Let K be a commutative ring with identity, A a commutative K-algebra, and M an A-module. We will be especially interested in the case when K is a field and A a field extension of K. A K-derivation of A to M is a K-linear map $d : A \to M$ satisfying the Liebniz rule: d(ab) = adb + bda. The set $Der_K(A, M)$ of K-derivations of A to M is an A-submodule of $Hom_K(A, M)$. If we speak of just a derivation we mean a Z-derivation.

Derivations defined

The module $\Omega_K(A)$ of differentials. There exists an A-module denoted $\Omega_K(A)$, the module of differentials, and a universal K-derivation $d = d_{A/K}$ from A to $\Omega_K(A)$ with the following properties:

- UNIVERSAL PROPERTY: Hom $(\Omega_K(A), M) \to \text{Der}_K(A, M)$ defined by $\phi \mapsto \phi \circ d$ is a bijection.
- The image of d generates $\Omega_K(A)$ as an A-module.

Goal of this section. We consider $\Omega_K(L)$ where $K \subseteq L$ are extension fields and aim to relate properties of the extension with those of the *L*-vector space $\Omega_K(L)$.

Some elementary properties and examples.

- (1) The image of K in A under any K-derivation is zero. In particular, the image of K in Ω_K(A) under the universal derivation is zero. PROOF: d1 = d(1.1) = 1d1 + 1d1 and so d1 = 0; now use K-linearity of d.
 (2) Let D be a K'-derivation of A to M, where K' → K is a map of
- (2) Let D be a K'-derivation of A to M, where K' → K is a map of commutative rings. Then D is a K-derivation if and only if the image of K under D vanishes. PROOF: The only if part is the previous item. For the if part, we need only show K-linearity of D. For λ in K and a in A, we have D(λa) = λDa + aDλ by the Liebiz rule, but Dλ = 0 by hypothesis, so D is K-linear.
- (3) Any derivation vanishes on the image of \mathbb{Z} in K; if K is a field, then any derivation is a P-derivation where P is the prime subfield. PROOF: The first assertion is a special case of the first item. The second follows from the first and second items.
- (4) A K-derivation on A is determined by its values on any set of Kalgebra generators of A. In particular, a derivation on A is determined by its values on K and on a set of K-algebra generators of A.
- (5) Let A be a polynomial ring $K[X_i | i \in I]$ over K (in any number of variables) and V an A-module. Given a derivation $\Delta : K \to V$ and an arbitrary $\{v_i\}_{i\in I}$ of elements of V, there exists a unique derivation D that extends Δ and maps X_i to v_i : more precisely, the value of D on any polynomial f is given by: $f^{\Delta}(\underline{x}) + \sum_{i\in I} \frac{\partial f}{\partial X_i}(\underline{x})v_i$, where, for $f(\underline{x}) = \sum_{\alpha} a_{\alpha} X^{\alpha}$, we have $f^{\Delta}(\underline{x}) := \sum_{\alpha} X^{\alpha} \Delta(a_{\alpha})$. In particular, there exists a unique K-derivation that maps X_i to v_i . This last assertion is equivalent to saying that $\Omega_K(A)$ is a free Amodule on the generators $dX_i, i \in I$.
- (6) Let A be a quotient of the polynomial ring $K[X_i | i \in I]$ by an ideal \mathfrak{a} . Let $\{f_{\lambda}\}$ be a family of polynomials generating the ideal \mathfrak{a} and let V be an A-module. We have a "pull-back" map $Der(A, V) \rightarrow$

 $Der(K[X_i], V)$. The image of this map consists precisely of those elements of $Der(K[X_i], V)$ that vanish on \mathfrak{a} .

