
Separable algebras
[s:sepalg]

All algebras considered in this section are commmuative and associative over
a field. Let K be a field and A such a K-algebra. We will use L to denote an
(arbitrary) extension field of K; and A(L) to denote the L-algebra A⊗K L.

Étale algebras and separable algebras defined. We say that A is di-
agonalizable if A is isomorphic to a finite product of copies of the field K
(in which case it is clearly finite dimensional over K). We say that A is

• separable if A(L) is reduced for every possible extension L of K;
• étale if A(L) is a diagonlizable L-algebra for some extension L.

These definitions apply in particular to the case when A is a field extension
of K. Clearly A is étale if it is diagonalizable.

Some examples.

• The field K as an algebra over itself is separable since K(L) = L.
• A polynomial algebra over K (in any number of indeterminates) is

separable since K[Xi](L) = L[Xi].

• A localization of a separable algebra is separable. In particular, a
pure transcendental extension K(Xi) (in any number of indetermi-
nates) is separable. Proof: (S−1A)(L) = S−1(A(L)), and localization of a reduced

algebra is reduced.

• As we will see later, any reduced algebra over a perfect field is sepa-
rable. In particular, field extensions over perfect fields are separable.

Some basic observations.
• A product of separable algebras is separable (because (

∏
Ai)(L) ↪→

∏
(Ai(L)),

although this is not in general an isomorphism).

• A diagonalizable algebra is separable (proof: the algebra is a finite product

copies of K). using fact: any
vector space is
flat• A(E) ⊆ A(F ) for extensions E ⊆ F ; B(L) ⊆ A(L) if B ⊆ A as algebras.

• Subalgebras of separable algebras are separable (because B(L) ⊆ A(L)) .
• A is separable if and only if A(E) is a separable E-algebra for some

extension E of K. Proof: (A(E))(L)
= A(L), which proves the only if part; conversely,

given an extension L of K, we can find a common extenstion F of both L and E, and then
A(L) ⊆ A(F ) = (A(E))(F )

, so A(L) is reduced. étale is separable;
finite dimensional
separable is étale
(uses Structure
theorem for Artin
rings)

• An étale algebra is separable. Proof: Choose L such that A(L) is diagonalizable.
In particular, A(L) is a separable L-algebra. Now apply the previous assertion.

• A finite dimensional separable algebra is étale. Proof: Let L be an alge-
braically closed extension of K. Then A(L), being a reduced finite dimensional L-algebra, is
isomorphic to a finite product of copies of L.

• A direct limit of separable algebras is separable (because (lim−−→Ai)
(L)

=

lim−−→Ai(L)). In particular, an extension is separable if all finite subex-
tensions are étale.

A simple but crucial observation and its consequences. The follow-
ing observation is crucial although its proof is simple:
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If A is a separable and B a reduced K-algebra, then A⊗K B
is reduced. Proof: Being reduced, B is a subalgebra of a product

∏
Ki of separable tensor

reduced is
reduced

fields, which may be treated as extensions of K. Now A⊗K

∏
Ki ↪→

∏
(A⊗KKi),

which is reduced by the separability of A.

We deduce the following corollaries:
• If E is a separable extension of K and A a separable E-algebra, then
A is a separable K-algebra. Proof: We have A(L) = A⊗K L = (A⊗E E)⊗K L =separable over

separable is
separable

A⊗E (E ⊗K L) = A⊗K E(L). Now A is a separable E-algebra and E(L) is reduced since E
is a separable K-algebra. Thus A⊗E E(L) is reduced by the above observation.

• If A are B are separable K-algebras, then so is A ⊗K B. Proof:separable tensor
separable is
separable

(A⊗K B)⊗K L = A⊗K (B ⊗K L), and the latter is reduced since A is separable and B(L)

reduced.

Notable however is the following:
• Example: Let K ⊆ L ⊆ M be fields with M separable over K.

Then of course L is separable over K (being a subextension of a
separable extension), but M need not be separable over L. For
example, let K be a field of positive characteristic p, L = K(Xp),
and M = K(X), where X is an indeterminate. Later on it’s shown that if
further L is algebraic over K, then M is separable over L.

