Symmetric Functions: Problem Set 5

- 1. Compute the action of the involution ω on each of the following: $m_{\lambda}, e_{\lambda}, h_{\lambda}, f_{\lambda}, p_{\lambda}, s_{\lambda}$.
- 2. Show by comparing the actions of ω on p_{λ} and s_{λ} that the number of even partitions of d (those for which the permutation of that cycle type is even) minus the number of odd partitions of d is equal to the number of self conjugate partitions of d.
- 3. Show that if $\lambda = 1^{m_1} 2^{m_2} \cdots$ is a partition of d, the number of elements in S_d of cycle type λ is $d!/z_{\lambda}$ where $z_{\lambda} = 1^{m_1} m_1 ! 2^{m_2} m_2 ! \cdots$.
- 4. Prove that

$$\prod_{i,j} (1 - tx_i y_j)^{-1} = \sum_{\lambda \in \text{Par}} t^{|\lambda|} s_\lambda(x) s_\lambda(y)$$
(1)

$$= \sum_{\lambda \in \text{Par}} t^{|\lambda|} z_{\lambda}^{-1} p_{\lambda}(x) p_{\lambda}(y)$$
(2)

5. Prove that

$$\prod_{i,j} (1 + tx_i y_j) = \sum_{\lambda \in \text{Par}} t^{|\lambda|} s_\lambda(x) s_{\lambda'}(y)$$
(3)

$$=\sum_{\lambda\in\operatorname{Par}} t^{|\lambda|} z_{\lambda}^{-1} \epsilon_{\lambda} p_{\lambda}(x) p_{\lambda}(y) \tag{4}$$

where ϵ_{λ} is the sign of the permutation w_{λ} of cycle type λ .

6. Let $\{u_{\lambda} : \lambda \in \operatorname{Par}(d)\}$ and $\{v_{\lambda} : \lambda \in \operatorname{Par}(d)\}$ be bases of Λ^d for each $d \geq 1$. Let

$$\vec{u} = \vec{s}A$$
 and $\vec{v} = \vec{s}B$

(there is one such A, B for each d). Suppose AB' = I for each $d \ge 1$, show that:

$$\prod_{i,j} (1 - tx_i y_j)^{-1} = \sum_{\lambda \in \text{Par}} t^{|\lambda|} u_{\lambda}(x) v_{\lambda}(y)$$