
On Problems that Computers will Never Solve

TK (UNC & IMSc) Computers will Never Solve . . . 1 / 35

Sunway TaihuLight

40,960 chinese 64-bit RISC processors

256 cores per processor

total 10,485,760 CPU cores

93 ⋅1015 flops

TK (UNC & IMSc) Computers will Never Solve . . . 2 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r r

♠ ♠ r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r r

♠ ♠ r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r r

♠ ♠ r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠

r ♠ r r r ♠ r r r r

♠ ♠ r

♠ r r r ♠ r r r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠

r ♠ r r r ♠ r r r r

♠ ♠ r

♠ r r r ♠ r r r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠

r ♠ r r r ♠ r r r r

♠ ♠ r

♠ r r r ♠ r r r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r ♠

r r r ♠ r r r r

♠ ♠ r ♠ r r

r ♠ r r r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r ♠

r r r ♠ r r r r

♠ ♠ r ♠ r r

r ♠ r r r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r ♠

r r r ♠ r r r r

♠ ♠ r ♠ r r

r ♠ r r r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r ♠ r r

r ♠ r r r r

♠ ♠ r ♠ r r r

♠ r r r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r ♠ r r

r ♠ r r r r

♠ ♠ r ♠ r r r

♠ r r r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r ♠ r r

r ♠ r r r r

♠ ♠ r ♠ r r r

♠ r r r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r ♠ r r r ♠

r r r r

♠ ♠ r ♠ r r r ♠ r r

r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r ♠ r r r ♠

r r r r

♠ ♠ r ♠ r r r ♠ r r

r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r ♠ r r r ♠

r r r r

♠ ♠ r ♠ r r r ♠ r r

r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r ♠ r r r ♠ r r

r r

♠ ♠ r ♠ r r r ♠ r r r

r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r ♠ r r r ♠ r r

r r

♠ ♠ r ♠ r r r ♠ r r r

r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r ♠ r r r ♠ r r

r r

♠ ♠ r ♠ r r r ♠ r r r

r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r ♠ r r r ♠ r r r r

♠ ♠ r ♠ r r r ♠ r r r r

Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r

2nd play

♠ ♠ r ♠ r r r ♠ r r r r

♠ ♠ r ♠ r r r ♠ r r r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r
2nd play

♠ ♠ r r

♠ ♠ r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r
2nd play

♠ ♠ r r

♠ ♠ r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r
2nd play

♠ ♠

r r

♠ ♠ r

r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r
2nd play

♠ ♠

r r

♠ ♠ r

r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r
2nd play

♠ ♠

r r

♠ ♠ r

r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r
2nd play

♠ ♠ r r

♠ ♠ r r

Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Let’s try a puzzle

1 2 3

r r r ♠ ♠ ♠

r ♠ r r ♠ ♠ r
2nd play

♠ ♠ r r

♠ ♠ r r Done

TK (UNC & IMSc) Computers will Never Solve . . . 3 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r ♠ q r r r ♠ q

r ♠ q r r r ♠ q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r ♠ q r r r ♠ q

r ♠ q r r r ♠ q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r ♠ q r r r ♠ q

r ♠ q r r r ♠ q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r

♠ q r r r ♠ q

r ♠

q r r r ♠ q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r

♠ q r r r ♠ q

r ♠

q r r r ♠ q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r

♠ q r r r ♠ q

r ♠

q r r r ♠ q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r ♠

q r r r ♠ q

r ♠ q r

r r ♠ q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r ♠

q r r r ♠ q

r ♠ q r

r r ♠ q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r ♠

q r r r ♠ q

r ♠ q r

r r ♠ q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r ♠ q r

r r ♠ q

r ♠ q r r

r ♠ q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r ♠ q r

r r ♠ q

r ♠ q r r

r ♠ q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r ♠ q r

r r ♠ q

r ♠ q r r

r ♠ q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r ♠ q r r

r ♠ q

r ♠ q r r r ♠

q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r ♠ q r r

r ♠ q

r ♠ q r r r ♠

q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r ♠ q r r

r ♠ q

r ♠ q r r r ♠

q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r ♠ q r r r ♠ q

r ♠ q r r r ♠ q

Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Other instance of the same kind of puzzle

1 2 3 4

♠ r q r r ♠ q

q r r ♠ r q

r ♠ q r r r ♠ q

r ♠ q r r r ♠ q Done

TK (UNC & IMSc) Computers will Never Solve . . . 4 / 35

Let’s try another one (last play)

1 2 3

♠ r ♠ r r ♠

r r r ♠ ♠

TK (UNC & IMSc) Computers will Never Solve . . . 5 / 35

Let’s try another one (last play)

1 2 3

♠ r ♠ r r ♠

r r r ♠ ♠

TK (UNC & IMSc) Computers will Never Solve . . . 5 / 35

Last play

1 2 3

b a a a a b

a a a b b

TK (UNC & IMSc) Computers will Never Solve . . . 6 / 35

Last play

1 2 3

ba a aab

a aab b

We have a list of 3 pairs of words : (ba,a),(a,aab),(aab,b).

In general, an instance is given be n ∈ IN pairs of words.

TK (UNC & IMSc) Computers will Never Solve . . . 7 / 35

Last play

1 2 3

ba a aab

a aab b

We have a list of 3 pairs of words : (ba,a),(a,aab),(aab,b).

In general, an instance is given be n ∈ IN pairs of words.

TK (UNC & IMSc) Computers will Never Solve . . . 7 / 35

Write a program

Exercise

Write a program which takes as input a list of pairs of words
and which prints

yes if there exists a solution

no if there is no solution

TK (UNC & IMSc) Computers will Never Solve . . . 8 / 35

Write a program

Exercise

Write a program which takes as input a list of pairs of words
and which prints

yes if there exists a solution

no if there is no solution

TK (UNC & IMSc) Computers will Never Solve . . . 8 / 35

Write a program

Exercise

Write a program which takes as input a list of pairs of words
and which prints

yes if there exists a solution

no if there is no solution

TK (UNC & IMSc) Computers will Never Solve . . . 8 / 35

Post’s correspondence problem

Emil Post

1897 (Poland) – 1954 (USA)

TK (UNC & IMSc) Computers will Never Solve . . . 9 / 35

Post’s correspondence problem

TK (UNC & IMSc) Computers will Never Solve . . . 10 / 35

Post’s correspondence problem

In 1941 Post established a theorem

which states that no algorithm can exist which takes as input
any list of pairs of words and outputs, after a finite time

yes if the corresponding puzzle has a solution

no if there is no such solution.

Problems for which no algorithm can exist are called

u n d e c i d a b l e

TK (UNC & IMSc) Computers will Never Solve . . . 11 / 35

Post’s correspondence problem

In 1941 Post established a theorem

which states that no algorithm can exist which takes as input
any list of pairs of words and outputs, after a finite time

yes if the corresponding puzzle has a solution

no if there is no such solution.

Problems for which no algorithm can exist are called

u n d e c i d a b l e

TK (UNC & IMSc) Computers will Never Solve . . . 11 / 35

Post’s correspondence problem

In 1941 Post established a theorem

which states that no algorithm can exist which takes as input
any list of pairs of words and outputs, after a finite time

yes if the corresponding puzzle has a solution

no if there is no such solution.

