Symmetric Functions: Problem Set 3¹

- 1. Prove that the map $\omega : e_i \mapsto h_i$ defined in lecture is indeed an involution (we only did this by example).
- 2. Define $f_{\lambda} := \omega(m_{\lambda})$. The f_{λ} are called the *forgotten symmetric functions*. Show that they form a basis of Λ . Compute f_{λ} for $|\lambda| = 1, 2, 3$.
- 3. Compute the change of basis matrix when e_{λ} is written in terms of the f_{μ} .
- 4. Let $x_i = 1$ for $1 \le i \le n$ and $x_i = 0$ for i > n. Show that under this substitution, $e_r = \binom{n}{r}$. Find the values of h_r and m_{λ} for $r \ge 1$ and $\lambda \in \text{Par.}$
- 5. Let us substitute $x_i = 1/n$ for $1 \le i \le n$ and $x_i = 0$ otherwise. Now take the limit as $n \to \infty$. Compute the values of e_r, h_r and m_λ in this limit.
- 6. Prove that:

$$e_n = \det (h_{1-i+j})_{1 \le i,j \le n}$$
$$h_n = \det (e_{1-i+j})_{1 < i,j < n}$$

7. If $h_n = n$ for each $n \ge 1$ (recall that the h_n are algebraically independent generators, and one can assign any value to them), the sequence $(e_n)_{n\ge 1}$, is periodic with period 3.

¹Reference: I.G. Macdonald, Symmetric Functions and Hall Polynomials.