals min{k, `}+ 1.
(e) Use the previous item and the intertwining number lemma (previous exercise) to conclude,

for 0 ≤ k, ` ≤ n/2, that dim HomSn(CXk,CX`) = min{k, `} + 1. (Hint: CY ' C[Y ] as G-
representations, as was seen in an earlier tutorial problem.)

(4) (Alternative proof of the intertwining number lemma, using the orbit counting lemma) Let
X and Y be finite sets with actions of a finite group G. Then

dim HomG(CX,C[Y ]) = 〈χCX , χC[Y ]〉 (since dim HomG(V, V ′) = 〈χV , χV ′〉, as seen earlier)

=
1

|G|
∑
g∈G

χCX(g)χC[Y ](g) (definition of the inner product)

=
1

|G|
∑
g∈G

χCX(g)χCY (g) (χCX(g) is an integer and CY ' C[Y ])

=
1

|G|
∑
g∈G
|Xg| · |Y g| (χCX(g) = |Xg|)

=
1

|G|
∑
g∈G
|(X × Y )g| (G acts diagonally on X × Y )

= number of G-orbits in X × Y (orbit counting lemma)
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20. TUTORIAL 11A (GT 5)

(1) Prove that if a finite group admits a faithful irreducible representation, then its centre is cyclic.
(2) Let g be a generator of the cyclic group G of order 3. Verify that g mapping to the matrix(

0 −1
1 −1

)
defines a complex representation of G. Decompose the representation into irre-

ducibles.
(3) (Wedderburn decomposition) Let G be the Klein four group. Write the group ring CG as the

direct product of four one dimensional subalgebras.
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21. TUTORIAL 11B (KNR 6)

(1) Enumerate all SSYT of shape 5 + 3 and type 3 + 3 + 2. How many of them are there?
(2) Let λ : λ1 ≥ λ2 ≥ . . . ≥ λl ≥ 1 and µ : µ1 ≥ µ2 ≥ . . . µm ≥ 1 be two partitions of a positive

integer n. Let Xλ (respectively Xµ) be the collection of set partitions of [n] = {1, 2, . . . , n} of
type λ (respectively µ). Two elements (S,T) and (S′,T′) of Xλ ×Xµ are in the same orbit of Sn

if and only if |Si ∩ Tj | = |S′i ∩ T ′j | for every 1 ≤ i ≤ l and 1 ≤ j ≤ m, where S denotes the set
partition S1 t · · · t Sl = [n] with |Si| = λi and T = T1 t . . . t Tm = [n] with |Tj | = µj .

Denote by Mλµ the set of non-negative integer matrices of size l × m with row sums being
λ1, . . . , λl and column sums being µ1, . . . , µm. Denote by Mλµ the cardinality of Mλµ. From the
intertwining number lemma and the observation above about the G-orbits in Xλ ×Xµ, deduce
that Mλµ = dim HomG(CXλ,CYµ).
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22. TUTORIAL 12A (GT 6)

Some suggested references:
• Karin Erdmann: Representations of Algebras
• Bruce Sagan: Representations of symmetric groups
• Gordon James and Martin Liebeck: Representations of finite groups

(1) For a finite group G, the number of one dimensional representations is equal to the order
of G/G′, where G′ is the commutator subgroup of G. Given that the alternating group An is
the commutator subgroup of Sn, it follows that Sn has exactly two irreducible one dimensional
representations. These are the trivial and sign representations.

(2) How many irreducible representations (up to isomorphism) does A4 have? What are their
dimensions? Find the Wedderburn decomposition as a product of matrix rings ofCA4. (Hint: The
commutator subgroup of A4 is {identity, (12)(34), (13)(24), (14)(23)}. So there are three one dimensional
representations.)

(3) Suppose that a finite group G has an abelian normal subgroup N . Then any irreducible repre-
sentation of G has dimension bounded by |G/N |. Observe that this implies that the irreducible
representations of dihedral groups Dn are at most two dimensional. Work out the Wedderburn
decomposition of the dihedral group D10 of order 10.

(4) What is the Wedderburn decomposition of CS3?
(5) Let A = k[X]/(f), where f ∈ k[X] is the product f1 · · · fr of distinct irreducible monic poly-

nomials f1, . . . , fr. Then the Wedderburn decomposition of the semisimple algebra A is the
isomorphism A ' k[x]/(f1)× · · · × k[x]/(fr) given by the Chinese Remainder Theorem.

(6) The Wedderburn decomposition of the group ring kCn of the cyclic group Cn of order n with
coefficients in a field k is given by the decomposition of the previous item taking f to be the
polynomial f(x) = xn − 1.