Problems for which no algorithm can exist are called

u n d e c i d a b l e

TK (UNC & IMSc) Computers will Never Solve . . . 11 / 35

Post’s correspondence problem

In 1941 Post established a theorem

which states that no algorithm can exist which takes as input
any list of pairs of words and outputs, after a finite time

yes if the corresponding puzzle has a solution

no if there is no such solution.

Problems for which no algorithm can exist are called

u n d e c i d a b l e

TK (UNC & IMSc) Computers will Never Solve . . . 11 / 35

Post’s correspondence problem

In 1941 Post established a theorem

which states that no algorithm can exist which takes as input
any list of pairs of words and outputs, after a finite time

yes if the corresponding puzzle has a solution

no if there is no such solution.

Problems for which no algorithm can exist are called

u n d e c i d a b l e

TK (UNC & IMSc) Computers will Never Solve . . . 11 / 35

Post’s correspondence problem

In 1941 Post established a theorem

which states that no algorithm can exist which takes as input
any list of pairs of words and outputs, after a finite time

yes if the corresponding puzzle has a solution

no if there is no such solution.

Problems for which no algorithm can exist are called

u n d e c i d a b l e

TK (UNC & IMSc) Computers will Never Solve . . . 11 / 35

Decision problems

Adjectives decidable
and undecidable

concern problems with a question which should be answered by «yes»
or «no».

These are called

decision problems.

Example

Input : a natural number n ∈ IN
Question : is n prime ?

TK (UNC & IMSc) Computers will Never Solve . . . 12 / 35

Decision problems

Adjectives decidable
and undecidable

concern problems with a question which should be answered by «yes»
or «no».

These are called

decision problems.

Example

Input : a natural number n ∈ IN
Question : is n prime ?

TK (UNC & IMSc) Computers will Never Solve . . . 12 / 35

Decision problems

Adjectives decidable
and undecidable

concern problems with a question which should be answered by «yes»
or «no».

These are called

decision problems.

Example

Input : a natural number n ∈ IN
Question : is n prime ?

TK (UNC & IMSc) Computers will Never Solve . . . 12 / 35

Decision problems

Adjectives decidable
and undecidable

concern problems with a question which should be answered by «yes»
or «no».

These are called

decision problems.

Example

Input : a natural number n ∈ IN
Question : is n prime ?

TK (UNC & IMSc) Computers will Never Solve . . . 12 / 35

Decision problems

Adjectives decidable
and undecidable

concern problems with a question which should be answered by «yes»
or «no».

These are called

decision problems.

Example

Input : a natural number n ∈ IN
Question : is n prime ?

TK (UNC & IMSc) Computers will Never Solve . . . 12 / 35

Evaluation or construction problems

consist in producing an object which fulfils problem’s statement.

Example

Input : a natural number n ∈ IN
Output : a decomposition of n into its prime factors

Such problems are either computable
or uncomputable

Also, any function is either computable
or uncomputable

TK (UNC & IMSc) Computers will Never Solve . . . 13 / 35

Evaluation or construction problems

consist in producing an object which fulfils problem’s statement.

Example

Input : a natural number n ∈ IN
Output : a decomposition of n into its prime factors

Such problems are either computable
or uncomputable

Also, any function is either computable
or uncomputable

TK (UNC & IMSc) Computers will Never Solve . . . 13 / 35

Evaluation or construction problems

consist in producing an object which fulfils problem’s statement.

Example

Input : a natural number n ∈ IN
Output : a decomposition of n into its prime factors

Such problems are either computable
or uncomputable

Also, any function is either computable
or uncomputable

TK (UNC & IMSc) Computers will Never Solve . . . 13 / 35

Evaluation or construction problems

consist in producing an object which fulfils problem’s statement.

Example

Input : a natural number n ∈ IN
Output : a decomposition of n into its prime factors

Such problems are either computable
or uncomputable

Also, any function is either computable
or uncomputable

TK (UNC & IMSc) Computers will Never Solve . . . 13 / 35

Evaluation or construction problems

consist in producing an object which fulfils problem’s statement.

Example

Input : a natural number n ∈ IN
Output : a decomposition of n into its prime factors

Such problems are either computable
or uncomputable

Also, any function is either computable
or uncomputable

TK (UNC & IMSc) Computers will Never Solve . . . 13 / 35

Decidability and computability

One may think that

1 whether a problem is decidable or undecidable

2 whether a function is computable or uncomputable

depends on the computing device we consider

TK (UNC & IMSc) Computers will Never Solve . . . 14 / 35

Decidability and computability

One may think that

1 whether a problem is decidable or undecidable

2 whether a function is computable or uncomputable

depends on the computing device we consider

TK (UNC & IMSc) Computers will Never Solve . . . 14 / 35

Decidability and computability

One may think that

1 whether a problem is decidable or undecidable

2 whether a function is computable or uncomputable

depends on the computing device we consider

TK (UNC & IMSc) Computers will Never Solve . . . 14 / 35

Decidability and computability

One may think that

1 whether a problem is decidable or undecidable

2 whether a function is computable or uncomputable

depends on the computing device we consider

TK (UNC & IMSc) Computers will Never Solve . . . 14 / 35

Decidability and computability

One may think that

1 whether a problem is decidable or undecidable

2 whether a function is computable or uncomputable

depends on the computing device we consider

TK (UNC & IMSc) Computers will Never Solve . . . 14 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine
Post machine
λ-calculus
(semi-) Thue systems
Post canonical systems
Von Neumann machine (computer)
Markov algorithms
Kolmogorov-Uspensky machine
Minsky machine
neural networks
quantum models
molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine
Post machine
λ-calculus
(semi-) Thue systems
Post canonical systems
Von Neumann machine (computer)
Markov algorithms
Kolmogorov-Uspensky machine
Minsky machine
neural networks
quantum models
molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine

Post machine
λ-calculus
(semi-) Thue systems
Post canonical systems
Von Neumann machine (computer)
Markov algorithms
Kolmogorov-Uspensky machine
Minsky machine
neural networks
quantum models
molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine
Post machine

λ-calculus
(semi-) Thue systems
Post canonical systems
Von Neumann machine (computer)
Markov algorithms
Kolmogorov-Uspensky machine
Minsky machine
neural networks
quantum models
molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine
Post machine
λ-calculus

(semi-) Thue systems
Post canonical systems
Von Neumann machine (computer)
Markov algorithms
Kolmogorov-Uspensky machine
Minsky machine
neural networks
quantum models
molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine
Post machine
λ-calculus
(semi-) Thue systems

Post canonical systems
Von Neumann machine (computer)
Markov algorithms
Kolmogorov-Uspensky machine
Minsky machine
neural networks
quantum models
molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine
Post machine
λ-calculus
(semi-) Thue systems
Post canonical systems

Von Neumann machine (computer)
Markov algorithms
Kolmogorov-Uspensky machine
Minsky machine
neural networks
quantum models
molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine
Post machine
λ-calculus
(semi-) Thue systems
Post canonical systems
Von Neumann machine (computer)

Markov algorithms
Kolmogorov-Uspensky machine
Minsky machine
neural networks
quantum models
molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine
Post machine
λ-calculus
(semi-) Thue systems
Post canonical systems
Von Neumann machine (computer)
Markov algorithms

Kolmogorov-Uspensky machine
Minsky machine
neural networks
quantum models
molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine
Post machine
λ-calculus
(semi-) Thue systems
Post canonical systems
Von Neumann machine (computer)
Markov algorithms
Kolmogorov-Uspensky machine

