Symmetric Functions: Problem Set 4

1. Let $p_0 = 0$ and $p_n = \sum_i x_i^n$ for $n \ge 1$. Define

$$P(t) = \sum_{n \ge 0} p_n t^n$$

Show the following:

$$P(t) = \sum_{i} \frac{tx_i}{1 - tx_i} = t \frac{d}{dt} \sum_{i} \log(1 - tx_i)^{-1}$$
(1)

$$P(t) = t \frac{H'(t)}{H(t)} \tag{2}$$

$$P(-t) = -t\frac{E'(t)}{E(t)}$$
(3)

$$\sum_{r=1}^{n} p_r h_{n-r} = nh_n \quad (n \ge 1)$$
(4)

$$\sum_{r=1}^{n} (-1)^{r-1} p_r \, e_{n-r} = nh_n \quad (n \ge 1) \tag{5}$$

- 2. Prove that $\omega(p_r) = (-1)^{r-1} p_r$ and that $\omega(p_\lambda) = \epsilon_\lambda p_\lambda$ where ϵ_λ is the sign of w_λ , an element of the symmetric group of cycle type λ .
- 3. The trace of the involution ω on Λ^d is the number of even partitions of d minus the number of odd partitions of d (a partition λ is even if $\epsilon_{\lambda} = 1$ and odd otherwise).
- 4. Let the graded trace of ω be:

$$\zeta(q) = \sum_{d \ge 0} Tr\left(\omega|_{\Lambda^d}\right) q^d$$

Prove that
$$\zeta(q) = \frac{1}{(1-q)(1+q^2)(1-q^3)(1+q^4)\cdots}.$$

5. Using the fact that

$$\frac{1}{(1-q)(1-q^3)(1-q^5)\cdots} = (1+q)(1+q^2)(1+q^3)\cdots$$

prove that $Tr(\omega|_{\Lambda^d})$ equals the number of self conjugate partitions of d.