Let $\Delta: K \to V$ be a derivation, and $\{v_i\}_{i \in I}$ a family of elements of V. Then there exists a (necessarily unique) derivation $D: A \to V$ that extends Δ and mapping X_i to v_i if and only if, for every λ , $f_{\lambda}^{\Delta}(\underline{x}) + \sum_{i \in I} \frac{\partial f_{\lambda}}{\partial X_i}(\underline{x})v_i = 0$. PROF: As seen above, $f^{\Delta}(\underline{x}) + \sum_{i \in I} \frac{\partial f}{\partial X_i}(\underline{x})v_i$ is the value on a polynomial f of any derivation $D: K[X_i] \to V$ that extends Δ and is subject to $X_i \mapsto v_i$. To prove the "only if" part, let D be such a derivation. Denote by D also the pull back of D to $K[X_i]$. Since D vanishes on f_{λ} (because the image of f_{λ} in A vanishes), the equations are necessary. For the "if" part, let D be the unique extension to $K[X_i]$ of Δ such that $DX_i = v_i$. We will show that if the equations hold, then D vanishes on a. Then D will factor through A, and we'll be done. A general element x of \mathfrak{a} is of the form $\sum g_{\lambda}f_{\lambda}$. Since D is a derivation, we have $Dx = \sum (f_{\lambda}Dg_{\lambda} + g_{\lambda}Df_{\lambda})$. The equations mean that the Df_{λ} and hence also the second terms in this sum vanish. The first terms in the sum vanish since the Dg_{λ} belong to V which is an A-module and the images of f_{λ} in A vanish.

(7) With notation as in the item (5), assume that K is a field, let L denote the quotient field of A, let W be an L-vector space, and $D: A \to W$ a derivation. Then there exists a unique extension of D to a derivation \tilde{D} from L to W. In fact, for f, g in A with $g \neq 0$, we have $\tilde{D}\frac{f}{g} = \frac{gDf - fDg}{g^2}$, by the "quotient rule". Thus $\Omega_K(L) = L \otimes_A \Omega_K(A)$, and $\{dX_i\}$ forms an L-basis for $\Omega_K(L)$.

The canonical exact sequence. Let *B* be another *K*-algebra and $A \to B$ a *K*-algebra homomorphism. By the universal properties of $\Omega_K(A)$ and $\Omega_K(B)$ respectively, there exists a natural *B*-module morphism $\beta : \Omega_K(B) \to$ $\Omega_A(B)$ and a natural *A*-module morphism $\alpha : \Omega_K(A) \to \Omega_K(B)$. Since $\Omega_K(B)$ is a *B*-module, the map α extends uniquely to a map of *B*-modules $\Omega_K(A) \otimes_A B \to \Omega_K(B)$ also denoted α . Consider the following sequence of *B*-module maps:

(6)
$$\Omega_K(A) \otimes_A B \xrightarrow{\alpha} \Omega_K(B) \xrightarrow{\beta} \Omega_A(B) \to 0$$

We claim that this is exact. To prove the claim it is enough to show that the resulting sequence after applying $\operatorname{Hom}_B(\cdot, V)$ is exact for any *B*module *V*. The application of $\operatorname{Hom}_B(\cdot, V)$ results in:

(7)
$$\operatorname{Der}_{K}(A,V) \xleftarrow{\alpha^{*}} \operatorname{Der}_{K}(B,V) \xleftarrow{\beta^{*}} \operatorname{Der}_{A}(B,V) \leftarrow 0$$

where α^* is the natural restriction map and β^* is the natural inclusion. From the first two items in the list above, we conclude that the kernel of α^* is the image of β^* . Thus (7) and so also (6) is exact.

Suppose that B is a field. Then a sequence of B-modules is exact if and only if the dual sequence is exact. Thus the exactness of (6) is equivalent to that of

(8)
$$\operatorname{Der}_{K}(A,B) \xleftarrow{\alpha^{*}} \operatorname{Der}_{K}(B,B) \xleftarrow{\beta^{*}} \operatorname{Der}_{A}(B,B) \to 0$$

Moreover the injectivity of α in (6) is equivalent to the surjectivity of α^* in (8). If these conditions hold, then the α^* in (7) is surjective for every V.