Minsky machine
neural networks
quantum models
molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine
Post machine
λ-calculus
(semi-) Thue systems
Post canonical systems
Von Neumann machine (computer)
Markov algorithms
Kolmogorov-Uspensky machine
Minsky machine

neural networks
quantum models
molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine
Post machine
λ-calculus
(semi-) Thue systems
Post canonical systems
Von Neumann machine (computer)
Markov algorithms
Kolmogorov-Uspensky machine
Minsky machine
neural networks

quantum models
molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine
Post machine
λ-calculus
(semi-) Thue systems
Post canonical systems
Von Neumann machine (computer)
Markov algorithms
Kolmogorov-Uspensky machine
Minsky machine
neural networks
quantum models

molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine
Post machine
λ-calculus
(semi-) Thue systems
Post canonical systems
Von Neumann machine (computer)
Markov algorithms
Kolmogorov-Uspensky machine
Minsky machine
neural networks
quantum models
molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Models of computation

Any physical device such as a (usual) computer corresponds to some

model of computation

Turing machine
Post machine
λ-calculus
(semi-) Thue systems
Post canonical systems
Von Neumann machine (computer)
Markov algorithms
Kolmogorov-Uspensky machine
Minsky machine
neural networks
quantum models
molecular models

TK (UNC & IMSc) Computers will Never Solve . . . 15 / 35

Church-Turing Thesis

Alonzo Church

1903 – 1995

Church-Turing Thesis (1936)

All feasible (unrestricted) models of compu-
tation lead to the same notion of computabil-
ity.

No physical device can solve an undecidable
problem or compute a function which is not
computable.

TK (UNC & IMSc) Computers will Never Solve . . . 16 / 35

Church-Turing Thesis

Alonzo Church

1903 – 1995

Church-Turing Thesis (1936)

All feasible (unrestricted) models of compu-
tation lead to the same notion of computabil-
ity.

No physical device can solve an undecidable
problem or compute a function which is not
computable.

TK (UNC & IMSc) Computers will Never Solve . . . 16 / 35

Church-Turing Thesis

Alonzo Church

1903 – 1995

Church-Turing Thesis (1936)

All feasible (unrestricted) models of compu-
tation lead to the same notion of computabil-
ity.

No physical device can solve an undecidable
problem or compute a function which is not
computable.

TK (UNC & IMSc) Computers will Never Solve . . . 16 / 35

Church-Turing Thesis

Alonzo Church

1903 – 1995

Church-Turing Thesis (1936)

All feasible (unrestricted) models of compu-
tation lead to the same notion of computabil-
ity.

No physical device can solve an undecidable
problem or compute a function which is not
computable.

TK (UNC & IMSc) Computers will Never Solve . . . 16 / 35

Entscheidungsproblem (1928)

David Hilbert Wilhelm Ackermann
1862 – 1943 1896 – 1962

stated in 1928 «The Decision Problem» or «Entscheidungsproblem».

Input : a set of 1st order axioms Φ and a 1st order formula ψ.
Question : Φ ⊧ψ?

TK (UNC & IMSc) Computers will Never Solve . . . 17 / 35

Entscheidungsproblem (1928)

David Hilbert Wilhelm Ackermann
1862 – 1943 1896 – 1962

stated in 1928 «The Decision Problem» or «Entscheidungsproblem».

Input : a set of 1st order axioms Φ and a 1st order formula ψ.
Question : Φ ⊧ψ?

TK (UNC & IMSc) Computers will Never Solve . . . 17 / 35

Entscheidungsproblem (1928)

David Hilbert Wilhelm Ackermann
1862 – 1943 1896 – 1962

stated in 1928 «The Decision Problem» or «Entscheidungsproblem».

Input : a set of 1st order axioms Φ and a 1st order formula ψ.
Question : Φ ⊧ψ?

TK (UNC & IMSc) Computers will Never Solve . . . 17 / 35

The basic undecidable problem

Alan Turing
1912 – 1954

1936 the concept of undecidability and
a negative answer to Entschei-
dungsproblem

1939-1943 deciphering German military
messages encrypted with en-
hanced Enigma machine

1950 the concept of artificial intelligence

1952 work on morphogenesis: reaction-
diffusion systems, Turing patterns

TK (UNC & IMSc) Computers will Never Solve . . . 18 / 35

The basic undecidable problem

Alan Turing
1912 – 1954

1936 the concept of undecidability and
a negative answer to Entschei-
dungsproblem

1939-1943 deciphering German military
messages encrypted with en-
hanced Enigma machine

1950 the concept of artificial intelligence

1952 work on morphogenesis: reaction-
diffusion systems, Turing patterns

TK (UNC & IMSc) Computers will Never Solve . . . 18 / 35

The basic undecidable problem

Alan Turing
1912 – 1954

1936 the concept of undecidability and
a negative answer to Entschei-
dungsproblem

1939-1943 deciphering German military
messages encrypted with en-
hanced Enigma machine

1950 the concept of artificial intelligence

1952 work on morphogenesis: reaction-
diffusion systems, Turing patterns

TK (UNC & IMSc) Computers will Never Solve . . . 18 / 35

The basic undecidable problem

Alan Turing
1912 – 1954

1936 the concept of undecidability and
a negative answer to Entschei-
dungsproblem

1939-1943 deciphering German military
messages encrypted with en-
hanced Enigma machine

1950 the concept of artificial intelligence

1952 work on morphogenesis: reaction-
diffusion systems, Turing patterns

TK (UNC & IMSc) Computers will Never Solve . . . 18 / 35

The basic undecidable problem

Alan Turing
1912 – 1954

1936 the concept of undecidability and
a negative answer to Entschei-
dungsproblem

1939-1943 deciphering German military
messages encrypted with en-
hanced Enigma machine

1950 the concept of artificial intelligence

1952 work on morphogenesis: reaction-
diffusion systems, Turing patterns

TK (UNC & IMSc) Computers will Never Solve . . . 18 / 35

The basic undecidable problem

One symbol is reserved as separation, for instance «£».

We only consider programs which take as input a string (viz., a finite
sequence of characters) and, upon termination, return

yes or no

However, a program may also not terminate. It then returns nothing.

Notation Let P be the set of all such programs.

TK (UNC & IMSc) Computers will Never Solve . . . 19 / 35

The basic undecidable problem

One symbol is reserved as separation, for instance «£».

We only consider programs which take as input a string (viz., a finite
sequence of characters) and, upon termination, return

yes or no

However, a program may also not terminate. It then returns nothing.

Notation Let P be the set of all such programs.

TK (UNC & IMSc) Computers will Never Solve . . . 19 / 35

The basic undecidable problem

One symbol is reserved as separation, for instance «£».

We only consider programs which take as input a string (viz., a finite
sequence of characters) and, upon termination, return

yes or no

However, a program may also not terminate. It then returns nothing.

Notation Let P be the set of all such programs.

TK (UNC & IMSc) Computers will Never Solve . . . 19 / 35

The basic undecidable problem

One symbol is reserved as separation, for instance «£».

We only consider programs which take as input a string (viz., a finite
sequence of characters) and, upon termination, return

yes or no

However, a program may also not terminate. It then returns nothing.

Notation Let P be the set of all such programs.

TK (UNC & IMSc) Computers will Never Solve . . . 19 / 35

The basic undecidable problem

One symbol is reserved as separation, for instance «£».

