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This box says something
By looking at the symbols here, you get a message

This box says nothing
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A nonrandom sequence



Three “random” sequences

Which is in fact random?
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TTHHTHTTHTHTTHTHTTHTTHTHHTHTHTTHTHTHTHHTHHTHTTHT

HHTHTHTTHTHTHTTHHTHHTHHTHHTTHHHTTHTHHTHTTTTHHTHH

TTTHTHTHTHTTHHHTHTTHTHHTHTHTTHTHHTHHTHTTHTHTHHTT

HHTTHTHHTTTTHTTHHTHTTHTHTHTHTHHTHHTHTTTHTTHTHHTH



Three “random” sequences

Answer:

Example 1 (made with random number generator)
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Example 2 (made by hand)
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Example 3 (made from English text)
TTHHTHTTHTHTTHTHTTHTTHTHHTHTHTTHTHTHTHHTHHTHTTHT

HHTHTHTTHTHTHTTHHTHHTHHTHHTTHHHTTHTHHTHTTTTHHTHH
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HHTTHTHHTTTTHTTHHTHTTHTHTHTHTHHTHHTHTTTHTTHTHHTH



Communication

How do you communicate meaning via symbols?
And knowing that a sequence of symbols has meaning, how do
you extract that meaning? (A much harder problem!)





Shannon and information theory

How much information does a message contain
Answer:
If the message is selected from N possible, equally likely messages,
then N or any monotonic function of N is a measure of the
“information content” of the message.

What function of N?
Answer: log N, and in particular, log2 N.
Why? Because log N tends to vary linearly with engineering
parameters
Example: if there are n bits in a word, the number of messages that
word can represent is N = 2n, so log2 N = n.

Also:
More “intuitive”; mathematically more convenient
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Shannon and information theory

Consider a process that produces symbols drawn from an alphabet of
n letters. These letters don’t occur equally often but have
“frequencies” (probabilities) p1, p2 . . . pn.
How much information is being produced with each letter? How do
we define an “information score” H(p1, p2 . . . pn)?



Desirable characteristics of H
Continuity
If all the p’s are equal (pi = 1/n ∀ i) H should increase
monotonically with n.
If a choice can be broken down into two choices, the full H should
be the weighted sum of the individual values. Eg here

we want H( 1
2 , 1

3 , 1
6 ) = H( 1

2 ) +
1
2 H( 2

3 , 1
3 ).

Only possible solution

H(p1, p2 . . . pn) = −K ∑n
i=1 pi log pi
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“Entropy” of probabilities

H(p1, p2 . . . pn) = −K ∑n
i=1 pi log pi

Conventional choice in information theory:
H(p1, p2 . . . pn) = −∑n

i=1 pi log2 pi

Properties
H = 0 iff one p is 1 and all other p’s are 0.
H is maximum if all p’s are equal. Then H = log2 n.
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What is a probability?

We have used the “probability” but how do we define it and how do
we calculate it?

Simplest example: Bernoulli process
Suppose you have only two possible outcomes, say S and F. Then say
P(S) = p and P(F) = q = 1− p.
For this process, H = −p log2 p− qlog2q. But how do you learn p and
q?
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Definitions
Joint probability P(x, y) of two events: probability of both events
occurring
Independent events: the probability of one event is not influenced
by the outcome of the other
P(x, y) = P(x)P(y)
Probability distribution: the set of values pi that define
probabilities of outcomes
Bernoulli process: independent, identically distributed (i.i.d.) events
each with two possible outcomes (eg, coin tosses)
Multinomial process: i.i.d events each with n > 2 possible
outcomes



Which sequence comes from a Bernoulli process?

Example 1 (made with random number generator)
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Calculate P(x) for the two symbols x = H, T. Also calculate P(x|y)
where y is X’s predecessor. For a Bernoulli process, P(x|y) = P(x).
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Calculating P(x) for a Bernoulli process

Suppose you have two outcomes, S and F, with P(S) = p.
Suppose you have no idea what the value of p is. It can be anything
between 0 and 1.
Suppose you have N observations, with S occurring n times.
What is the probability of S next time?

Answer: P(S) = n+1
N+2

Proof in outline
D = given data (N trials, n S’s)
P(S|D) = P(S,D)

P(D)

P(D) =
(

N
n

)
pn(1− p)N−n

P(S, D) =
(

N
n

)
pn + 1(1− p)N−n

But since we don’t know p, both of these have to be integrated over p
from 0 to 1 with uniform weight.
These are “beta function” integrals and can be done exactly.
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Beta prior, pseudocounts

Suppose you have two outcomes, S and F, with P(S) = p.
Suppose you have some idea what the value of p is. It has the specific
form P(p) ∝ pc1−1(1− p)c2−1, where c1 and c2 are constants.
Suppose you have N observations, with S occurring n times.
What is the probability of S next time?

