Symmetric Functions: Problem Set 9

- 1. Show that the definitions of the induced representation $\operatorname{Ind}_{H}^{G}(W)$ (given in lecture) make it a representation of G.
- 2. Prove Frobenius reciprocity; given a *H*-map $f : W \to U$, there is a unique *G*-map \tilde{f} such that $\tilde{f} \circ i = f$ where *i* is the natural inclusion from $W \to \operatorname{Ind}_{H}^{G}(W)$.
- 3. For each irrep W of S_3 , compute the decomposition of $\operatorname{Ind}_{S_3}^{S_4} W$ into irreps of S_4 , using the inner product version of Frobenius reciprocity.
- 4. If X is a transitive G-set and H is the stabilizer of an element of X, prove that $\operatorname{Ind}_{H}^{G}(W)$ is isomorphic to $\mathbb{C}[X]$, where W is the one dimensional trivial representation of H.
- 5. Let W be an irrep of H. Prove that $\langle \operatorname{Ind}_{H}^{G}(W), \operatorname{Ind}_{H}^{G}(W) \rangle \leq [G:H].$