We only consider programs which take as input a string (viz., a finite
sequence of characters) and, upon termination, return

yes or no

However, a program may also not terminate. It then returns nothing.

Notation Let P be the set of all such programs.

TK (UNC & IMSc) Computers will Never Solve . . . 19 / 35

The basic undecidable problem

Observations

Each program is a string.

A program P ∈P together with an input string w may be written
as single string

P £w .

Notation

The result (yes or no) of a call of P on input w is written P (w).

Remark

Either assertion P (w) = yes
or P (w) = no

implies that the running time of P on input w is finite.

TK (UNC & IMSc) Computers will Never Solve . . . 20 / 35

The basic undecidable problem

Observations

Each program is a string.

A program P ∈P together with an input string w may be written
as single string

P £w .

Notation

The result (yes or no) of a call of P on input w is written P (w).

Remark

Either assertion P (w) = yes
or P (w) = no

implies that the running time of P on input w is finite.

TK (UNC & IMSc) Computers will Never Solve . . . 20 / 35

The basic undecidable problem

Observations

Each program is a string.

A program P ∈P together with an input string w may be written
as single string

P £w .

Notation

The result (yes or no) of a call of P on input w is written P (w).

Remark

Either assertion P (w) = yes
or P (w) = no

implies that the running time of P on input w is finite.

TK (UNC & IMSc) Computers will Never Solve . . . 20 / 35

The basic undecidable problem

Observations

Each program is a string.

A program P ∈P together with an input string w may be written
as single string

P £w .

Notation

The result (yes or no) of a call of P on input w is written P (w).

Remark

Either assertion P (w) = yes
or P (w) = no

implies that the running time of P on input w is finite.

TK (UNC & IMSc) Computers will Never Solve . . . 20 / 35

The basic undecidable problem

Observations

Each program is a string.

A program P ∈P together with an input string w may be written
as single string

P £w .

Notation

The result (yes or no) of a call of P on input w is written P (w).

Remark

Either assertion P (w) = yes
or P (w) = no

implies that the running time of P on input w is finite.

TK (UNC & IMSc) Computers will Never Solve . . . 20 / 35

The basic undecidable problem

Observations

Each program is a string.

A program P ∈P together with an input string w may be written
as single string

P £w .

Notation

The result (yes or no) of a call of P on input w is written P (w).

Remark

Either assertion P (w) = yes
or P (w) = no

implies that the running time of P on input w is finite.

TK (UNC & IMSc) Computers will Never Solve . . . 20 / 35

The basic undecidable problem

Observations

Each program is a string.

A program P ∈P together with an input string w may be written
as single string

P £w .

Notation

The result (yes or no) of a call of P on input w is written P (w).

Remark

Either assertion P (w) = yes
or P (w) = no

implies that the running time of P on input w is finite.

TK (UNC & IMSc) Computers will Never Solve . . . 20 / 35

The basic undecidable problem

Observations

Each program is a string.

A program P ∈P together with an input string w may be written
as single string

P £w .

Notation

The result (yes or no) of a call of P on input w is written P (w).

Remark

Either assertion P (w) = yes
or P (w) = no

implies that the running time of P on input w is finite.

TK (UNC & IMSc) Computers will Never Solve . . . 20 / 35

The basic undecidable problem

The membership problem

(for recursively enumerable languages)

Input : a program P ∈P and a string w
Question : P (w) = yes ?

Theorem (Turing 1936)

The membership problem undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 21 / 35

The basic undecidable problem

The membership problem

(for recursively enumerable languages)

Input : a program P ∈P and a string w
Question : P (w) = yes ?

Theorem (Turing 1936)

The membership problem undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 21 / 35

Proof of the theorem

Assume by contradiction that the membership problem is decidable.

Then, there is an algorithm implemented as some program R ∈P
which takes as input

any program P ∈P and
any string w

under the form of a single string P £w,

which always terminates and returns

yes if P (w) = yes
no otherwise.

In case when P does not terminate on input w
R returns no .

If the input is not of the form P £w,
R also returns no .

TK (UNC & IMSc) Computers will Never Solve . . . 22 / 35

Proof of the theorem

Assume by contradiction that the membership problem is decidable.
Then, there is an algorithm implemented as some program R ∈P
which takes as input

any program P ∈P and
any string w

under the form of a single string P £w,

which always terminates and returns

yes if P (w) = yes
no otherwise.

In case when P does not terminate on input w
R returns no .

If the input is not of the form P £w,
R also returns no .

TK (UNC & IMSc) Computers will Never Solve . . . 22 / 35

Proof of the theorem

Assume by contradiction that the membership problem is decidable.
Then, there is an algorithm implemented as some program R ∈P
which takes as input

any program P ∈P and

any string w

under the form of a single string P £w,

which always terminates and returns

yes if P (w) = yes
no otherwise.

In case when P does not terminate on input w
R returns no .

If the input is not of the form P £w,
R also returns no .

TK (UNC & IMSc) Computers will Never Solve . . . 22 / 35

Proof of the theorem

Assume by contradiction that the membership problem is decidable.
Then, there is an algorithm implemented as some program R ∈P
which takes as input

any program P ∈P and
any string w

under the form of a single string P £w,

which always terminates and returns

yes if P (w) = yes
no otherwise.

In case when P does not terminate on input w
R returns no .

If the input is not of the form P £w,
R also returns no .

TK (UNC & IMSc) Computers will Never Solve . . . 22 / 35

Proof of the theorem

Assume by contradiction that the membership problem is decidable.
Then, there is an algorithm implemented as some program R ∈P
which takes as input

any program P ∈P and
any string w

under the form of a single string P £w,

which always terminates and returns

yes if P (w) = yes
no otherwise.

In case when P does not terminate on input w
R returns no .

If the input is not of the form P £w,
R also returns no .

TK (UNC & IMSc) Computers will Never Solve . . . 22 / 35

Proof of the theorem

Assume by contradiction that the membership problem is decidable.
Then, there is an algorithm implemented as some program R ∈P
which takes as input

any program P ∈P and
any string w

under the form of a single string P £w,

which always terminates and returns

yes if P (w) = yes
no otherwise.

In case when P does not terminate on input w
R returns no .

If the input is not of the form P £w,
R also returns no .

TK (UNC & IMSc) Computers will Never Solve . . . 22 / 35

Proof of the theorem

Assume by contradiction that the membership problem is decidable.
Then, there is an algorithm implemented as some program R ∈P
which takes as input

any program P ∈P and
any string w

under the form of a single string P £w,

which always terminates and returns

yes if P (w) = yes

no otherwise.

In case when P does not terminate on input w
R returns no .

If the input is not of the form P £w,
R also returns no .

TK (UNC & IMSc) Computers will Never Solve . . . 22 / 35

Proof of the theorem

Assume by contradiction that the membership problem is decidable.
Then, there is an algorithm implemented as some program R ∈P
which takes as input

any program P ∈P and
any string w

under the form of a single string P £w,

which always terminates and returns

yes if P (w) = yes
no otherwise.

In case when P does not terminate on input w
R returns no .

If the input is not of the form P £w,
R also returns no .

TK (UNC & IMSc) Computers will Never Solve . . . 22 / 35

Proof of the theorem

Assume by contradiction that the membership problem is decidable.
Then, there is an algorithm implemented as some program R ∈P
which takes as input

any program P ∈P and
any string w

under the form of a single string P £w,

which always terminates and returns

yes if P (w) = yes
no otherwise.

In case when P does not terminate on input w

R returns no .

