Symmetric Functions: Problem Set 8

- 1. Use multiribbon tableaux to compute the character table of S_n for n = 2, 3, 4, 5.
- 2. Consider the partition $\lambda = (n, 1)$. Prove that $\chi^{\lambda}(w) = f 1$ where f is the number of fixed points of the permutation $w \in S_{n+1}$.
- 3. Let $\delta = (n 1, n 2, \dots, 0)$. Show that s_{δ} is a polynomial in the odd power sums p_1, p_3, p_5, \dots .
- 4. Prove that the inner product on Λ_n has the following description:

$$\langle f,g\rangle = \frac{1}{n!} ($$
 the constant term of the product $(a_{\delta}f)(a_{\delta}g)^*)$

where for a polynomial $f(x_1, x_2, \dots, x_n)$, we let f^* denote $f(x_1^{-1}, x_2^{-1}, \dots, x_n^{-1})$.