Answer: P(S) = n+c1
N+c1+c2

c1 and c2 are often called “pseudocounts”.

Multinomial generalization
If you have k possible outcomes, and N observations with ni
occurrences of the i’th outcome, then
P(j) = nj+cj

N+C
where C = ∑k

i=1 ci.
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Bigrams, n-grams, conditional probabilities

If x and y each have k possible outcomes, to calculate P(x|y) we can
use
P(x|y) = P(x, y)/P(y)
and calculate P(y) as above, and P(x, y) by treating each “bi-gram” as
a single unit with k2 possible outcomes.



Factorizing joint probabilities, Markov processes

Suppose you have a sequence of letters of length L,
S = S1S2S3 . . . SL
with each letter Si drawn from the same alphabet, but not i.i.d. Then
we can write
P(S) = P(S1)P(S2|S1)P(S3|S1S2)] . . . P(SL|S1S2 . . . SL−1).
If we assume that each letter depends on only its predecessor, we have
a (first-order) Markov model
P(S) = P(S1)P(S2|S1)P(S3|S2)] . . . P(SL|SL−1).
If we assume that each letter depends on n predecessors, we have an
n’th order Markov model.



Example: Shannon, 1948
(C. E. Shannon, A mathematical theory of communication, 1948)
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Language models

Definition
A model that assigns a probability distribution P(T) to a “text” T, ie, a
sequence of words
T = W1W2W3 . . . WL

Examples

Simplest: P(T) = ∏i P(Wi)

N-gram model (Markov model):
P(T) = ∏i P(Wi|Wi−n+1, Wi−n+2, . . . , Wi−1)

N-gram methods are widely used but overfitting is a problem.
Sophisticated “smoothing” methods have been developed, eg
Good-Turing, Witten-Bell, Kneser-Ney, etc.
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Syntax versus semantics

Various words in a sentence each belong to a different “part of
speech”: noun, verb, adjective, etc.
Syntax relates to how these words can occur in relation to one another,
based on their part of speech.
Semantics relates to the meaning of the words.
Computational linguistics often ignores semantics entirely!

Example
Structure of sentence:
Adjective adjective noun verb adverb

Syntactically correct, semantically meaningful sentence:
Large muscular cheetahs run fast

Syntactically correct, semantically meaningless sentence (Chomsky):
Colourless green ideas sleep furiously
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Hidden Markov models

Semantics can be important in, eg, translation:
“Cheetahs run fast”
“Gandhi sat on a fast”
How does the computer translate “fast” correctly? One way is if it
“knows” whether “fast” is a noun or a verb.
In a “hidden Markov model”, the Markov sequence is a sequence of
“hidden states” xi (eg, noun, verb, adjective, etc) but each hidden state
“emits” a visible output yi (“Cheetahs”, “run”, etc).

P. Protopapas, http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html



Hidden markov models

Widely used for modelling text, speech, music, biological sequences...
Typical use:

The model consists of K possible “hidden states” and N possible
“output states”
There are “transition probabilities” akl governing the passage
from hidden state k to hidden state l, and “emission probabilities”
ek(a) for emitting symbol a while in hidden state k
You are given a corpus of “training data” (outputs) consisting of
emitted symbols, which may or may not be annotated with
hidden states
You are given new data consisting of only emitted states, and
have to infer hidden states, or the probability

Efficient algorithms exist for all these tasks.



HMM algorithms

When transition/emission probabilities are known: the Viterbi
algorithm infers the most probable hidden states in linear time.
The forward/backward algorithm calculates the probability of the
sequence, summed over all possible hidden state paths, in linear
time.
When transition/emission probabilities are not known: the
Baum-Welch (EM) algorithm infers these from training data.



Music example: harmonization

http://www.anc.inf.ed.ac.uk/demos/hmmbach/theory.html
Given a melody, infer the chords, after training



Folk music classification

Chai, Vercoe, Proc. of International Conference on Artificial
Intelligence, 2001



Biological sequence analysis



Biological sequence analysis
Example: HMM of a globin protein alignment (from Durbin et al, “Biological sequence analysis”)



Message: “Sequence analysis” has some universal features that apply
to a wide variety of different types of sequences.

Thank you