If the input is not of the form P £w,
R also returns no .

TK (UNC & IMSc) Computers will Never Solve . . . 22 / 35

Proof of the theorem

Assume by contradiction that the membership problem is decidable.
Then, there is an algorithm implemented as some program R ∈P
which takes as input

any program P ∈P and
any string w

under the form of a single string P £w,

which always terminates and returns

yes if P (w) = yes
no otherwise.

In case when P does not terminate on input w
R returns no .

If the input is not of the form P £w,
R also returns no .

TK (UNC & IMSc) Computers will Never Solve . . . 22 / 35

Proof of the theorem

Assume by contradiction that the membership problem is decidable.
Then, there is an algorithm implemented as some program R ∈P
which takes as input

any program P ∈P and
any string w

under the form of a single string P £w,

which always terminates and returns

yes if P (w) = yes
no otherwise.

In case when P does not terminate on input w
R returns no .

If the input is not of the form P £w,

R also returns no .

TK (UNC & IMSc) Computers will Never Solve . . . 22 / 35

Proof of the theorem

Assume by contradiction that the membership problem is decidable.
Then, there is an algorithm implemented as some program R ∈P
which takes as input

any program P ∈P and
any string w

under the form of a single string P £w,

which always terminates and returns

yes if P (w) = yes
no otherwise.

In case when P does not terminate on input w
R returns no .

If the input is not of the form P £w,
R also returns no .

TK (UNC & IMSc) Computers will Never Solve . . . 22 / 35

Proof of the theorem

We write the following program, which calls R:

program S(P ∶ string)
if R(P £P) = yes

return no
else

return yes

We wish to know what S returns when called with input S.

case 1 S(S) = yes . Then R(S£S) = no . Hence S(S) = no .

Contradiction.

case 2 S(S) = no . Then R(S£S) = yes . Hence S(S) = yes .

Contradiction.

◻

TK (UNC & IMSc) Computers will Never Solve . . . 23 / 35

Proof of the theorem

We write the following program, which calls R:

program S(P ∶ string)
if R(P £P) = yes

return no
else

return yes

We wish to know what S returns when called with input S.

case 1 S(S) = yes . Then R(S£S) = no . Hence S(S) = no .

Contradiction.

case 2 S(S) = no . Then R(S£S) = yes . Hence S(S) = yes .

Contradiction.

◻

TK (UNC & IMSc) Computers will Never Solve . . . 23 / 35

Proof of the theorem

We write the following program, which calls R:

program S(P ∶ string)
if R(P £P) = yes

return no
else

return yes

We wish to know what S returns when called with input S.

case 1 S(S) = yes . Then R(S£S) = no . Hence S(S) = no .

Contradiction.

case 2 S(S) = no . Then R(S£S) = yes . Hence S(S) = yes .

Contradiction.

◻

TK (UNC & IMSc) Computers will Never Solve . . . 23 / 35

Proof of the theorem

We write the following program, which calls R:

program S(P ∶ string)
if R(P £P) = yes

return no
else

return yes

We wish to know what S returns when called with input S.

case 1 S(S) = yes .

Then R(S£S) = no . Hence S(S) = no .

Contradiction.

case 2 S(S) = no . Then R(S£S) = yes . Hence S(S) = yes .

Contradiction.

◻

TK (UNC & IMSc) Computers will Never Solve . . . 23 / 35

Proof of the theorem

We write the following program, which calls R:

program S(P ∶ string)
if R(P £P) = yes

return no
else

return yes

We wish to know what S returns when called with input S.

case 1 S(S) = yes . Then R(S£S) = no .

Hence S(S) = no .

Contradiction.

case 2 S(S) = no . Then R(S£S) = yes . Hence S(S) = yes .

Contradiction.

◻

TK (UNC & IMSc) Computers will Never Solve . . . 23 / 35

Proof of the theorem

We write the following program, which calls R:

program S(P ∶ string)
if R(P £P) = yes

return no
else

return yes

We wish to know what S returns when called with input S.

case 1 S(S) = yes . Then R(S£S) = no . Hence S(S) = no .

Contradiction.

case 2 S(S) = no . Then R(S£S) = yes . Hence S(S) = yes .

Contradiction.

◻

TK (UNC & IMSc) Computers will Never Solve . . . 23 / 35

Proof of the theorem

We write the following program, which calls R:

program S(P ∶ string)
if R(P £P) = yes

return no
else

return yes

We wish to know what S returns when called with input S.

case 1 S(S) = yes . Then R(S£S) = no . Hence S(S) = no .

Contradiction.

case 2 S(S) = no . Then R(S£S) = yes . Hence S(S) = yes .

Contradiction.

◻

TK (UNC & IMSc) Computers will Never Solve . . . 23 / 35

Proof of the theorem

We write the following program, which calls R:

program S(P ∶ string)
if R(P £P) = yes

return no
else

return yes

We wish to know what S returns when called with input S.

case 1 S(S) = yes . Then R(S£S) = no . Hence S(S) = no .

Contradiction.

case 2 S(S) = no .

Then R(S£S) = yes . Hence S(S) = yes .

Contradiction.

◻

TK (UNC & IMSc) Computers will Never Solve . . . 23 / 35

Proof of the theorem

We write the following program, which calls R:

program S(P ∶ string)
if R(P £P) = yes

return no
else

return yes

We wish to know what S returns when called with input S.

case 1 S(S) = yes . Then R(S£S) = no . Hence S(S) = no .

Contradiction.

case 2 S(S) = no . Then R(S£S) = yes .

Hence S(S) = yes .

Contradiction.

◻

TK (UNC & IMSc) Computers will Never Solve . . . 23 / 35

Proof of the theorem

We write the following program, which calls R:

program S(P ∶ string)
if R(P £P) = yes

return no
else

return yes

We wish to know what S returns when called with input S.

case 1 S(S) = yes . Then R(S£S) = no . Hence S(S) = no .

Contradiction.

case 2 S(S) = no . Then R(S£S) = yes . Hence S(S) = yes .

Contradiction.

◻

TK (UNC & IMSc) Computers will Never Solve . . . 23 / 35

Proof of the theorem

We write the following program, which calls R:

program S(P ∶ string)
if R(P £P) = yes

return no
else

return yes

We wish to know what S returns when called with input S.

case 1 S(S) = yes . Then R(S£S) = no . Hence S(S) = no .

Contradiction.

case 2 S(S) = no . Then R(S£S) = yes . Hence S(S) = yes .

Contradiction.

◻

TK (UNC & IMSc) Computers will Never Solve . . . 23 / 35

Proof of the theorem

We write the following program, which calls R:

program S(P ∶ string)
if R(P £P) = yes

return no
else

return yes

We wish to know what S returns when called with input S.

case 1 S(S) = yes . Then R(S£S) = no . Hence S(S) = no .

Contradiction.

case 2 S(S) = no . Then R(S£S) = yes . Hence S(S) = yes .

Contradiction.

