Symmetric Functions: Problem Set 7

- 1. Let $\{u_{\lambda}\}, \{u'_{\lambda}\}$ (and similarly $\{v_{\lambda}\}, \{v'_{\lambda}\}$) be a pair of dual bases of Λ with respect to the form \langle, \rangle . If $\vec{u} = \vec{v}A$, prove that $\vec{v'} = \vec{u'}A'$.
- 2. Let $\lambda, \mu \in Par(d)$. Prove that if λ is a refinement of μ , then λ occurs after μ in reverse lexicographic order. Is it true that μ dominates λ ?
- 3. Prove Pieri's rule (in the ring of symmetric functions in *n* variables, for large *n*): $s_{\lambda} h_k = \sum_{\mu \in \lambda \otimes k} s_{\mu}$ where $\lambda \otimes k$ is the set of partitions obtained by adding *k* boxes to the diagram of λ , no two in the same column. Deduce that the same equation holds in the ring Λ .
- 4. Let \mathcal{A} denote the space of alternating polynomials in n variables. Show that (i) The a_{γ} for $\gamma \in D(n)$ span \mathcal{A} , (ii) multiplication by a_{δ} defines an isomorphism of vector spaces $\Lambda_n \to \mathcal{A}$. Thus, \mathcal{A} is a free Λ_n -module generated by a_{δ} .
- 5. Let $\delta = (n 1, n 2, \dots, 0)$. Show that $s_{\delta} = \prod_{1 \le i < j \le n} (x_i + x_j)$ in the ring Λ_n . Compute $s_{k\delta}$ for all $k \ge 1$.
- 6. Prove the identities:

$$f^{\lambda} = \sum_{\lambda \in \mu \otimes 1} f^{\mu} \tag{1}$$

$$(1+|\lambda|)f^{\lambda} = \sum_{\mu \in \lambda \otimes 1} f^{\mu} \tag{2}$$

where f^{λ} is the number of standard Young tableaux of shape λ .