An elemental characterization of separability in positive charac-
teristic. We assume in this subsection that the characteristic p of K is

positive. Observe that Kpf := {λpf |λ ∈ K} is a subfield of K and Apf :=

{apf | a ∈ A} a Kpf -subalgebra of A. Suppose that A is reduced. Then the

map x 7→ xp
f

(f -th power of the Frobenius morphism) is an isomorphism of

rings A→ Apf ; a subset {ai} of A is K-linearly independent (respectively, a

K-basis of A) if and only if {ap
f

i } is Kpf -linearly independent (respectively, a

Kpf -basis of Apf ); further, for L an extension field of K, the map f -th power

of the Frobenius gives an isomorphism of rings A⊗K L and Apf ⊗
Kpf L

pf .
The following are equivalent for a K-algebra A:

(1) A is separable.

(2) Apf ⊗
Kpf K is reduced for every f ≥ 0.

(3) A is reduced and Ap ⊗Kp K is reduced.
(4) A is reduced and the natural map Ap⊗KpK → A given by ap⊗λ 7→

λp is an injection.
(5) For every K-linearly independent subset {ai} of A, the subset {api }

continues to be K-linearly independent.
(6) There exists a K-basis {ai} of A such that {api } is K-linearly inde-

pendent.

Proof: (1)⇒(2): A is reduced and so is A ⊗K Kp−f
. But, by our observation above, A ⊗K Kp−f

is

isomorphic to the ring Apf ⊗
Kpf

K.

(2)⇒(3): set f = 0 and f = 1.

(3)⇒(4): If x =
∑
api ⊗λi 7→ 0, then

∑
λia

p
i = 0, which implies xp =

∑
(api )p⊗λp

i = ((
∑
api λi)

p)⊗1 =
0. Since Ap ⊗Kp K is reduced, this means x = 0.

(4)⇒(5): As already remarked, K-linear independence of {ai} is equivalent to the Kp-linear indepen-
dence of {api }. If

∑
λia

p
i = 0 (λi ∈ K almost all zero), then

∑
api ⊗λi in Ap⊗Kp K maps to zero in A,

hence is zero by hypothesis. By the Kp-linear indenpendence of {api }, we conclude that the λi all vanish.
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(5)⇒(6): Obvious.

(6)⇒(1): Let L be an arbitrary extension of K. To show that A(L) is reduced, it is enough to show that

any element x of A(L) such that xp = 0 is itself 0. Let x be such an element and write x (uniquely) as∑
ai⊗ li. We have xp =

∑
api ⊗ l

p
i . Since the api are K-linearly indenpendent, we conclude that lpi = 0,

and so li = 0, and x = 0. �

Condition (2) is equivalent to A⊗KK
p−∞ being reduced; and condition (3)

to A⊗K Kp−1
being reduced. Thus for A to be separable it is enough that

A⊗K Kp−∞ or even A⊗K Kp−1
is reduced.

Separability (or lack thereof) of extension fields. Recall that a poly-
nomial in one indeterminate over K is separable if it has no repeated roots,
or, equivalently (and more intrinsically), if it is coprime to its derivative.

• A simple extension K[α] is separable over K if and only if the min-
imal polynomial of α over K is separable.

• An algebraic extension is separable if and only if the minimal poly-
nomial over K of every element of the extension field is separable.
Proof: For the only if part, observe that for any element α of the extension field, the sim-
ple extension K[α] is separable (being a subalgebra of a separable algebra), so the minimal
polynomial of α is separable by the previous item.

For the converse, it is enough to show that every finite extension is separable since any
extension is the direct limit of its finite extensions. Given a finite extension K[α1, . . . , αn],
consider the chain K ⊆ K[α1] ⊆ K[α1][α2] ⊆ K[α1, α2][α3] ⊆ . . . ⊆ K[α1, . . . , αn−1][xn].
The minimal polynomial of αj over K[α1, . . . , αj−1] being a factor of that over K, it is sep-
arable. But separable over separable is separable (as already shown), so K[α1, . . . , αn] is
separable over K.