◻
TK (UNC & IMSc) Computers will Never Solve . . . 23 / 35

Problem reduction

Instead of proving undecidability of a problem from scratch, it is often
convenient to proceed through problem reduction

Definition
P1 = ⟨E1,Yes1⟩ is many-one reducible to P2 = ⟨E2,Yes2⟩,

if there exists a computable map %∶E1→ E2

such that, for all e ∈ E1

e ∈ Yes1 ⇔ %(e) ∈ Yes2

P1 undecidable ⇒ P2 undecidable
P2 decidable ⇒ P1 decidable

TK (UNC & IMSc) Computers will Never Solve . . . 24 / 35

Problem reduction

Instead of proving undecidability of a problem from scratch, it is often
convenient to proceed through problem reduction

Definition
P1 = ⟨E1,Yes1⟩ is many-one reducible to P2 = ⟨E2,Yes2⟩,

if there exists a computable map %∶E1→ E2

such that, for all e ∈ E1

e ∈ Yes1 ⇔ %(e) ∈ Yes2

P1 undecidable ⇒ P2 undecidable
P2 decidable ⇒ P1 decidable

TK (UNC & IMSc) Computers will Never Solve . . . 24 / 35

Problem reduction

Instead of proving undecidability of a problem from scratch, it is often
convenient to proceed through problem reduction

Definition
P1 = ⟨E1,Yes1⟩ is many-one reducible to P2 = ⟨E2,Yes2⟩,

if there exists a computable map %∶E1→ E2

such that, for all e ∈ E1

e ∈ Yes1 ⇔ %(e) ∈ Yes2

P1 undecidable ⇒ P2 undecidable
P2 decidable ⇒ P1 decidable

TK (UNC & IMSc) Computers will Never Solve . . . 24 / 35

Problem reduction

Instead of proving undecidability of a problem from scratch, it is often
convenient to proceed through problem reduction

Definition
P1 = ⟨E1,Yes1⟩ is many-one reducible to P2 = ⟨E2,Yes2⟩,

if there exists a computable map %∶E1→ E2

such that, for all e ∈ E1

e ∈ Yes1 ⇔ %(e) ∈ Yes2

P1 undecidable ⇒ P2 undecidable
P2 decidable ⇒ P1 decidable

TK (UNC & IMSc) Computers will Never Solve . . . 24 / 35

Problem reduction

Instead of proving undecidability of a problem from scratch, it is often
convenient to proceed through problem reduction

Definition
P1 = ⟨E1,Yes1⟩ is many-one reducible to P2 = ⟨E2,Yes2⟩,

if there exists a computable map %∶E1→ E2

such that, for all e ∈ E1

e ∈ Yes1 ⇔ %(e) ∈ Yes2

P1 undecidable ⇒ P2 undecidable
P2 decidable ⇒ P1 decidable

TK (UNC & IMSc) Computers will Never Solve . . . 24 / 35

Problem reduction (example)

We may reduce Post’s correspondence problem into the membership
problem.

To every instance of Post’s correspondence problem we associate
a program which tries all sequences of pairs of words in canonical
order.

It is easy to write a program suitable for all instances.

1 2 3

ba a aab

a aab b

1 2 3

21 22 23

221 222 223

2211 2213

TK (UNC & IMSc) Computers will Never Solve . . . 25 / 35

Problem reduction (example)

We may reduce Post’s correspondence problem into the membership
problem.

To every instance of Post’s correspondence problem we associate
a program which tries all sequences of pairs of words in canonical
order.

It is easy to write a program suitable for all instances.

1 2 3

ba a aab

a aab b

1 2 3

21 22 23

221 222 223

2211 2213

TK (UNC & IMSc) Computers will Never Solve . . . 25 / 35

Problem reduction (example)

We may reduce Post’s correspondence problem into the membership
problem.

To every instance of Post’s correspondence problem we associate
a program which tries all sequences of pairs of words in canonical
order.

It is easy to write a program suitable for all instances.

1 2 3

ba a aab

a aab b

1 2 3

21 22 23

221 222 223

2211 2213

TK (UNC & IMSc) Computers will Never Solve . . . 25 / 35

Problem reduction (example)

We may reduce Post’s correspondence problem into the membership
problem.

To every instance of Post’s correspondence problem we associate
a program which tries all sequences of pairs of words in canonical
order.

It is easy to write a program suitable for all instances.

1 2 3

ba a aab

a aab b

1 2 3

21 22 23

221 222 223

2211 2213

TK (UNC & IMSc) Computers will Never Solve . . . 25 / 35

Problem reduction (example)

We may reduce Post’s correspondence problem into the membership
problem.

To every instance of Post’s correspondence problem we associate
a program which tries all sequences of pairs of words in canonical
order.

It is easy to write a program suitable for all instances.

1 2 3

ba a aab

a aab b

1 2 3

21 22 23

221 222 223

2211 2213

TK (UNC & IMSc) Computers will Never Solve . . . 25 / 35

Problem reduction (example)

We may reduce Post’s correspondence problem into the membership
problem.

To every instance of Post’s correspondence problem we associate
a program which tries all sequences of pairs of words in canonical
order.

It is easy to write a program suitable for all instances.

1 2 3

ba a aab

a aab b

1 2 3

21 22 23

221 222 223

2211 2213

TK (UNC & IMSc) Computers will Never Solve . . . 25 / 35

Hilbert’s tenth problem

Input : a multivariate polynomial p(x1, . . . ,xn) with integer coef-
ficients.

Question : Has

p(x1, . . . ,xn) = 0 (a Diophantine equation)

a solution in ZZn ?

Theorem (Matiyasevich 1970)
Hilbert’s tenth problem is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 26 / 35

Hilbert’s tenth problem

Input : a multivariate polynomial p(x1, . . . ,xn) with integer coef-
ficients.

Question : Has

p(x1, . . . ,xn) = 0 (a Diophantine equation)

a solution in ZZn ?

Theorem (Matiyasevich 1970)
Hilbert’s tenth problem is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 26 / 35

Problems involving real numbers

Let Φ1 be a set of formula with real variables built using

1, “+”, “⋅”
“≤”
logical connectives (“⇒”, “¬”, “∧”, etc.),
quantifiers (“∃”, “∀”).

Theorem (Tarski 1930)
The following problem

Input : ψ ∈Φ1

Question : Does ψ hold in the field real numbers ?

is decidable.

∃x1 . . .∃xn p(x1, . . . ,xn) = 0

TK (UNC & IMSc) Computers will Never Solve . . . 27 / 35

Problems involving real numbers

Let Φ1 be a set of formula with real variables built using
1, “+”, “⋅”

“≤”
logical connectives (“⇒”, “¬”, “∧”, etc.),
quantifiers (“∃”, “∀”).

Theorem (Tarski 1930)
The following problem

Input : ψ ∈Φ1

Question : Does ψ hold in the field real numbers ?

is decidable.

∃x1 . . .∃xn p(x1, . . . ,xn) = 0

TK (UNC & IMSc) Computers will Never Solve . . . 27 / 35

Problems involving real numbers

Let Φ1 be a set of formula with real variables built using
1, “+”, “⋅”
“≤”

logical connectives (“⇒”, “¬”, “∧”, etc.),
quantifiers (“∃”, “∀”).

Theorem (Tarski 1930)
The following problem

Input : ψ ∈Φ1

Question : Does ψ hold in the field real numbers ?

is decidable.

∃x1 . . .∃xn p(x1, . . . ,xn) = 0

TK (UNC & IMSc) Computers will Never Solve . . . 27 / 35

Problems involving real numbers

Let Φ1 be a set of formula with real variables built using
1, “+”, “⋅”
“≤”
logical connectives (“⇒”, “¬”, “∧”, etc.),

quantifiers (“∃”, “∀”).

Theorem (Tarski 1930)
The following problem

Input : ψ ∈Φ1

Question : Does ψ hold in the field real numbers ?

is decidable.