(7) The Wedderburn decomposition of RC3 is given by RC3 ' R[X]/(x−1)×R[x]/(x2+x+1) ' R×C.
(8) Does there exist a finite group G such that the Wedderburn decomposition of CG has the fol-

lowing form?
(a) M2(C)
(b) C×M2(C)
(c) C× C×M2(C)
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23. TUTORIAL 12B (KNR 7)

Let λ : λ1 ≥ . . . λl ≥ 1 and µ : µ1 ≥ . . . ≥ µ1 ≥ 1 be partitions of n. The set of semi-standard Young
tableaux of shape λ and type µ is denoted by Kλµ, and the cardinality of Kλµ by Kλµ. Observe the
following:

(1) Kλλ = 1.
(2) Let µ = 1 + 1 + · · · + 1 (n times). Then Kλµ is the set of standard Young tableaux of shape λ

(each filled with numbers 1, . . . , n, each used exactly once) and Kλµ is their number.
(3) Kλµ 6= 0 implies that λ dominates µ, that is, l ≤ m and λ1 + · · · + λj ≥ µ1 + · · · + µj for every

1 ≤ j ≤ l. (The converse is also true, but it takes some proving.)
(4) Consider the total order—which for lack of a better term we call the lexicographic order—on

partitions of n defined by: λ � µ if λj > µj for the least j, j ≥ 1, such that λj 6= µj . Observe
that λ ≤ µ if λ dominates µ. So, by the previous item, λ ≤ µ if Kλµ 6= 0.

(5) We define a square matrixK with non-negative integer entries as follows. Its rows and columns
are both indexed by partitions arranged in increasing lexicographic order. The entry in the row
corresponding to λ and the column corresponding to µ is Kλµ. Observe that:0

K is an upper triangular non-negative integer matrix; its diagonal entries are all 1.
(6) Recall the statement of the RSK correspondence. Solution: There is a bijection:

Mλµ ' tν`nKνλ ×Kνµ

Here Mλµ denotes the set of non-negative integer matrices of size l ×m with row sums being λ1, . . . , λl
and column sums being µ1, . . . , µm. Since Kνλ is empty unless ν ≤ λ and Kνµ is empty unless ν ≤ µ, the
disjoint union on the right may well be taken only over those ν such that ν ≤ λ and ν ≤ µ.

(7) Let A be the diagonal l× l matrix with diagonal entries λ1, . . . , λl. Which ordered pair of SSYTs
is attached to A by the RSK correspondence?

(8) Let T be the SSYT of shape λ with all entries in row j being j (for all j). Identify the l× l square
matrix that is mapped by the RSK correspondence to the ordered pair (T, T ).

(9) Observe that if A in Mλµ is mapped to (S, T ) by the RSK correspondence, then At in Mµλ is
mapped to (T, S).

(10) Let Mλµ denote the cardinality of Mλµ (defined in the solution to the previous item). We define
a square matrix M with non-negative integer entries as follows. Its rows and columns are both
indexed by partitions arranged in increasing lexicographic order. The entry in the row corre-
sponding to λ and the column corresponding to µ is Mλµ. Deduce from the RSK correspondence
that:

M = KtK where K is the matrix defined in item (5) above
(11) Let p be the number of partitions of n. Let C ′ be the p× 1 matrix described as follows: the rows

of C ′ are indexed by partitions arranged in increasing lexicographic order, and the entry in the
row indexed by λ is the character of CXλ. By item (2) of Tutorial 11B, we have

〈C ′λ, C ′µ〉 = 〈C ′µ, C ′λ〉 = dim HomG(CXλ,CXµ) = Mλµ or more succinctly 〈C ′, C ′t〉 = M

Put C = (Kt)−1C ′. Observe that (Kt)−1 is a lower triangular integer matrix (with possibly
negative integers below the diagonal) with all diagonal entries equal to 1. Each entry of C is
an integral linear combination of irreducible characters (since C ′ has this property). Moreover,
we have the following (using the fact that M = KtK from item (10) above):

〈C,Ct〉 = 〈(Kt)−1C ′, C ′tK−1〉 = (Kt)−1〈C ′, C ′t〉K−1

= (Kt)−1MK−1 = (Kt)−1(KtK)K−1 = Identityp×p
Thus the entries of C are the irreducible characters possibly up to a sign factor. But since C ′λ
is a character, and 〈C ′λ, Cλ〉 = 〈(KtC)λ, Cλ〉 =

∑
Kµλ〈Cµ, Cλ〉 = Kλλ = 1, it follows that the

entries of C are precisely the irreducible characters (not just up to sign).
Let Vλ denote the complex irreducible representation of Sn with character Cλ.

(12) (Young’s rule) Show that CXλ =
∑
µ`n V

⊕Kµλ
µ . (Hint: From C′ = KtC, we obtain C′λ =

∑
µKµλCµ,

which, since characters determine representatations, means CXλ =
∑
µ V
⊕Kµλ
µ )
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(13) Deduce from Young’s rule that the dimension of the irreducible representation Vλ equals the
number (denoted by fλ) of the number of standard Young tableaux of shape λ (filled with num-
bers 1, . . . , n, each used exactly once). (Hint: Put λ = 1 + 1 + · · · + 1 (n times). Then CXλ is the
regular representation of Sn. By Young’s rule the multiplicity of Vµ in CXλ equals Kµλ. But Kµλ equals
fµ, and any irreducible representation occurs exactly as many times as its dimension in the regular
representation.)

(14) Deduce that n! =
∑
λ`n(fλ)2. (Hint: We know that the order of a finite group equals the sum of the

squares of the dimensions of its irreducible representations. Apply this to Sn and use items (11) and (13)
above.)

(15) The RSK correspondence restricted to permutation matrices gives a bijection onto ordered pairs
of standard Young tableaux of the same shape. In particular, we obtain a combinatorial proof
of the identity of item (14). (Hint: Put λ = µ = 1+1+ · · ·+1 (n times). ThenMλµ is the set of all n×n
permutation matrices, and Kνλ = Kνµ is the set of all standard Young tableaux of shape ν.)
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