• Any extension in characteristic 0 is separable.
Proof: Any irreducible polynomial over a field of characteristic 0 being separable, the sep-
arability in case the extension is algebraic follows from the previous item. For a general
extension E, let {xi} be a transcendence basis. Then K(xi) is separable over K (for, as
already observed, pure transcendental extensions are separable); on the other hand, E being
algebraic over K(xi), it is separable over K(xi) by what we just observed. Finally, separable
over separable is separable (as already observed above).

• (Maclane’s criterion) A field extension K ⊆ L in positive char-
acteristic p is separable if and only if Lp and K are Kp-linearly
disjoint.
Proof: Let {ai} be a subset of L such that {api } is Kp-linearly independent. As already
observed, this is equivalent to {ai} being K-linearly independent. Now the result follows
from the equivalence of conditions (1) and (5) in the elemental characterization above applied
to L. Maclane’s criteria

• (Maclane’s Criterion; second version) Let K ⊆ L ⊆ Ω be fields of
positive characteristic p with Ω perfect. Then L is separable over K

if and only if it is K-linearly disjoint from the perfect closure Kp−∞

of K inside Ω.
Proof: Suppose that L is separable and let {li} be a K-linearly independent subset of L.

Then, by repeatedly applying property (5) above, we conclude that {lp
f

i } is K-linearly inde-

pendent (for any f ≥ 0). This means that {li} are Kp−f
-linearly independent (for all f): we

can see this by just raising any Kp−f
-linear relation among the li to the power pf .

Conversely, linear disjointness over K of L and Kp−∞ implies that of L and Kp−1
. Thus

any K-basis {li} of L is Kp−1
-linearly independent. As is easily seen, this linear indepen-

dence is equivalent to the K-linear independence of {lpi }. And so the equivalent condition (6)
above for separability holds.
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• If L is a separable field extension of K, then L⊗K Kp−∞ is a field;

further, if L is algebraic over K, then L⊗KK
p−∞ is a perfect closure

of L.
Proof: Set Ω = Lp−∞ and apply the last criterion. By the K-linear disjointness of L and

Kp−∞ , the natural map L⊗Kp−∞ → Lp−∞ is an injection. So L⊗K Kp−∞ is a domain.

Being caught between L and Lp−∞ it is a field and algebraic over L. If, moreover, L is

algebraic over K, then L ⊗K Kp−∞ is algebraic over Kp−∞ and is therefore perfect. Since

it contains L, it must be all of Lp−∞ .

Separability over perfect base fields.

• Any reduced algebra over a perfect field is separable. In particular,
any extension over a perfect field is separable.reduced over

perfect is
separable; any
extension over a
perfect field is
separable

Proof: Since reduced tensor separable is reduced (proved above), it is enough to show that
any extension L over K is separable when K is perfect. It has been shown above that any
extension in characteristic 0 is separable, so we may assume that the characteristic is positive.
Consider condition (3) of the elemental characterization of separability above. Since Kp = K
(because K is perfect), we have Ap ⊗Kp K ∼= Ap which being a subalgebra of A is reduced,
and so condition (3) holds.

• For A to be separable, it is enough that A(L) be reduced for some
perfect extension L.
Proof: If A(L) is reduced, then A(L) is L-separable, which easily implies that A isK-separable

(as already noted above).

Complements. Let K ⊆ L ⊆ M be extension fields with M separable
over K and L algebraic over K. Then M is separable over L. The hypothesis
that L is algebraic over K cannot be omitted as the example already considered shows.

Proof: If the characteristic is zero, then any field extension is separable. So suppose now that it is

positive. It is enough to show that M ⊗L Lp−∞ is reduced (as just seen above). We have Lp−∞ =

L ⊗K Kp−∞ (as also seen above), so that M ⊗L L
p−∞ = M ⊗L L ⊗K Kp−∞ = M ⊗K Kp−∞ . The

latter is reduced since M is separable over K.