∃x1 . . .∃xn p(x1, . . . ,xn) = 0

TK (UNC & IMSc) Computers will Never Solve . . . 27 / 35

Problems involving real numbers

Let Φ1 be a set of formula with real variables built using
1, “+”, “⋅”
“≤”
logical connectives (“⇒”, “¬”, “∧”, etc.),
quantifiers (“∃”, “∀”).

Theorem (Tarski 1930)
The following problem

Input : ψ ∈Φ1

Question : Does ψ hold in the field real numbers ?

is decidable.

∃x1 . . .∃xn p(x1, . . . ,xn) = 0

TK (UNC & IMSc) Computers will Never Solve . . . 27 / 35

Problems involving real numbers

Let Φ1 be a set of formula with real variables built using
1, “+”, “⋅”
“≤”
logical connectives (“⇒”, “¬”, “∧”, etc.),
quantifiers (“∃”, “∀”).

Theorem (Tarski 1930)
The following problem

Input : ψ ∈Φ1

Question : Does ψ hold in the field real numbers ?

is decidable.

∃x1 . . .∃xn p(x1, . . . ,xn) = 0

TK (UNC & IMSc) Computers will Never Solve . . . 27 / 35

Problems involving real numbers

Let Φ1 be a set of formula with real variables built using
1, “+”, “⋅”
“≤”
logical connectives (“⇒”, “¬”, “∧”, etc.),
quantifiers (“∃”, “∀”).

Theorem (Tarski 1930)
The following problem

Input : ψ ∈Φ1

Question : Does ψ hold in the field real numbers ?

is decidable.

∃x1 . . .∃xn p(x1, . . . ,xn) = 0

TK (UNC & IMSc) Computers will Never Solve . . . 27 / 35

Problems involving real numbers

Let Φ1 be a set of formula with real variables built using
1, “+”, “⋅”
“≤”
logical connectives (“⇒”, “¬”, “∧”, etc.),
quantifiers (“∃”, “∀”).

Theorem (Tarski 1930)
The following problem

Input : ψ ∈Φ1

Question : Does ψ hold in the field real numbers ?

is decidable.

∃x1 . . .∃xn p(x1, . . . ,xn) = 0

TK (UNC & IMSc) Computers will Never Solve . . . 27 / 35

Problems involving real numbers

Let Φ1 be a set of formula with real variables built using
1, “+”, “⋅”
“≤”
logical connectives (“⇒”, “¬”, “∧”, etc.),
quantifiers (“∃”, “∀”).

Theorem (Tarski 1930)
The following problem

Input : ψ ∈Φ1

Question : Does ψ hold in the field real numbers ?

is decidable.

∃x1 . . .∃xn p(x1, . . . ,xn) = 0

TK (UNC & IMSc) Computers will Never Solve . . . 27 / 35

Problems involving real numbers

Let F0 be a class of function of several real variables that can be
constructed by composition of

1, “+”, “⋅”, “sin”

Theorem (Richardson, Caviness, Wang, Laczkovich)
The following problem

Input : f (x1, . . . ,xn) ∈F0

Question : Has
f (x1, . . . ,xn) = 0

a real solution ?

is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 28 / 35

Problems involving real numbers

Let F0 be a class of function of several real variables that can be
constructed by composition of

1, “+”, “⋅”, “sin”

Theorem (Richardson, Caviness, Wang, Laczkovich)
The following problem

Input : f (x1, . . . ,xn) ∈F0

Question : Has
f (x1, . . . ,xn) = 0

a real solution ?

is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 28 / 35

Problems involving real numbers

Let F0 be a class of function of several real variables that can be
constructed by composition of

1, “+”, “⋅”, “sin”

Theorem (Richardson, Caviness, Wang, Laczkovich)
The following problem

Input : f (x1, . . . ,xn) ∈F0

Question : Has
f (x1, . . . ,xn) = 0

a real solution ?

is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 28 / 35

Problems involving real numbers

Let F0 be a class of function of several real variables that can be
constructed by composition of

1, “+”, “⋅”, “sin”

Theorem (Richardson, Caviness, Wang, Laczkovich)
The following problem

Input : f (x1, . . . ,xn) ∈F0

Question : Has
f (x1, . . . ,xn) = 0

a real solution ?

is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 28 / 35

Problems involving real numbers

Let G be a class of function of several real variables that can be
constructed by composition of

1, “+”, “⋅”, “exp”

Open problem

Input : g(x1, . . . ,xn) ∈ G
Question : Has

g(x1, . . . ,xn) = 0

a real solution ?

TK (UNC & IMSc) Computers will Never Solve . . . 29 / 35

Problems involving real numbers

Let G be a class of function of several real variables that can be
constructed by composition of

1, “+”, “⋅”, “exp”

Open problem

Input : g(x1, . . . ,xn) ∈ G
Question : Has

g(x1, . . . ,xn) = 0

a real solution ?

TK (UNC & IMSc) Computers will Never Solve . . . 29 / 35

Problems involving real numbers

Let G be a class of function of several real variables that can be
constructed by composition of

1, “+”, “⋅”, “exp”

Open problem

Input : g(x1, . . . ,xn) ∈ G
Question : Has

g(x1, . . . ,xn) = 0

a real solution ?

TK (UNC & IMSc) Computers will Never Solve . . . 29 / 35

Some consequences of Matiyasevich’s Theorem

Theorem
The following problem

Input : a system of ordinary differential equations
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p1(x,f1(x), f2(x), . . . , fn(x), f ′1(x)) = 0
⋮ ⋮ ⋮
pn(x,f1(x), f2(x), . . . , fn(x), f ′n(x)) = 0

Question : Has the system a solution on the interval [0,1] ?

is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 30 / 35

Some consequences of Matiyasevich’s Theorem

Theorem
The following problem

Input : a system of ordinary differential equations
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p1(x,f1(x), f2(x), . . . , fn(x), f ′1(x)) = 0
⋮ ⋮ ⋮
pn(x,f1(x), f2(x), . . . , fn(x), f ′n(x)) = 0

Question : Has the system a solution on the interval [0,1] ?

is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 30 / 35

Some consequences of Matiyasevich’s Theorem

Let F3 be a class of functions of one real variable that can be
constructed by composition of

1, “+”, “−”, “⋅”, “÷”, “sin”

Theorem
The following problem

Input : a function f ∈F3

Question : Does ∫ +∞−∞
f (x)dx converge ?

is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 31 / 35

Some consequences of Matiyasevich’s Theorem

Let F3 be a class of functions of one real variable that can be
constructed by composition of

1, “+”, “−”, “⋅”, “÷”, “sin”

Theorem
The following problem

Input : a function f ∈F3

Question : Does ∫ +∞−∞
f (x)dx converge ?

is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 31 / 35

Some consequences of Matiyasevich’s Theorem

Let F3 be a class of functions of one real variable that can be
constructed by composition of

1, “+”, “−”, “⋅”, “÷”, “sin”

Theorem
The following problem

Input : a function f ∈F3

Question : Does ∫ +∞−∞
f (x)dx converge ?

is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 31 / 35

Some consequences of Matiyasevich’s Theorem

Let F2 be a class of functions of one real variable that can be
constructed by composition of

1, “+”, “−”, “⋅”, “÷”, “sin”, absolute value

Let F4 and F5 be classes of functions of one real variable s.t.

F2 ⊆F4

F4 is closed under multiplication

At least one function in F4 has no antiderivative in F5.

Theorem
The following problem

Input : a function f ∈F4
Question : Is there F ∈F5 s.t. F′(x) = f (x) ?

is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 32 / 35

Some consequences of Matiyasevich’s Theorem

Let F2 be a class of functions of one real variable that can be
constructed by composition of

1, “+”, “−”, “⋅”, “÷”, “sin”, absolute value

Let F4 and F5 be classes of functions of one real variable s.t.

F2 ⊆F4

F4 is closed under multiplication

At least one function in F4 has no antiderivative in F5.

Theorem
The following problem

Input : a function f ∈F4
Question : Is there F ∈F5 s.t. F′(x) = f (x) ?

is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 32 / 35

Some consequences of Matiyasevich’s Theorem

Let F2 be a class of functions of one real variable that can be
constructed by composition of

1, “+”, “−”, “⋅”, “÷”, “sin”, absolute value

Let F4 and F5 be classes of functions of one real variable s.t.

F2 ⊆F4

F4 is closed under multiplication

At least one function in F4 has no antiderivative in F5.

Theorem
The following problem

Input : a function f ∈F4
Question : Is there F ∈F5 s.t. F′(x) = f (x) ?

is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 32 / 35

Some consequences of Matiyasevich’s Theorem

Let F2 be a class of functions of one real variable that can be
constructed by composition of

1, “+”, “−”, “⋅”, “÷”, “sin”, absolute value

Let F4 and F5 be classes of functions of one real variable s.t.

F2 ⊆F4

F4 is closed under multiplication

At least one function in F4 has no antiderivative in F5.

Theorem
The following problem

Input : a function f ∈F4
Question : Is there F ∈F5 s.t. F′(x) = f (x) ?

is undecidable.

TK (UNC & IMSc) Computers will Never Solve . . . 32 / 35

Some consequences of Matiyasevich’s Theorem

There are many methods for solving Diophantine equations of
specific forms.

However, some individual Diophantine equations may be very
difficult to solve.

For every following conjecture/theorem, individual Diophantine
equation has been constructed such that

the conjecture/theorem holds iff the corresponding Diophantine
equation has a solution

Goldbach’s Conjecture,

Riemann’s Hypothesis,

Fermat’s Last Theorem,

Four Colour Theorem.

TK (UNC & IMSc) Computers will Never Solve . . . 33 / 35

Some consequences of Matiyasevich’s Theorem

There are many methods for solving Diophantine equations of
specific forms.

However, some individual Diophantine equations may be very
difficult to solve.

For every following conjecture/theorem, individual Diophantine
equation has been constructed such that

the conjecture/theorem holds iff the corresponding Diophantine
equation has a solution

Goldbach’s Conjecture,

Riemann’s Hypothesis,

Fermat’s Last Theorem,

Four Colour Theorem.

TK (UNC & IMSc) Computers will Never Solve . . . 33 / 35

Some consequences of Matiyasevich’s Theorem

There are many methods for solving Diophantine equations of
specific forms.

However, some individual Diophantine equations may be very
difficult to solve.

For every following conjecture/theorem, individual Diophantine
equation has been constructed such that

the conjecture/theorem holds iff the corresponding Diophantine
equation has a solution

Goldbach’s Conjecture,

Riemann’s Hypothesis,

Fermat’s Last Theorem,

Four Colour Theorem.

TK (UNC & IMSc) Computers will Never Solve . . . 33 / 35

Some consequences of Matiyasevich’s Theorem

There are many methods for solving Diophantine equations of
specific forms.

However, some individual Diophantine equations may be very
difficult to solve.

For every following conjecture/theorem, individual Diophantine
equation has been constructed such that

the conjecture/theorem holds iff the corresponding Diophantine
equation has a solution

Goldbach’s Conjecture,

Riemann’s Hypothesis,

Fermat’s Last Theorem,

Four Colour Theorem.

TK (UNC & IMSc) Computers will Never Solve . . . 33 / 35

Some consequences of Matiyasevich’s Theorem

There are many methods for solving Diophantine equations of
specific forms.

However, some individual Diophantine equations may be very
difficult to solve.

For every following conjecture/theorem, individual Diophantine
equation has been constructed such that

the conjecture/theorem holds iff the corresponding Diophantine
equation has a solution

Goldbach’s Conjecture,

Riemann’s Hypothesis,

Fermat’s Last Theorem,

Four Colour Theorem.

TK (UNC & IMSc) Computers will Never Solve . . . 33 / 35

Some consequences of Matiyasevich’s Theorem

There are many methods for solving Diophantine equations of
specific forms.

However, some individual Diophantine equations may be very
difficult to solve.

For every following conjecture/theorem, individual Diophantine
equation has been constructed such that

the conjecture/theorem holds iff the corresponding Diophantine
equation has a solution

Goldbach’s Conjecture,

Riemann’s Hypothesis,

Fermat’s Last Theorem,

Four Colour Theorem.

TK (UNC & IMSc) Computers will Never Solve . . . 33 / 35

Some consequences of Matiyasevich’s Theorem

There are many methods for solving Diophantine equations of
specific forms.

However, some individual Diophantine equations may be very
difficult to solve.

For every following conjecture/theorem, individual Diophantine
equation has been constructed such that

the conjecture/theorem holds iff the corresponding Diophantine
equation has a solution

Goldbach’s Conjecture,

Riemann’s Hypothesis,

Fermat’s Last Theorem,

Four Colour Theorem.

TK (UNC & IMSc) Computers will Never Solve . . . 33 / 35

Some consequences of Matiyasevich’s Theorem

There are many methods for solving Diophantine equations of
specific forms.

However, some individual Diophantine equations may be very
difficult to solve.

For every following conjecture/theorem, individual Diophantine
equation has been constructed such that

the conjecture/theorem holds iff the corresponding Diophantine
equation has a solution

Goldbach’s Conjecture,

Riemann’s Hypothesis,

Fermat’s Last Theorem,

Four Colour Theorem.

TK (UNC & IMSc) Computers will Never Solve . . . 33 / 35

Some consequences of Matiyasevich’s Theorem

There are many methods for solving Diophantine equations of
specific forms.

However, some individual Diophantine equations may be very
difficult to solve.

For every following conjecture/theorem, individual Diophantine
equation has been constructed such that

the conjecture/theorem holds iff the corresponding Diophantine
equation has a solution

Goldbach’s Conjecture,

Riemann’s Hypothesis,

Fermat’s Last Theorem,

Four Colour Theorem.

TK (UNC & IMSc) Computers will Never Solve . . . 33 / 35

Problems that can be solved only for small inputs

In addition to undecidable problems, there are decidable problems
which are untractable because they require an exponential amount of
resources with respect to the input size.

Example

Input : a finite set E, a set of mappings F ⊆ EE and a map
f ∶E→ E.

Question : Is f a composition of some mappings from F ?

TK (UNC & IMSc) Computers will Never Solve . . . 34 / 35

Problems that can be solved only for small inputs

In addition to undecidable problems, there are decidable problems
which are untractable because they require an exponential amount of
resources with respect to the input size.

Example

Input : a finite set E, a set of mappings F ⊆ EE and a map
f ∶E→ E.

Question : Is f a composition of some mappings from F ?

TK (UNC & IMSc) Computers will Never Solve . . . 34 / 35

Thank you

TK (UNC & IMSc) Computers will Never Solve . . . 35 / 35

	Puzzle
	Program
	Post
	Decidability and computability

